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Abstract

The research on robust principal component

analysis (RPCA) has been attracting much atten-

tion recently. The original RPCA model assumes

sparse noise, and use the L1-norm to characterize

the error term. In practice, however, the noise is

much more complex and it is not appropriate to

simply use a certain Lp-norm for noise modeling.

We propose a generative RPCA model under the

Bayesian framework by modeling data noise as a

mixture of Gaussians (MoG). The MoG is a uni-

versal approximator to continuous distributions

and thus our model is able to fit a wide range

of noises such as Laplacian, Gaussian, sparse

noises and any combinations of them. A varia-

tional Bayes algorithm is presented to infer the

posterior of the proposed model. All involved

parameters can be recursively updated in closed

form. The advantage of our method is demon-

strated by extensive experiments on synthetic da-

ta, face modeling and background subtraction.

1. Introduction

As a classical and popular tool for data analysis, principal

component analysis (PCA) has a wide range of applications

in science and engineering (Jolliffe, 2002). Essentially, P-

CA seeks the best L2-norm low-rank approximation of the

given data matrix. However, L2-norm is sensitive to gross

noises and outliers, which are often introduced in data ac-

quisition. Therefore, how to make PCA robust has been

attracting much attention in the last decade (De la Torre &

Proceedings of the 31
st International Conference on Machine

Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

Black, 2003; Ke & Kanade, 2005; Ding et al., 2006; Kwak,

2008).

Motivated by the recent advances in low-rank matrix anal-

ysis (Candès & Recht, 2009; Candès & Tao, 2010; Recht

et al., 2010), the so-called robust principal componen-

t analysis (RPCA) (Wright et al., 2009) has been proposed

to decompose a given data matrix into a low-rank matrix

and a sparse matrix. Denote by Y ∈ R
m×n the original

data matrix, by L ∈ R
m×n the low-rank component and

by E ∈ R
m×n the sparse component, RPCA can be math-

ematically described as the following convex optimization

problem:

minL,E ‖L‖∗ + λ‖E‖1 s.t. Y = L+E, (1)

where ‖L‖∗ =
∑

r σr(L) denotes the nuclear norm of L,

σr(L) (r = 1, 2, . . . ,min(m,n)) is the rth singular value

of L, ‖E‖1 =
∑

ij |eij | denotes the L1-norm of E and eij
is the element in the ith row and jth column of E. Under

certain noise sparsity and rank upper-bound assumptions,

it has been proved that one can exactly recover L and E

from Y with high probability (Candès et al., 2011). RPCA

has been successfully applied to many machine learning

and computer vision problems, such as video surveillance

(Wright et al., 2009), face modeling (Peng et al., 2010) and

subspace clustering (Liu et al., 2010).

RPCA, however, still has clear limitations. As shown in

Eq. (1), it utilizes L1-norm to characterize E, which is only

optimal for Laplacian noise. Although L1-norm can better

fit sparse noise than L2-norm, the real noise is often neither

Gaussian nor Laplacian, but has much more complex sta-

tistical structures. For example, the Bootstrap and Campus

sequences (Li et al., 2004) shown in Figure 1 can be reason-

ably modeled as the sum of a low-rank part (background)

and a noise part (foreground). However, such noise has a

rather complex structure. As can be seen from Figure 1, the

noise in the Bootstrap sequence can be decomposed into:
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Original frame (Y) Background (L)Noise (E)

(b) Campus sequence(a) Bootstrap sequence

Original frame (Y) Background (L)Noise (E)

Figure 1. Background subtraction by the proposed MoG-RPCA method: (a) Bootstrap sequence; (b) Campus sequence. First row (from

left to right): original frame; noise component; low-rank component. Second row: three noise components obtained by the proposed

MoG-RPCA method.

moving objects (people) in the foreground, shadows along-

side objects, and background noise. The noise in the Cam-

pus sequence can also be separated into three layers with

different degrees of variations: moving object (bus), vari-

ations of tree leaves and shadows, and background noise.

Clearly, in these real scenarios, it is not appropriate to sim-

ply use L1-norm or L2-norm to model the noise, which

assumes Laplacian or Gaussian noise, respectively.

This paper presents a new RPCA approach, which can fit

more complex noise. We formulate the problem as a gen-

erative model under the Bayesian framework, and model

data noise as a mixture of Gaussians (MoG). We then em-

ploy the variational inference method to infer the posteri-

or. Since MoG is a universal approximator to any continu-

ous probability distribution (Bishop, 2006; Meng & De la

Torre, 2013), the proposed MoG-RPCA approach is capa-

ble of adapting a much wider range of real noises than the

current RPCA methods.

2. Related Work

Early attempts to solve the RPCA problem replace the L2-

norm error by some robust losses. De la Torre & Black

(2003) utilized the Geman-McClure function in robust s-

tatistics to improve the robustness of PCA; Ding et al.

(2006) used a smoothed R1-norm to this end; Kwak (2008)

introduced the L1-norm variance and designed an efficient

algorithm to optimize it. These methods, however, are sen-

sitive to initialization, and only perform well on Laplacian-

like noise.

In recent years, low-rank matrix analysis methods have

been rapidly developed. Wright et al. (2009) initially for-

mulated the RPCA model as shown in Eq. (1). Some vari-

ants have also been proposed, e.g., Xu et al. (2010) used

the L1,2-norm to handle data corrupted by column. The it-

erative thresholding method (Candès et al., 2011) was pro-

posed to solve the RPCA model. This method, however,

converges very slow. To speed up the computation, Lin

et al. proposed the accelerated proximal gradient (APG)

(Lin et al., 2009) and the augmented Lagrangian multiplier

(ALM) (Lin et al., 2010) methods. ALM leads to state-of-

the-art performance in terms of both speed and accuracy.

Bayesian approaches to RPCA have also been investigated.

Ding et al. (2011) modeled the singular values of L and the

entries of E with beta-Bernoulli priors, and used a Markov

chain Monte Carlo (MCMC) sampling scheme to perfor-

m inference. This method needs many sampling iterations,

always hampering its practical use. Babacan et al. (2012)

adopted the automatic relevance determination (ARD) ap-

proach to model both L and E, and utilized the variational

Bayes (VB) method to do inference. This method is more

computationally efficient. These Bayesian methods, how-

ever, assume a certain noise prior (a sparse noise plus a

dense noise), which cannot always effectively model the

diverse types of noises occurring in practice.

One problem closely related to RPCA is L1-norm low-

rank matrix factorization (LRMF), which aims to factor-

ize a matrix into the product of two smaller matrices under

the L1 measure. Ke & Kanade (2005) proposed to solve it

via alternative linear/quadratic programming (ALP/AQP).

Eriksson & van den Hengel (2010) designed an L1-Wiberg

approach by extending the classical Wiberg method to L1

minimization. Zheng et al. (2012) proposed a RegL1ALM

method by using convex trace-norm regularization to im-

prove convergence. Wang et al. (2012) considered the prob-

lem in a probabilistic framework, and solved it via condi-

tional EM algorithm. Meng et al. (2013) proposed a nov-

el cyclic weighted median method to efficiently solve the

problem. The L1-norm LRMF problem can be viewed as a

fixed-rank variant of RPCA. However, the L1-norm LRMF

model is not convex and it can be trapped to local optima.

Moreover, the rank needs to be pre-specified in this line of

research, which is often unavailable in practice.

3. RPCA with MoG Noise

3.1. Model Formulation

Let’s consider RPCA as a generative model:

Y = L+E. (2)

If we assume that the entries of E are drawn independently

from a Laplacian distribution, and the singular values of L
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are drawn from another Laplacian distribution, we can ob-

tain the RPCA model (1) by performing maximum a pos-

teriori (MAP) estimation on L. Clearly, we can interpret

RPCA as a MAP estimation problem with Laplacian noise.

However, real noises are more complicated. To improve

RPCA, a natural idea is to use MoG to model noise since

MoG is a universal approximator to any continuous dis-

tributions (Bishop, 2006). For example, a Gaussian is a

special case of MoG and a Laplacian can be expressed as

a scaled MoG (Andrews & Mallows, 1974). Similar noise

modeling strategy was also adopted by Meng & De la Torre

(2013) for LRMF problem.

Noise Component Modeling. We assume that each eij in

E follows a MoG distribution:

eij ∼
∑K

k=1
πkN (eij |µk, τ

−1
k ), (3)

where πk is the mixing proportion with πk ≥ 0 and
∑K

k=1 πk = 1, K is the Gaussian components number and

N (e|µ, τ−1) denotes the Gaussian distribution with mean

µ and precision τ . Eq. (3) can be equivalently expressed as

a two-level generative model by introducing the indicator

variables zijks (Bishop, 2006):

eij ∼
∏K

k=1
N (eij |µk, τ

−1
k )zijk ,

zij ∼ Multinomial(zij |π),
(4)

where zij = (zij1, . . . , zijK) ∈ {0, 1}K ,
∑K

k=1 zijk = 1
and zij follows a multinomial distribution parameterized

by π = (π1, . . . , πK). To complete the Bayesian model,

we introduce conjugate priors over the parameters of Gaus-

sian components, µks, τks, and the mixing proportions, π,

as:

µk, τk ∼ N (µk|µ0, (β0τk)
−1)Gam(τk|c0, d0),

π ∼ Dir(π|α0),
(5)

where Gam(τ |c0, d0) is the Gamma distribution with pa-

rameters c0 and d0, and Dir(π|α0) denotes the Dirichlet

distribution parameterized by α0 = (α01, . . . , α0K).

Low-rank Component Modeling. One simple way to

model the low-rank component L is to impose a Laplacian

prior over the singular values of L. Another way is to in-

corporate the beta-Bernoulli priors on the singular values,

resulting in exact zeros on most singular values (Ding et al.,

2011). In this paper, we adopt the ARD for low-rank com-

ponent modeling (Babacan et al., 2012) due to its fast speed

and good scalability.

We formulate L ∈ R
m×n with rank l ≤ min(m,n) as the

product of U ∈ R
m×R and V ∈ R

n×R:

L = UV
T =

∑R

r=1
u·rv

T
·r, (6)

where R > l, and u·r (v·r) is the rth column of U (V).

Our goal is to achieve column sparsity in U and V, such

that some columns in U and V will approach zeros. The

low-rank nature of L can then be guaranteed. This goal can

be achieved by imposing the following priors on U and V:

u·r ∼ N (u·r|0, γ
−1
r Im), v·r ∼ N (v·r|0, γ

−1
r In), (7)

where Im denotes the m×m identity matrix. The conjugate

prior on each precision variable γr is:

γr ∼ Gam(γr|a0, b0). (8)

Note that each column pair u·r, v·r of U, V has the same s-

parsity profile characterized by the common precision vari-

able γr. It has been validated that such a modeling could

lead to large precision values of some γrs, and hence result

in a good low-rank estimate of L (Babacan et al., 2012).

Combining Eqs. (2), (4)-(8) together, we can construct the

full Bayesian model of RPCA with MoG noise, denoted

by MoG-RPCA. The goal turns to infer the posterior of all

involved variables:

p(U,V,Z,µ, τ ,π,γ|Y), (9)

where Z = {zij}, µ = (µ1, . . . , µK), τ = (τ1, . . . , τK),
and γ = (γ1, . . . , γR).

3.2. Remarks

Capability of MoG-RPCA in Fitting Sparse Noise: S-

ince the original RPCA model was designed to deal with

sparse noise, we need to evaluate if the proposed MoG-

RPCA can also handle sparse noise. Consider a MoG dis-

tribution with two components:

p(x) = πN (x|µ1, τ
−1
1 ) + (1− π)N (x|µ2, τ

−1
2 ). (10)

Let µ1 = 0 and τ−1
1 = 0. Eq. (10) degenerates to:

p(x) = πδ(0) + (1− π)N (x|µ2, τ
−1
2 ), (11)

where δ(0) is the Dirac delta distribution concentrated at

0. This distribution can be equivalently described by the

generative model as:

x ∼ zδ(0) + (1− z)N (x|µ2, τ
−1
2 ),

z ∼ Bernoulli(π),
(12)

where Bernoulli(π) is the Bernoulli distribution with pa-

rameter π, implying that the variable x is zero with prob-

ability π. This distribution is actually the spike-and-slab

prior, from which sparsity can be naturally confirmed (Ish-

waran & Rao, 2005). The spike-and-slab prior can thus be

viewed as a special case of MoG, that is, the MoG-RPCA

is also capable of fitting sparse noise, as can be easily ob-

served from Figure 2.

Merits of MoG-RPCA: The first merit of MoG-RPCA is

that it is capable of fitting a much wider range of nois-

es than the traditional RPCA models. Besides Laplacian,
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Gaussian, spike-and-slab distributions or any combination-

s of them, our model can handle more complicated nois-

es. The second merit is that all the parameters involved

in the proposed model, including U, V and the rank of

them, γrs, zijks, πks, µks and τks, can be automatically in-

ferred from the observed data under easy non-informative

settings of hyperparameters. Another merit of our model

is that instead of assuming zero-mean data noise in tradi-

tional RPCA methods, we leave µks, the means of all noise

components, as to-be-estimated parameters, which further

enhances the adaptability of our model to real asymmetric

noise. All these merits will be extensively substantiated by

our experiments.

3.3. Variational Inference

We use the variational Bayes (VB) (Bishop, 2006) method

to infer the posterior of MoG-RPCA. VB seeks an approx-

imation distribution q(x) to the true posterior p(x|D) (D
denotes the observed data) by solving the following varia-

tional optimization:

min
q∈C

KL(q‖p) = −

∫

q(x) ln

{

p(x|D)

q(x)

}

dx, (13)

where KL(q‖p) denotes the KL divergence between q(x)
and p(x|D), and C denotes the set of probability densities

with certain restrictions to make the minimization tractable.

Taking q(x) =
∏

i qi(xi), the closed-form solution to

qj(xj), with other factors fixed, can be attained by:

q∗j (xj) =
exp

{

〈ln p(x,D)〉x\xj

}

∫

exp
{

〈ln p(x,D)〉x\xj

}

dxj

, (14)

where 〈·〉 denotes the expectation, and x\xj denotes the set

of x with xj removed. Eq. (13) can be solved by alterna-

tively calculating (14).

Let’s approximate the posterior distribution (9) with the

following factorized form:

q(U,V,Z,µ, τ ,π,γ) =
∏

i
q(ui·)

∏

j
q(vj·)

∏

ij
q(zij)

∏

k
q(µk, τk)q(π)

∏

r
q(γr),

(15)

where ui· (vj·) is the ith (jth) row of U (V). Then we can

analytically infer all the factorized distributions involved in

Eq. (15) as below. The computational details are given in

the supplementary material.

Estimation of Noise Component: The parameters in-

volved in the noise component are µ, τ , Z and π. Based

on the prior imposed in Eq. (5) and its conjugate property,

we can get the following update equation for each µk, τk
(k = 1, . . . ,K):

q(µk, τk) = N (µk|mk, (βkτk)
−1)Gam(τk|ck, dk), (16)

where

βk=β0+
∑

ij
〈zijk〉,

mk=
1

βk

(β0µ0+
∑

ij
〈zijk〉(yij−〈ui·〉〈vj·〉

T )),

ck=c0+
1

2

∑

ij
〈zijk〉,

dk=d0+
1

2
{
∑

ij
〈zijk〉〈(yij−ui·v

T
j·)

2〉+β0µ
2
0

−
1

βk

(
∑

ij
〈zijk〉(yij−〈ui·〉〈vj·〉

T )+β0µ0)
2}.

Similarly, it is easy to obtain the update equation for mixing

proportions π:

q(π) = Dir(π|α), (17)

where α = (α1, . . . , αK), αk = α0k +
∑

ij〈zijk〉.

The variational posterior for the indicators Z can also be

derived in closed form:

q(zij) =
∏

k
rijk

zijk , (18)

where

rijk =
ρijk

∑

k ρijk
,

ρijk =
1

2
〈ln τk〉 −

1

2
ln 2π −

1

2
〈τk〉〈(yij − ui·v

T
j· − µk)

2〉

+ 〈lnπk〉.

Estimation of Low-rank Component: The parameters in-

volved in the low-rank component are U, V and γ. For

each row ui· of U, using the factorization (15), we can get

q(ui·) = N (ui·|µui·
,Σui·

), (19)

with mean µ
ui·

and covariance Σui·
given by

µ
T
ui·

=Σui·

{

∑

k
〈τk〉

∑

j
〈zijk〉(yij − 〈µk〉)〈vj·〉

}T

,

Σui·
=
{

∑

k
〈τk〉

∑

j
〈zijk〉〈v

T
j·vj·〉+ Γ

}−1

,

where Γ = diag(〈γ〉). Similarly, for each row vj· of V,

we have

q(vj·) = N (vj·|µvj·
,Σvj·

), (20)

where

µ
T
vj·

=Σvj·

{

∑

k
〈τk〉

∑

i
〈zijk〉(yij − 〈µk〉)〈ui·〉

}T

,

Σvj·
=
{

∑

k
〈τk〉

∑

i
〈zijk〉〈u

T
i·ui·〉+ Γ

}−1

.

For γ which controls the rank of L, we have

q(γr) = Gam(γr|ar, br), (21)
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where

ar = a0 +
m+ n

2
, br = b0 +

1

2

(

〈uT
·ru·r〉+ 〈vT

·rv·r〉
)

.

As discussed in Babacan et al. (2012), some γrs tend to

be very large during the inference process and the corre-

sponding u·r and v·r will be removed from U and V. The

low-rank property of L can thus be achieved.

Setting of the Hyperparameters: We set all the hyperpa-

rameters involved in our model in a non-informative man-

ner to make them influence as less as possible the inference

of posterior distributions (Bishop, 2006). Throughout our

experiments, we set µ0 = 0, and α01, . . . , α0K , β0, a0,

b0, c0, d0 a small value 10−6. Our method performs stably

well on all experiments with these easy settings.

Tuning of the Number of Gaussians: We use a simple but

effective method to automatically tune the number of Gaus-

sians K. We first run the proposed MoG-RPCA method

with a relatively large K. Then we check if there exist t-

wo analogous noise components (with means µi, µj and

variances τ−1
i , τ−1

j , respectively) which satisfy that both

|µi−µj |/(|µi|+ |µj |) and |τ−1
i −τ−1

j |/(τ−1
i +τ−1

j ) are s-

maller than a preset threshold. If yes, we set K to K−1 and

re-run our method by taking current parameters as initial-

izations and combining the two analogous Gaussian com-

ponents into one. Otherwise we terminate the iteration and

output the result. Such a strategy is efficient since the in-

formation obtained in previous step is fully utilized as ini-

tialization to the next step. In all our experiments, we sim-

ply set the maximum K as 6, and the experimental results

showed that it is flexible enough to fit the noises in all syn-

thetic and real data we used.

Complexity: It is easy to see that only simple computa-

tions are involved in the variational inference of parame-

ters, except that inferring each of ui·s and vj·s needs to

invert a R × R matrix, leading to O((m + n)R3) cost-

s in total. Altogether, the complexity of MoG-RPCA is

O((m + n)R3 + KmnR + mnR2) per iteration, where

m,n,K,R are the dimensionality and size of the input da-

ta, the MoG number, and the rank presetting, respectively.

The cost of our method is thus linear in both data dimen-

sionality and size, which is comparable to the existing RP-

CA algorithms.

4. Experiments

We evaluate the performance of the proposed MoG-RPCA

method on synthetic, face and video data. The competing

methods include classic PCA and representative RPCA and

LRMF methods: RPCA (Wright et al., 2009)1, BRPCA (D-

1http://perception.csl.illinois.edu/
matrix-rank/sample_code.html

ing et al., 2011)2, VBRPCA (Babacan et al., 2012)3, ALP

(Ke & Kanade, 2005), RegL1ALM (Zheng et al., 2012)4

and PRMF (Wang et al., 2012)5. We wrote the code for

ALP and utilized the “svd” function in Matlab for PCA.

All experiments were implemented in Matlab on a PC with

2.60GHz CPU and 8GB RAM.

4.1. Synthetic Simulations

Ten sets of synthetic data were generated to evaluate the

performance of MoG-RPCA with different types of nois-

es. In the first five sets of simulations, we randomly gen-

erated 20 matrices with size 100 × 100 and rank r = 5.

Each of these matrices was generated by the product of t-

wo smaller matrices as UV
T . Both U and V are of sizes

100 × r, and their entries were independently drawn from

N (0, 1). We further added certain types of noise to the

ground truth matrix as follows. (1) No noise added. (2) S-

parse noise: 10% entries mixed with uniform noise within

[−25, 25]. (3) Gaussian noise: all entries mixed with Gaus-

sian noise N (0, 0.05). (4) Mixture noise with zero mean:

10% entries mixed with uniform noise between [−25, 25],
20% with Gaussian noise N (0, 1), and the other 70% with

Gaussian noise N (0, 0.01). (5) Mixture noise with nonze-

ro mean: 10% entries mixed with uniform noise within

[−15, 35], 30% with Gaussian noise N (0.1, 1), and the oth-

er 60% with Gaussian noise N (−0.1, 0.01). The other five

sets of simulations were similarly constructed except for

setting rank r = 10.

Two criteria were utilized for performance assessment. (1)

Relative reconstruction error (RRE): ‖L̂ − L‖F /‖L‖F ,

where L and L̂ denote the ground truth and reconstructed

low-rank matrices, respectively. (2) Estimated rank (ER):

the rank of L̂6. The performance of each competing method

on each simulation was evaluated as the average over the 20
matrices in terms of RRE and ER, as listed in Table 1.

We can see from Table 1 that, unsurprisingly, PCA has the

best performance in the no noise and Gaussian noise cas-

es, and the L1-norm based methods perform better in the

case of sparse noise. While our method always has compa-

rable performance in these situations, its advantage tends

to be significant in the case of more complex noise, which

is demonstrated by the following Mann-Whitney-Wilcoxon

test (Mann & Whitney, 1947). In Gaussian noise experi-

2http://people.ee.duke.edu/˜lcarin/BCS.
html

3http://www.dbabacan.info/publications.
html

4https://sites.google.com/site/
yinqiangzheng/

5http://winsty.net/prmf.html
6Since in the LRMF methods, PCA, ALP, RegL1ALM and

PRMF, the rank is fixed as a pre-specified parameter, this criterion
is not applicable to this line of methods.

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://perception.csl.illinois.edu/matrix-rank/sample_code.html
http://people.ee.duke.edu/~lcarin/BCS.html
http://people.ee.duke.edu/~lcarin/BCS.html
http://www.dbabacan.info/publications.html
http://www.dbabacan.info/publications.html
https://sites.google.com/site/yinqiangzheng/
https://sites.google.com/site/yinqiangzheng/
http://winsty.net/prmf.html
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Table 1. Performance evaluation on synthetic data. The best results in terms of RRE are highlighted in bold.

rank(L) = 5 PCA RPCA BRPCA VBRPCA ALP RegL1ALM PRMF MoG-RPCA

No Noise

RRE 1.04e-15 3.33e-8 0.232 5.11e-4 1.96e-4 7.21e-9 1.50e-5 5.03e-5

ER - 5 5 5 - - - 5

Time(s) 0.0019 0.0728 24.89 0.0113 3.27 0.117 0.272 0.101

Sparse Noise

RRE 0.768 1.33e-7 6.60e-2 0.117 4.21e-4 4.01e-8 6.12e-5 8.17e-5

ER - 5 5 5 - - - 5

Time(s) 0.0045 0.135 23.42 0.0337 3.71 0.316 0.315 0.264

Gaussian Noise

RRE 3.11e-2 5.95e-2 3.11e-2 4.98e-2 3.83e-2 7.07e-2 3.88e-2 3.11e-2

ER - 57 5 5 - - - 5

Time(s) 0.0040 0.178 52.02 0.0767 5.75 0.496 0.561 0.258

Mixture Noise

(zero mean)

RRE 7.72e-2 4.96e-2 3.27e-2 8.65e-2 2.69e-2 6.36e-2 4.73e-2 1.90e-2

ER - 58 5 5 - - - 5

Time(s) 0.0038 0.173 18.11 0.0679 5.99 0.513 0.563 0.417

Mixture Noise

(nonzero mean)

RRE 1.11 8.63e-2 6.64e-2 0.762 4.80e-2 8.54e-2 5.16e-2 2.41e-2

ER - 58 5 2 - - - 5

Time(s) 0.0036 0.173 17.96 0.0675 6.47 0.500 0.542 0.538

rank(L) = 10 PCA RPCA BRPCA VBRPCA ALP RegL1ALM PRMF MoG-RPCA

No Noise

RRE 1.82e-15 1.73e-8 0.193 1.20e-3 3.42e-4 9.06e-9 1.57e-5 1.52e-4

ER - 10 10 10 - - - 10

Time(s) 0.0021 0.0917 42.64 0.0220 3.80 0.143 0.351 0.162

Sparse Noise

RRE 0.778 3.33e-3 7.81e-2 0.984 5.20e-4 4.76e-8 7.12e-5 8.41e-5

ER - 11 10 1 - - - 10

Time(s) 0.0045 0.190 41.76 0.119 5.19 0.394 0.690 0.550

Gaussian Noise

RRE 3.12e-2 4.99e-2 3.13e-2 4.78e-2 3.80e-2 9.07e-2 3.93e-2 3.13e-2

ER - 57 10 10 - - - 10

Time(s) 0.0039 0.176 89.27 0.110 7.35 0.562 0.620 0.313

Mixture Noise

(zero mean)

RRE 0.775 6.25e-2 2.55e-2 0.959 3.30e-2 7.02e-2 4.60e-2 2.08e-2

ER - 58 10 1 - - - 10

Time(s) 0.0037 0.172 29.67 0.0838 8.83 0.563 0.620 1.20

Mixture Noise

(nonzero mean)

RRE 1.04 0.101 7.58e-2 1 5.74e-2 0.125 7.65e-2 2.65e-2

ER - 57 10 0 - - - 10

Time(s) 0.039 0.170 29.61 0.0842 9.30 0.568 0.619 1.37

Table 2. Quantitative comparison of the ground truth (denote by “True”) noise probability density functions and those estimated (denote

by “Est.”) by the MoG-RPCA method in the synthetic experiments.

rank(L) = 5
No Noise Sparse Gaussian Mixture (zero mean) Mixture (nonzero mean)

Comp. 1 Comp. 1 Comp. 2 Comp. 1 Comp. 1 Comp. 2 Comp. 3 Comp. 1 Comp. 2 Comp. 3

πk
True - 0.1 0.9 - 0.1 0.2 0.7 0.1 0.3 0.6

Est. - 0.10 0.90 - 0.107 0.183 0.710 0.10 0.28 0.62

µk
True 0 0 0 0 0 0 0 10 0.1 -0.1

Est. -4.56e-5 -0.48 3.68e-6 -0.016 -0.24 0.017 -2.33e-3 10.25 0.094 -0.10

τ
−1

k

True 0 208.3 0 0.05 208.3 1 0.01 208.3 1 0.01

Est. 5.05e-4 209.6 1.27e-4 0.049 199.5 1.02 0.011 200.1 1.07 0.012

rank(L)=10
No Noise Sparse Gaussian Mixture (zero mean) Mixture (nonzero mean)

Comp. 1 Comp. 1 Comp. 2 Comp. 1 Comp. 1 Comp. 2 Comp. 3 Comp. 1 Comp. 2 Comp. 3

πk
True - 0.1 0.9 - 0.1 0.2 0.7 0.1 0.3 0.6

Est. - 0.10 0.90 - 0.107 0.178 0.715 0.10 0.27 0.63

µk
True 0 0 0 0 0 0 0 10 0.1 -0.1

Est. 2.66e-5 -0.16 -3.21e-8 -0.013 -0.088 0.022 1.75e-3 10.32 0.10 -0.098

τ
−1

k

True 0 208.3 0 0.05 208.3 1 0.01 208.3 1 0.01

Est. 2.77e-4 206.9 1.56e-4 0.050 197.8 1.01 0.012 202.8 1.13 0.013

ments, the performance of MoG-RPCA is not significantly

different from BRPCA (two-sided test: p-value = 0.9705)

and PCA (two-sided test: p-value = 0.9705), which is

already optimal for Gaussian noise. These three meth-

ods, however, perform significantly better than the other

competing methods (p-value < 10−5). In the case of s-

parse noise, our method significantly outperforms the com-

peting methods (p-value < 0.005) except for PRMF and

RegL1ALM, which are specifically designed for sparse

noise. However, in the case of mixture noise, which is more

realistic in practice, it is statistically significant that the pro-

posed MoG-RPCA performs better than all other methods

(p-value < 10−5). As for rank estimation, the proposed

method can accurately estimate the underground rank of

the ground truth matrix in all cases. This further verifies

the effectiveness of the proposed method.

The good performance of the proposed MoG-RPCA

method in complex noise cases can be easily explained by

Table 2 and Figure 2, which compare the ground truth nois-

es and those estimated by our method. It is easy to see that

the estimated noise distributions comply with the real ones

very well. Especially, in the cases of complicated mixture

noise (the 3rd and 4th columns of Figure 2), our method

very faithfully resolves the real noise configurations.

We also compared the average CPU times for all meth-

ods in Table 1. As can be seen, our method costs com-

parable CPU time with other methods in most situation-

s, which complies with the complexity analysis in Section

3.3. Considering its superiority in complex noise adaption

and automatic rank estimation, it is reasonable to say that

our method is efficient.
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Figure 2. Visual comparison of the ground truth (denote by “True”) noise probability density functions and those estimated (denote by

“Est.”) by the MoG-RPCA method in the synthetic experiments. The embedded sub-figures depict the zoom-in of the indicated portions.
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Figure 3. From left to right: original faces, reconstructed faces and extracted noise by PCA, RPCA, BRPCA, VBRPCA, RegL1ALM,

PRMF and MoG-RPCA. The noises with positive and negative values are depicted in purple and blue, respectively. The 2nd and 3rd faces

are also shown in range [0, 30] to better visualize the camera noise in the dark region of faces. This figure should be viewed in color and

the details are better seen by zooming on a computer screen.

4.2. Face Modeling

This experiment aims to test the effectiveness of MoG-

RPCA in face modeling applications. The second subset of

the Extended Yale B database (Georghiades et al., 2001),

consisting of 64 faces of one subject with size 192 × 168,

was used to generate the data matrix with size 32256× 64.

Typical images are depicted in Figure 3. All competing

methods were implemented, except for ALP which encoun-

ters the “out of memory” problem. We set the rank as 4
(Basri & Jacobs, 2003) for the factorization-based meth-

ods, including PCA, RegL1ALM and PRMF. For the oth-

er competing methods, the rank was automatically learned

from data. The reconstructed faces and the extracted noises

by all methods are compared in Figure 3.

The proposed method, as well as the other competing meth-

ods, is able to remove the cast shadows and saturations in

faces. Our method, however, performs better on faces with

a large dark region. Such face images contain both signif-

icant cast shadow and saturation noises, which correspond

to the highly dark and bright areas in face, and camera/read

noise (Nakamura, 2005) which is much amplified in the

dark areas. It is very interesting that the proposed method

is capable of accurately extracting these two kinds of nois-

es, as clearly depicted in Figure 3. The better noise fitting

capability of the proposed method thus leads to better face

reconstruction performance.

4.3. Background Subtraction

Background subtraction from video sequences captured by

a static camera can be modeled as a low-rank matrix anal-

ysis problem (Wright et al., 2009; Candès et al., 2011).

Four commonly utilized video sequences, including two in-

door scenes (Bootstrap and Hall) and two outdoor scenes

(Fountain and Campus), provided by Li et al. (2004)7, were

adopted in our experiments. We extracted 400 frames from

the Fountain sequence and 600 frames from each of the oth-

7http://perception.i2r.a-star.edu.sg/bk_
model/bk_index

http://perception.i2r.a-star.edu.sg/bk_model/bk_index
http://perception.i2r.a-star.edu.sg/bk_model/bk_index
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Figure 4. From left to right: original video frames, background extracted by PCA, RPCA, BRPCA, VBRPCA, RegL1ALM, PRMF and

MoG-RPCA, together with their extracted noise images.

Original frame MoG-RPCAPRMFRegL1ALMVBRPCABRPCARPCAPCA

Figure 5. From left to right: original video frames, background extracted by PCA, RPCA, BRPCA, VBRPCA, RegL1ALM, PRMF and

MoG-RPCA. The foreground areas are demarcated for easy comparison.

er three sequences. All the competing methods except ALP

were implemented for comparison. For the factorization-

based methods, including PCA, RegL1ALM and PRMF,

several rank parameters were tried and the best one was

recorded. For the other methods, the rank was learned from

data. The results for typical sample frames are shown in

Figures 1 and 4.

It can be seen that all the competing methods can extract

the background from videos with slight differences in vi-

sualization. Our method, however, can extract more elabo-

rate foreground (noise) information. More specifically, our

method can discover three levels of foreground informa-

tion with different variations from the Hall and Bootstrap

videos: moving people, shadows alongside the foreground

objects and background noise, and from the Fountain and

Campus videos: moving people/bus, variations of foun-

tain/tree leaves, and background noise.

We also tested our method on a real traffic video sequence

acquired by a static surveillance camera8, which is more

challenging due to diverse variations of its foreground cars.

Typical background frames extracted by competing meth-

ods are shown in Figure 5. It is easy to see that our method

8http://www.eecs.qmul.ac.uk/˜andrea/
avss2007_d.html

more clearly removes foreground information and attains a

better subtraction of background. This further substantiates

the effectiveness of the proposed method.

5. Conclusion

We proposed a new RPCA method by modeling noise as

a MoG distribution under the Bayesian framework. Com-

pared with the current RPCA methods, which assume cer-

tain noise distribution (e.g., Gaussian or sparse noise) on

data, our method can perform the RPCA task under more

complex noises. The effectiveness of our method was

demonstrated by synthetic data with artificial noises and by

face modeling and background subtraction problems with

real noises. The proposed method shows clear advantages

over previous methods on its capability in accurately recov-

ering the low-rank structure and elaborately extracting the

multimodal noise configuration from observed data.
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