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ABSTRACT 

Robust Procedures for Estimating Polynomial Regression 

For estimating a regression function g(x) which is a poly-

nomial of degree s on a compact interval, let 

squares estimator and Ss the optimal design. 

regression function is a polynomial of degree s 

U be the least 
s 

Suppose now that the 

plus a small 

polynomial of higher degree k. We use an estimator of the form 

(1-a)Us + auk and a design of the form (1-~);s + ~Sk, with 

0,::: a.::: 1, 0 _::: ~.::: 1. Our criterion for an optimal procedure is to 

minimize the maximum (over x) mean square error. For k < s + 2, 

k < 10 we find values of (a,~) which, compared to the standard 

procedures a=~= 0 and a=~= l, show desirable robustness when 

the true regression function deviates from a polynomial of degree s 

by only a moderate amount. 
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Robust Procedures for Estimating Polynomial Regression1 

by 

Corwin L. Atwood 

In this paper we seek· good estimators and designs for estimating 

a regression function, when the function is assumed to be a polynomial 

of given degree plus a "small" polynomial of given higher degree. 

We propose a procedure and verify that in the cases computed our 

procedure shows desirable robustness properties when compared to the 

standard procedure. 

Model. -
For x in some closed interval [a, b], suppose uncorrelated 

random variables Y are observable, each with variance a2 and 
X 

mean g(x), the regression function, where g(x} is a polynomial of 

degree k for some given k > 2. For some s, 1 ~ s < k, let h{x) 

be a polynomial of degree s which best approximates g(x), in the 

sense that for any polynomial h
1

(x) of degree s, 

maxxlg(x) - h(x)I ,:S maxxjg(x) - h1(x}j • 

By standard approximation theory (Meinardus (1967), p. 16), h is 

unique. Here and throughout this paper, max means the maximum 
X 

for a< x < b. Define e = max fg(x) - h(x)j. If an experimenter 
X 

believes that the regression function is "approximately" a polynomial 

of degree s, with the deviation from this polynomial equal to a 

polynomial of degree k, then he believes the assumptions of our model 

1a.esearch supported in part by NSF grant GP 11021 • 
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with e "small." This will be the situation of interest to us. 

This model can be parametrized in various ways. By a proper 

change of variables we can assume -1 ~ x ~ 1, and will do so. We 

can write g(x) = f'(x)e = f(l)'(x)e(l) + f( 2 )
1

(x)e(2 ), where f is 

any coluum vector of k + 1 linearly independent polynomials each 

of degree ~ k, partitioned into f(l) and f( 2 ), with f(l) con-

sisting of s + 1 polynomials each of degree ~ s. The vector e 

of k + 1 unknown parameters is partitioned into e<1) and 
e(2) , 

of dimensions s + 1 and k - s respectively. Whatever functions 

are used in the vector f, note that e = 0 

i.e., if and only if g(x) = f(l)'(x)e(l)_ 

if and only if e(2)= o, 

Eventually we will use 

f'(x) = (1, x, ... , xk). 

The experimenter observes Y at various x and wishes to 
X 

estimate g(x). A design ~ specifies the proportion of observations 

to take at each x. If U is the estimator used at any particular 
X 

x, we·wish to minimize the maximum mean square error, max E(U - g{x))2
• 

X X 

By a procedure we will mean a design and an estimator used together. 

Previous results. 

If e = 0, i.e., the regression function is f(l)' (x)e(l), then 

the best linear unbiased estimator and the optimal design are well 

known (Scheffe (1959), Guest (1958) and Hoel (1958).) We will call 

this the "standard procedure." When e = 0 it has zero bias and 

maximum variance= {s+l)o2 /n· (Kiefer and Wolfowitz (196o)). We will 

give procedures which are robust for e > o. That is they have maximum 

mean square error almost as small as that of the standard procedure 

when e is close to O, and smaller otherwise. We give numerical results 

for the cases k < s + 2, k < 10. 

- 2 -

;:: 
I 

~ 

... 

w 

la.I 

la.I 

~ 

..., 

~ 

Ii.I 

I 

~ 

I .... 

... 

i.. 

I 

I.I 

~ 

--
1-i 

I 
1..1 

1..1 

~ 



-

... 

Box and Draper (1959) and (1963) consider a similar problem. 

Their x ranges over a multidimensional spherical region R, their 

vector of regression functions f consists of all monomials of degree 

~ 3 (resp. 2 in the 1959 paper) and f{
2

){x) = x3 {resp. x2
). The 

only estimator U considered is the best linear unbiased estimator 
X 

of f(l)'(x)e(l) assuming e<2 ) = O. They seek a rotatable design 

which minimizes the integrated mean square error JR E{Ux- f'(x)0) 2 dx. 

Thus the Box-Draper assumptions differ somewhat from ours. However 

their results differ more markedly. The optimal designs obtained look 

quite similar to each other (in a sense made precise) for large 

values of a(2
) (close to the "all-bias" situation). In contrast,we 

are chiefly concerned with the case when e is small, hence 

is small. Also while we do not ever find optimal procedures, we do 

compare .the mean square errors of several procedures in order to 

determine their relative efficiencies for various values of e. Nothing 

like this is done by Box and Draper. 

Karson, Manson and Hader (1969) follow Box and Draper, but use 

an estimator of the form il)' (x)b, where b is a linear function 

of the observed Y values chosen to minimize the integrated squared 

bias JR E[f(l)'{x)b - f'(x)0] 2 dx. They show that in several examples 

it is possible to use this estimator and an appropriate design to 

achieve smaller integrated mean square error than is possible using 

the Box-Draper estimator. 

Stigler (1970) meets the problem of an imperfectly known model 

by defining new design criteria. He uses the traditional estimators 

in conjunction with the designs thus obtained. 
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Procedure to be used. 
r .. 

Let ss denote the optimal design for estimating f(l)' (x)il) 

assuming e(2 ) = O, and let l;k denote the optimal design for 

estimating f' (x)e when e is completely unknown. These designs 

take an equal number of observations at s + 1 and k + 1 points, 

respectively, where the points to use were found by Guest (1958) and 

Hoel (1958). Although these points can be found in principle from 

existing tables, the numerical values do not seem to have been computed 

and written down. They are therefore given in Appendix II. Throughout, 

we will assume that the total number of observations n is such that 

~he required number of observations at each point can be taken. If 

we take n observations at (not necessarily distinct) points 

xl, • • •, xn, let A be the n X (k+l) matrix with ith row £'(xi). 

Assume that A is of full rank, as it will be in all our applications. 

We ·let A
1 

and A
2 

be the matrices consisting of the first s + 1 

and last k - s colunms of A, and let Y be then-vector with 

components Yx.. Then EY = AB = A
1

eC 1)+ A
2
e(

2
). If e<

2
) = O the 

best linear un~iased estimator of f'(x)e is f(l)'(x)(A
1

1A
1
)-1A

1
'Y. 

If no assumption is made about e<
2

), the best linear unbiased 

estimator of f'(x)e is f'{x)(A'A)-
1
A'Y. 

It seems reasonable to use an estimator and design approximating 

f(l)'(A 'A )-lA 'Y 
1 1 1 

and Ss if e is small, and approximating 

f' (A 'A)-lA 'Y and l;k if e: is large. (We suppress x, the argument 

of f, here and below.) we will consider estimators of the form 

ux{a) = (1-a)f(l)' (A1'A1)-
1
A1'Y + af'(A'A)-

1
A'Y 
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and designs of the form 13 = (1-a)ss + ask' for parameters a and 

S with O <a< 1 and O ~a~ 1. 

For a given design ; and a given point x, let us compute the 

mean square error of U (a). Direct computation shows that 
X 

EUx(a) = f(l)'e(l) + (af(2 )'+ (l-a)f(l)'~-1~)0( 2 ) 

where we write M = n-
1
A'A, and partition M as 

M= [ ~. ~] 
with Mj_ and M

3 
of sizes (s+l) X (s+l) and {k-s) x (k-s) 

respectively. Thus the bias is given by 

(1) (1-a){f(l)'Ml-½ - f(2)')0(2). 

We will return to this after dealing with the variance. 

To calculate the variance write 

(2) ux(a) = t< 1
)

1

(A1'A1)-
1
A1'Y + a(f'(A'A)-

1
A' - /

1
)

1

(A1'A1)-
1
A1')Y. 

We show as follows that the two terms on the right side of the equation 

are uncorrelated. If 0< 2) = 0 then Ef(l)'(A
1

'A
1
)-1A

1
'Y = f(l)'e(l)_ 

· -1 {l)' (1) . (2) 
Also, Ef'(A'A) A'Y = f'0, which equals f 0 1.f 0 = o. 

Equating the two expectations when 0<
2

) = 0 gives 

f'(A'A)- 1A'A
1 

9(l)= f(l)'(A
1

'A
1

)-1A
1

'A
1
0(l) for all 9(l). 

That is 

(f'(A'A)-lA, - f(l)'(A
1

'A
1
)-1A

1
')A

1 
= O. 
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Therefore the two terms on the right side of equation (2) have covariance 

( f'(A'A)- 1A' - f(l)'(A 'A )-IA ')cov Y(A (A 'A )-lf(l)) 
1 1 1 1 1 1 

which equals O because the covariance matrix of Y is cr2I. We 

conclude that 

(3) var Ux(a) = var f(l)'(A
1

'A
1
)-

1
A

1
'Y + a 2 var(f'(A'A)-

1
A' 

-f(l)'(A1'A1)-lA1')Y. 

To evaluate this, set a= 1. Then U (1) = f'(A'A)-
1
A'Y, so 

X 

var f'(A'A)-
1
A'Y = var /l)' (A

1
1A

1
)-

1
A

1
1Y + var(f'(A'A)-1A' 

- f(l)'(A1'A1)-lA1')Y. 

We solve for the right hand term and substitute it into (3). Direct 

computation then gives 

var ux(a) = cr2n -1c l-a2)i
1

) 
1 

Ml - 1t< l)+ a2n -la2f 'M-if. 

If the design ~ 

.and we write 

is used, then this quantity also depends on a, 

var U (a, a)= a2n-
1
V (a, a) 

X X 

defining V (a, a)• 
X 

To carry out a numerical search for suitable a and a, it is 

useful to examine the behavior of max V {a, S) in the region 
XX 

0 ~ a ~ 1, 0 ~ ~ ~ 1. This is done in Appendix I. 
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We have expressed the bias in (1) in terms of e<
2

). Our 

assumptions specify e rather than e<
2

), so let us express the 

bias in terms of e. The expression depends on the parametrization 

used, so from now on suppose f'(x) = (1, x, 
k 

• • • ' X ) • 

Suppose first that k = s + 1. In this case it is well known 

(Meinardus (1967), p. 3lff.) that the best degrees s approximation 

to the regression function g differs from g by Tk' the Chebyshev 

polynomial of degree k, multiplied by the maximum deviation from g. In our 

case the deviating polynomial is ,±e Tk, and e<
2

) is its leading coefficient, 

k-1 ( ) namely ,±e 2 • Therefore from 1, the bias equals.± e B, where 

We have suppressed the dependence of B on x, a and a. 

Now suppose k = s + 2. In this case has two components, 

and our assumption about the single quantity e is not enough to 

determine e<
2

). Let the components of e<
2

) be ek and ek+l and 

let T = -ek/ek+l' possibly infinite. We may assume T 2: O, for 

if it is not we can work with g(-x), which has its T > O. The best 

degree s approximation to g deviates from g by a constant times 

a so-called Zolotarev polynomial Zk, which depends on 'T'. (See 

Meinardus (1967), p. 41ff.) If 'T' ,::S k tan2 (rr/2k) then the Zolotarev 

polynomial is expressible in terms of a Chebyshev polynomial: 

( ) -k+l( 1· )k__ (x-'T'/k) 
Zk X = 2 l+'T' k ---rk l+'T'fk • 

This polynomial has maximum 2-k+l(l+'T'/k)k. If 'T' > k tan2 (n/2k) 

then the polynomial can be expressed in principle in terms of elliptic 

functions, but it is not readily usable. The one exception is if 'T' 

- 7 -



is infinite, in which case 0k+l= 0 and the problem reduces to that 

discussed in the previous paragraph. Rather than obtaining results 

which are valid for all T, we will choose 0, k tan2 (n/2k) and oo 

as convenient and hopefully representative values of T and confine 

our results to these three cases. Argument similar to that in the 

last paragraph shows that the bias equals + e B, where 

B = 2k-l(l+T/k)-k(l-a)(f(l)'Ml-l~ - f( 2 )')(iT) if OST S 
k tan2 {n/2k) 

B = 2k-2(f(l)'~-l~- f(2)')(~) if T = oo • 

Because of the difficulty presented by the approximation theory, 

the cases k > s + 2 are not considered. 

We now have expressions for the variance and bias. Denoting 

the ratio ne2 /a2 by r, the mean square error written to show 

dependence on a, a, r and X is 

n·
1

a2MSE (a, S, r) = 
X 

n·
1a2(V (a, a)+ rB 2 (a, S)). 

X X 

Note that the relative importance of the bias in the mean square 

error depends not on e alone, but on 

satisfying intuitive interpretation. If 

r = ne2 /a2. This has a 

-1/2 . 
an is large compared 

to e (typically if n is small) then we should try hardest to 

reduce the variance rather than the bias. If an·
112 

is small 

compared to e, as when n is large, then we should use some of our 

observations to reduce the bias. 

The (a, a) pairs to use were found by numerical search based 

on the following criteria. We want procedures which have high efficiency 
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{say 95%, 90% and 80%) relative to the standard procedure when e = O. 

(It turns out that a 99% efficient procedure behaves so much like 

the standard procedure that it's not worth the trouble to use it.) 

Thus we want {a, ~) with {s+l)/max V (a,~)= .95, etc. 
xx 

In 

addition, for moderate e we would like our procedure to have 

smaller mean square error than the standard procedure. To make this 

precise, when k = s + 1 we arbitrarily let * r be that value of 

r for which the standard procedure O' = f3 = 0 has maximum mean 

square error n-
1
a2(k+l). (Thus at * r = r , a = ~ = 1 gives the 

same maximum mean square error as the standard procedure.) If 

k = s + 2 the mean square error depends on '1", so we get values * r ( T). 

* * Then we let r be the smallest of r {T) for 'T' = O, k tan2{n/2k) 

and ~. Among those (a, f3) pairs which give the desired efficiency 

for e = 0, we choose that (a,~) which minimizes * max (a,~' r) when 
X 

* k = s + 1, and which minimizes max max MSE (a,~' r) when k = s + 2. 
'T' X X-

* Other ways of deciding on an r would probably also give good r_esults. 

All that is desired is a small mean squared error for moderate values 

of r. Details of the numerical methods used are described in 

Appendix I. 

Numerical results. 
'"' 

We graph a few cases in Figures 1 and 2. In Figure 1 we treat 

the case s = 1, k = 2, and graph max MSE (a, a, r) as a function 
X X 

of r. For clarity only the standard procedure and the two procedures 

with efficiencies .95 and .80 at r = 0 are considered. The corresponding 

graphs are labeled 1.00, .95 and .80 respectively. The procedure 

Q' = f3 = 1 has max MSE = 3 for all r, and thus is preferable to 
X X 
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any of the other procedures if r is large. The line of constant 

height 3 is therefore shown for comparison. 

In Figure 2 we treat the case s = 1, k = 3 and as in Figure 1 

we consider the standard procedure and the two procedures with 

efficiencies .95 and .80 at r = O. However in this figure each 

procedure has three graphs, corresponding to the three values of T 

under consideration. (Note that 3 tan2 (TT/6) = 1.) When T = oo the 

regression function is exactly that when s = 1, k = 2. It is 

interesting to note that the non-standard procedures of Figure 2 do 

not do as well against T = oo as the corresponding procedures of 

Figure 1; this is to be expected, since the procedures in Figure 2 

are trying to cope with several values of T simultaneously. The 

procedure a= S = 1 has max MSE = 4 
X X 

for all r and T, and thus 

is preferable to any of the other procedures if r is large. This 

line is shown for comparison. 

The results for all the cases are summarized in Tables 1 and 2. 

We write MSE for max MSE • 
X X 

For a given a and a, we write 

e{r) = MSE(O, O, r)/MSE(a, S, r). The notation is suggestive of 

efficiency. However for r > 0 the ratio does not have the usual 

efficiency interpretation as a ratio of sample sizes, since for fixed 

a and S and fixed e > 0 the maximum mean square error is not a 

linear function of 
-1 

n 

ro is the point at which 

In the tables, for a and a not both O, 

MSE(O, O, r
0

) = MSE(a, a, r
0

). For a 

and 13 not both 1, r
1 

is the point at which MSE(a, ~' r 1 ) = k + 1. 

Thus for r between ro and rl the (a, a) procedure under 
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Table 1: k = s + 1 

0: f3 MSE(O:,f3,0) e(O) 
MSE(O,O,r0)= 

MSE(O,O,r
1

) e(r
1

) s ro MSE(o:,(3,r0) rl 

1 0 0 2.000 1.00 .50 3.00 1.00 
.139 .281 2.105 .95 .28 2.11 .74 3.98 1.33 
.365 .492 2.222 .90 .31 2.23 1.17 5.69 1.90 
.689 .759 2.500 .Bo .38 2.51 2.78 12.11 4.o4 .. 

2 0 0 3.000 1.00 .82 4.oo 1.00 
.189 .297 3.158 .95 .42 3.16 1.19 4.86 1.21 
.408 .546 3.333 .9() .52 3.35 1.89 6.51 1.63 
.845 .873 3.750 .Bo .71 3.75 7.68 20.22 5.06 

3 0 0 ·4.ooo 1.00 .68 5.00 1.00 
.173 .340 4.211 .95 .38 4.22 1.04 5.91 1.18 
.517 .617 4.444 .90 .47 4.45 1.92 8.18 1.-64 

4 0 0 5.000 1.00 .78 6.oo 1.00 
.205 .385 5.263 .95 .45 5.27 1.25 7.06 1.17 
.630 .693 5.556 .90 .58 5.56 2.75 10.47 1.74 

5 0 0 6.000 1~00 .73 7.00 1.00 
.212 .432 6.316 .95 .44 6.32 1.25 8.19 1.17 
.722 .772 6.667 .90 .59 6.67 3.41 13.21 1.89 

6 0 0 7 .ooo· 1.00 .78 8.00 1.00 
.297 .478 7.368 .95 .49 7.37 1.49 9.57 1.12 
.821 .849 7.778 .90 .68 7.78 5.52 18.43 2.30 

7 0 0 8.000 1.00 .76 9.00 1.00 
.394 .522 8.421 .95 .50 8.43 1.64 10.98 1.22 
.912 .925 8.889 .90 .71 8.89 10.37 30.41 3.38 

8 0 0 9.000 1.00 .78 10.00 1.00 
.471 .566 9.474 .95 .54 9.48 1.90 12.41 1.24 

9 0 0 10.000 1.00 .77 11.00 1.00 
.532 .611 10.526 .95 .55 10.53 2.07 13.83 1.26 

- - 13 -
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Table 2: k = s + 2 
! ' 

MSE(0,0,r
0

)= ..., 
s a f3 MSE(a,(3,0) e(0) ro MSE(a,(3,r0) rl MSE(0,0,r

1
) e(r

1
) 

4.oo 
lal 

1 0 0 2.000 1.00 1.12 1.00 

.76 4.oo 1.00 

.75 4.oo 1.00 
I ' 
I , 

• 128 .233 2.105 .95 .38 2.28 1~41 . 4.69 1.rr 
..., 

.24 2.11 1.02 4.95 1.24 

.27 2.11 1.12 5.47 1.37 
.185 .435 2.222 .90 .36 2.23 1.70 5.37 1.34 .... 

.27 2.25 1.37 6.24 1.56 

.31 2.25 1.54 7.15 1.79 
.405 .698 2.500 .80 .48 2.52 2.89 8.20 2.04 -.36 2.55 2.70 11.10 2.77 

.39 2.54 3.28 14.13 3.53 

2 0 0 3.000 1.00 .78 5.00 1.00 Ii.I 

.71 5.00 1.00 

1.25 5.00 1.00 
.112 .222 3.158 .95 .32 3.16 1.13 6.37 1.27 ~ 

.29 3.16 .95 6.06 1.21 

.42 3.16 1.62 5.87 1.17 
.176 .426 3.333 .90 .37 3.34 1.57 8.16 1.63 

.I 
.33 3.35 1.29 7.57 1.51 
.53 3.36 2.06 6.90 1.38 

.533 .693 3.750 .Bo .47 3.76 3.84 17.22 3.44 
.43 3.77 2.95 14.88 2.98 ~ 

• 72 3.78 4.56 12.81 2.56 

3 0 0 4.ooo 1.00 .Bo 6.oo 1.00 ... 
.79 6.oo 1.00 

1.07 6.oo 1.00 

.122 .238 4.211 .95 .36 4.21 1.21 7.65 1.28 i ' 

.35 4.22 1.10 7.31 1.22 
.... 

.38 4.21 1.49 7.06 1.18 

.191 .458 4.444 .90 .42 4.46 1.78 10.02 1.67 
.41 4.47 1.51 9.05 1.51 ...i 

.47 4.46 1.99 8.35 1.39 
.634 .744 5.000 .80 .56 5.01 5.59 25.76 4.29 

.55 5.02 4.11 19.97 3.33 ~ 

.69 5.02 6.56 20.05 3.34 

4 0 0 5.000 1.00 .93 7.00 1.00 
I 

~ .93 7.00 1.00 

1.22 7.00 1.00 

.147 .258 5.263 .95 .43 5.27 1.46 8.93 1.28 
.43 5.27 1.36 8.60 1.23 ii. 

• 45 5.27 1.71 8.11 . 1.16 

I , 

.221 .497 5.556 .90 .53 5.57 2.22 11.78 1.68 -.53 5.58 1.89 10.59 1.51 
.59 5.58 2.32 9.51 1.36 

I ' 

- 14 -
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.. 
Table 2 (cont.) 

f3 MSE(a:, f3 ,0) e(o) 
MSE(O,O,r

0
)= 

MSE(O,O,r
1

) e(r
1

) s a: ro MSE(a:,(3,r0) rl 

4 .731 .806 6.250 .Bo .73 6.26 9.51 39.04 5.58 
.72 6.26 6.90 29.36 4.19 
.89 6.26 9.74 26.31 3.76 

5 0 0 6.000 1.00 1.11 8.00 1.00 
1.11 8.00 1.00 
1.16 8.00 1.00 

.169 .281 6.316 .95 .46 6.32 1.76 10.05 1.26 
.61 6.68 1.34 8.73 1.09 
.44 6.3? 1.74 ·9.35 ·1.17 

.263 .539 6.667 .90 .61 6.68 2.57 12.70 1.59 
.62 6.69 2.01 10.87 1.36 
.60 6.69 2.54 11.20 1.40 

.812 .875 7.500 .80 .95 7.50 12.49 45.39 5.67 
.95 7.50 9.57 35.80 4.47 
.95 7.51 13.94 37.67 4.71 

6 0 0 7.000 1.00 .96 9.00 1.00 ... .96 9.00 1.00 
1.23 9.00 1.00 

.162 .305 7.368 .95 .43 7.37 1.55 10.82 1.20 
.... .43 7.37 1.30 10.04 1.12 

.49 7.37 1.85 10.35 1.15 
.370 .575 7.778 .9() .56 7.79 2.81 14.67 1.63 

.57 7.79 2.29 13.08 1.45 

.68 7.79 3.21 13.36 1.48 

7 0 0 8.000 1.00 .91 10.00 1.00 - .91 10.00 1.00 
1.21 10.00 1.00 

.165 .330 8.421 .95 .44 8.43 1.55 12.14 1.21 

.44 8.43 1.36 11.49 1.15 

.50 8.43 1.87 11.49 1.15 
.473 .611 8.889 .90 .58 8.90 3.27 17.86 1.79 

.58 8.90 2.70 15.98 1.60 

.71 8.90 3.93 16.07 1.60 

8 0 0 9.000 1.00 .92 11.00 1.00 
.92 11.00 1.00 

1.25 11.00 1.00 
.175 .354 9.474 .95 .47 9.48 1.65 13.47 1.22 

.47 9.48 1.48 12.88 1.17 

.54 9.48 1.98 12.58 1.14 
.536 .651 10.000 .90 .63 10.01 3.98 21.39 1.94 

.63 10.01 3.32 19.14 1.74 

.79 10.01 4.54 18.11 1.65 

- 15 -
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consideration is preferable to both a= S = 0 and a= S = 1. If 

(s+l)/(k+l) > .Bo then the procedure a= a= 1 has e(O) > .80; in - -
this case no procedure is given with e(O) =.80. Table 2 has the 

same format as Table 1, except that when a and S are not both 0 

and r is not 0, three lines are needed, for the cases T = 0, 

k tan2 {n/2k) and ~, given in that order. Whenever e(r) is calculated, 

the same T is used for both terms of the ratio. Entries are left 

blank if they merely duplicate the entries immediately above. 

The nonstandard procedures all have a minimum value of e{r) 

slightly less than e(O). This is because MSE(O, O, r) is always 

constant for r very small, while for a> O, S > 0 we characteristically 

have MSE(a, S, r) rising gently for r near o. Thus e{r) dips 

slightly before rising. But in no case is this dip as great as .01. 

An experimenter will usually be able only to approximate a tabu

lated S, In order to still have a desired value for e{O), if his 

a differs from the tabulated a he may wish to use an a different 

from the tabulated a. Aids for doing this are in Appendix I. 
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Appendix I 

In this section we prove the properties of max V (~, e) which 
xx 

are used in the numerical search, and describe the search. 

We show first that for fixed a, max v {a, f3) 
XX 

is convex in (3. 

For any square nonsingular matrix M, the derivative d(MM-
1

) equals 

0, and therefore dM-l = -M-
1

(dM)M-
1

• Therefore for fixed x and 

a, and O < f3 < 1 

(4) .; Vx(a, ~) = 2(1-ex2)f(l)'(x}~-l(d~}~-l(dM
1
)~-lf(l)(x) 

+ 2a2 f'{x}M-l(dM)M-l(dM)M-lf(x), 

where dM and d~ denote first derivatives with respect to (3. 

Since M-l and ~-l are positive definite the expression (4) is 

nonnegative and V (a, f3) 
X 

is convex. To show convexity of 

maxxvx(a, f3) consider any (3
0

, f3
1 

and t, all between O and 1, 

and let f3t = (1-t)f3
0 

+ t~
1

• Let xt be a point where Vx(a, f3t) 

attains its maxinrum. Then 

max v (a, f3t) = v (a, f3t) ~ (1-t)V (a, 13
0

) + tV (a, f3
1

) 
x x xt xt xt 

< (1-t)max v (a, 13
0

) + t max V (a, 13
1
). 

- xx xx 

We now show that for fixed (3, max V (a, f3) is increasing in a. 
XX 

We have 

The expression in parentheses equals 

- 17 -



which is nonnegative. Thus for any X and f3, V (a, S) is 
X 

increasing in a. We get from this to max V (a, S) 
XX 

by an argument 

similar to that in the last paragraph. 

By the optimality of the standard procedures it is immediate 

that max V (0, S) has a minimum of s + 1 at f3 = O, and 
XX 

max V (1, f3) has a minimum of k + 1 at f3 = 1. 
XX 

Thus for each a there is a f3 (if it is not unique, choose the 

smallest, say) which minimizes max V (a, f3), and these pairs 
XX 

( a, f3) 

form a line which curves from (0, 0) to (1, 1). This divides the 

square O~~l, O~f3~1 into two regions. We will refer to the region 

containing the line f3 = 1 as the "upper region." We are interested 

in the curves where max V (a, f3) is constant. On such a level 
xx 

curve in the upper region, f3 decreases as a increases. On such 

a curve in the lower region, f3 increases as a increases. 

Of interest to us are the level curves (s+l)/max V (a, f3) = .95, 
XX 

.90 and .80. We search along these curves for {a, f3) minimizing 

* max MSE(a, f3, r ). A preliminary exploration of the lower region 
X 

indicates that we can do better in the upper region, so a thorough 

search is made there. For each a, the f3 which lies on the appropriate 

curve is found by an iteration process. * Along the curve, max MSE (a, f3, r) 
X X 

seems to be convex, so another iteration process is used to find the 

approximate minimum. . * Along this curve, max MSE {a, f3, r) 
X X 

does not 

vary radically, so it is not critical that we find the exact minimum 

* (typically near the minimum max MSE (a, f3, r) varies by less than 
X X 

.1 as a varies by .1). 

- 18 -
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To avoid compounding too many iterations, max is always 
X 

computed as the maximum for x on a discrete grid of points spaced 

.01 units apart. Inspection of the functions used indicates that 

we cannot guarantee our computed maxima to be accurate to more than 

two decimal places. The one case in which we can get better computed 

accuracy is if r = O, for V (a, 13) 
X 

always attains its maximum 

at a point of the grid, namely at 1. We compute (s+l)/max V (a, 13) 
xx 

accurate to within+ .0001. Accuracy to two decimal places for 

r > 0 is really adequate, because the experimenter will only have 

a rough idea of the magnitude of r. Our results then give adequate 

guidance on what procedure to use. 

If the experimenter can only approximate a tabulated 13, he 

may wish also to modify the tabulated a in order to stay on a 

desired level curve of max V (a, 13). Our calculations indicate 
XX 

that this will not change max MSE greatly. 
X X 

For this purpose, 

Table 3 gives selected points on the level curves of max V (a, 8). 
xx 

This table gives 13 values on the level curves of max V (a, 13) 
xx 

in the upper region, for a at multiples of .100. We define 

e{O) = (s+l)/maxxvx(a, 13), and define (a
0

, 13
0

) to be the point at 

which the level curve leaves the l!pper·region. 

- 19 -



Table 3 

k = s + 1 

s e(O) .000. .100 .200 .300 .400 .500 

.283 .264 1 .95 .~85 .275 
.90 .545 .541 .528 .508 .482 
.Bo 1.000 .993 .974 .943 .903 .857 

2 .95 .302 .300 .296 .290 
.90 .583 .58o .573 .562 .547 .529 
.Bo 

3 .95 .343 • 342 .339 .334 
.90 .660 .659 .654 .645 .633 .619 

4 .95 .388 .387 .385 .380 • 376 
.90 .747 • 745 .741 .734 .724 .712 

5 .95 .435 .435 .433 .428 .424 
.90 .836 .834 .830 .824 .815 .803 

6 .95 .483 .483 .481 .477 .473 
.90 .924 .923 .919 .913 .905 .895 

7 .95 .530 .530 .528 .525 .521 .516 
.90 .994 .984 

8 .95 .578 .578 .576 .573 .569 .564 

9 .95 .626 .626 .624 .621 .617 .613 

- 20 -

.600 .700 .800 .900 ao "o 
.324 .261 
.471 .462 

.806 .754 .707 .750 

.355 .286 

.540 .521 
.966 .930 .891 .851 .870 

.366 .330 

.586 .605 

.414 .375 
.697 .671 .685 

.442 .422 
.790 .775 .744 .769 

.487 ~468 
.882 .868 .852 .830 .848 

.520 .512 
.973 .959 .944 • 927 • 912 • 925 

.565 .562 

.6o7 .602 .604 

r 
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Table 3 (cont.) 

-- k = s + 2 

s e(O) .000 .100 .200 .300 .400 .500 .600 .700 .Boo .900 a
0 f3o 

!al 

1 .95 .238 .235 .225 .219 .223 
.90 .454 .448 .431 .406 .323 .399 .. .Bo .833 .823 .795 .752 .701 .493 .650 

2 .95 .224 .223 .217 .241 .214 .. .90 .436 .433 .423 .408 .366 .396 
.Bo .824 .818 .802 .777 .744 .706 .580 .673 

Ila! 3 .95 .240 .238 .234 .260 .231 
.90 .467 .464 .457 .445 .430 .405 .429 
.Bo .882 .878 .866 .847 .821 .791 .756 .662 .734 

la 4 .95 .261 .260 .256 .271 .253 
.90 .507 .505 .499 .489 .476 .437 .470 
.Bo .956 .953 .943 .927 .905 .879 .850 .817 • 747 .8ol 

- 5 .95 .284 .283 .280 .282 .275 
.90 .551 .549 .544 .535 .524 .464 .515 
.Bo .991 .968 .941 .911 .879 .820 .873 .. 

6 .95 .308 .307 -3~ .300 .303 .300 
.90 .596 .595 .590 .582 .571 .558 .504 .558 - .Bo .972 .940 .910 .937 

7 .95 .332 .331 .329 .324 .328 .32~ 

- .90 .642 .641 .636 .629 .619 .607 .551 .598 

8 .95 .356 .356 .353 .349 .342 .348 
.90 .688 .686 .682 .675 .666 .655 .589 .640 -

11111 

... 

-
la 

-
-- - 21 -

.. 



Appendix II 

Optimal Designs for Polynomial Regression on [-1, 1] 

The optimal design in each case is uniform on the points of 

support given. (Guest (1958) and Hoel (1958)). The values have 

been rounded off to 6 decimal places. 

Degree of 
Polynomial 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Points of Support 

+ 1 

0, ± 1 

.:!: .447214, + 1 

0, ± .654654, ± 1 

± .285232, ± .765055, + 1 

0, .:!: .468849, ± .830224, ± 1 

.:!: .209299, ± .591700, .:!: .871740, ± 1 

0, .:!: .363117, .:!: .677186, .:!: .899758, ± 1 

.165279, ± .477925, ± .738774, :!: .919534, + 1 

o, .:!: .295758, ± .565235, ± .784483, ± .934001, ± 1 
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