Journal of Machine Learning Research 10 (2009) 1305-1340 bm8ted 3/08; Revised 9/08; Published 6/09

Robust Process Discovery with Artificial Negative Events

Stijn Goedertier STIJN.GOEDERTIER@ECON.KULEUVEN.BE
David Martens* DAVID .MARTENS@ECON.KULEUVEN.BE
Jan Vanthienen JAN.VANTHIENEN @ECON.KULEUVEN.BE
Bart Baesen$ BART.BAESENS@ECON.KULEUVEN.BE

Faculty of Business and Economics
Katholieke Universiteit Leuven
Leuven, Naamesestraat 69, Belgium

Editor: Paolo Frasconi, Kristian Kersting, Hannu Toivonen and Hasjida

Abstract

Process discovery is the automated construction of streatfarocess models from information sys-
tem event logs. Such event logs often contain positive elesrgnly. Without negative examples,
it is a challenge to strike the right balance between recallspecificity, and to deal with problems
such as expressiveness, noise, incomplete event logse ardlusion of prior knowledge. In this
paper, we present a configurable technique that deals vagietbhallenges by representing process
discovery as a multi-relational classification problem were logs supplemented with Artificially
Generated Negative Events (AGNESs). This problem formoiedillows using learning algorithms
and evaluation techniques that are well-know in the macléaging community. Moreover, it
allows users to have a declarative control over the indediias and language bias.

Keywords: graph pattern discovery, inductive logic programming riRedt, process discovery,
positive data only

1. Introduction

Learning descriptive or predictive models from sequence data is an tampatata mining task
with applications in Web usage mining, fraud detection, bio-informatics, aadeps discovery.
The learning task can be formulated as follows: given a sequence dattiz contains a finite
number of sequences, find a useful generative model that desorilpesdicts its spatio-temporal
properties. Depending on the application domain, a variety of sequenagsvai corresponding
learning algorithms are available. For instance, probabilistic generativelsmedch as (hidden)
Markov models have been successfully applied in speech analysis,i@intfdsmatics (Durbin
et al., 1998), whereas deterministic models such as partial orders hemeapplied in domains
such as Web usage mining (Mannila and Meek, 2000; Pei et al., 2008)isIpaper, we focus on
the problem of process discovery, the discovery of business @ooedels from event-based data
generated by information systems. Process models typically contain strustiole as sequences,
or-splits, and-splits (parallel threads), or-joins, and-joins, loopsatiters), non-local, non-free,
history-dependent or-splits, and duplicate activities. Because Pédricaa represent these con-

x. David Martens is also at the Department of Business Administration ablicfMlanagement, University College
Ghent, Association Ghent University, Belgium.
T. Bart Baesens is also at the School of Management, Universityuth&mpton, United Kingdom.

(©2009 Stijn Goedertier, David Martens, Jan Vanthienen arrti Bzesens.

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

structs, they are known to be a convenient process modeling languagddr Aalst, 1998; Alves
de Medeiros, 2006) provides a detailed overview of how these strgotare be represented with
Petri nets.

The motivation for process discovery is the abundant availability of infaomaystem event
logs. The analysis of such event logs can provide insight into how gsesactually take place,
and to what extent actual processes deviate from a normative pnooeis. Information system
events keep track of, among others, the completion of an activity of a partectivity type. For
example, an event can report that a particular activity of type ‘appljdense’ has completed. The
goal of process discovery is to construct a useful process modeld@karibeghe event sequences
recorded in the event log. Example 1, illustrates the learning problem foiiteofis driver’s license
application process. Given the event sequence database in Exampigelylgprocess models is to
be conceived.

Example 1 DriversLicensel—discovery of a driver’s license application procesis lwop. The
transitions correspond to activity types that have the following meaning: a $taapply for li-
cense, c attend classes cars, d attend classes motor bikes, e obtaantesuf theoretical exam, g
practical exam cars, h practical exam motor bikes, i get result, jikeckcense, and k end.

01 | abcefgijk

o2 | abdfehijk

o3 | abdefhijbdfehijk
o4 | abcfegik

(a) sequences

(d) over-specific

The construction of useful process models from an event log is subdjecteany challenging
problems. An inherent difficulty is that process discovery is limited to a settingisupervised
learning. Event logs rarely contain negative information about stateticarssthat were prevented
from taking place. Such negative information can be useful to discogetisisriminating properties
of the underlying process. In the absence of negative information,etisssary to provide a learner
with a particulainductive biasto accurately strike the right balance between generality and speci-
ficity. The absence of negative information, makes the learning task aiocataely summarizing
an event log such that the discovered process model allows the otheivavior (recall) but does
not include unintended, random behavior that is not present in the¢ leggispecificity). In addition
to accuracy, the learning problem faces challenges such as expresss, noise, incomplete event
logs, and the inclusion of prior knowledge:

e accuracy. accuracy refers to the extent to which the induced model fits the behawioe in
event log. Accuracy necessitates a tradeoff between specificity aatl. réhe Petri net in

1306

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

Example 1, called a flower model, is capable of parsing every sequenaeaneht log. How-
ever, it can be considered to be overly general as it allows any activitgdior in any order.
In contrast, the Petri net in Example 1 is overly specific, as it provides a srermeration
of the different sequences in the event log. The Petri net in Example leiy li& be the
more suitable process model. It is well-structured, and strikes a redsdreéince between
specificity and generality, allowing for instance an unseen sequadtedgik but disallowing
random behavior. An additional difficulty is that in the absence of negatifiormation, the
specificity of a learned process model is difficult to quantify.

e expressivenessexpressiveness relates to the ability to comprehensively summarizeran eve

log using a rich palette of structures such as sequences, or-splitsphtsdparallel threads),
or-joins, and-joins, loops (iterations), history-dependent or-spliis driplicate activities.

e noise human-centric processes are prone to exceptions and logging. eftosscauses ad-
ditional low-frequent behavior to be present in the event log that is otedan the process
model to be learned. Process discovery algorithms face the challengé @fetfitting this
noise.

e incomplete logs incomplete event logs do not contain the complete set of sequences that

occur according to the underlying, real-life process. This is particuthdycase for pro-
cesses that portray a large amount of concurrent and recuriieaibe In this case, process
discovery algorithms must be capable of generalizing beyond the obideethavior.

e prior knowledge: the problem of consolidating the knowledge extracted from the data with

the knowledge representing the experience of domain experts, is callkdaivéedge fusion
problem (Dybowski et al., 2003). Prior knowledge constrains the thgsis space of a se-
guence mining algorithm. In the context of process discovery, prior letye might refer
to knowledge about concurrency (parallelism), locality, or exclusivitaaivities. When a
learner produces a process model that is not in line with the prior kno@letlg domain
expert, the expert might refuse using the discovered process modehskmce, a domain
expert might refuse a process model in which a pair of activities canketgiace concur-
rently, whereas in reality such parallelism is actually allowed.

In this paper, these challenges addressed by representing prisesged; as an ILP classi-
fication learning problem on event logs supplemented with artificially gertereggative events
(AGNEs). The AGNEs technique is capable of constructing Petri net méasevent logs and
has been implemented as a mining plugin in the ProM framework. A benchmaekiremt with
34 artificial event logs and comparison to four state-of-the-art psadissovery algorithms indicate
that the technique is expressive, robust to noise, and capable ofgieélnncomplete event logs.
A second contribution of the paper is the definition of a new metric for quamgifhe specificity
of an induced process model, based on these artificially generatedveenatits.

The remainder of this paper is structured as follows. Section 2 introdooes greliminaries
and notations about inductive logic programming, event logs, and Pesti &&ction 3 explains
the rationale for generating artificial negative events and provides éededascription of the used
algorithms. Section 4 discusses the process discovery technique. Sedtivoduces the new
specificity metric that is based on negative events. Sections 6 and 7 phmtldan experimental
and practical evaluation of the process discovery technique. Finall§ip8e provides an overview
of the work in the area of process discovery and outlines the contributiads.

1307

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

2. Preliminaries

This section introduces the most important concepts and notations thaktdrs ke remainder of
this paper.

2.1 Inductive Logic Programming

Inductive Logic Programming (ILP) (Muggleton, 1990z&roski and Lavrg 1994, 2001; Reroski,
2003) is a research domain in machine learning involving learners that geepiemgramming
to represent data, background knowledge, the hypothesis spatthealearned hypothesis. ILP
learners are called multi-relational learners and extend classical, utionaldearners in the sense
that they can not only learn patterns that occur within single tuples (withis)rdst can also find
patterns that may range over different tuples of different relatiorte/é®n multiple rows of a single
or multiple tables). For process discovery, this multi-relational property idwdasired, as it allows
discovering patterns that relate the occurrence of an event to ther@ocerof any other event in
the event log.

Within ILP, concept learnings an important learning task. An ILP classification learner will
search for a hypothesld in a hypothesis spacg that best discriminates between the positte
and negative exampldés (E = PUN) in combination with some given background knowlediye
A particularly salient feature of such learners is that they have a higinifjgroable language bias.
The language biaé specifies the hypothesis spa&ef logic programsH that can be considered.
In addition, users of ILP learners can specify background knovel®das a logic program. Such
background knowledge is a more parsimonious encoding of knowledgesthrae about every
example, than is the case for the attribute-value encoding of propositi@makhs. In addition to
their multi-relational capabilities, the power of ILP concept learners lies wilcdmfigurability of
their language biaé and background knowledd® The effectiveness by which an ILP learner can
be applied to a learning task depends on the choices that are made irenépgethe examplel,
the background knowleddgand the language bids.

In this text, we make use of TILDE (Blockeel and De Raedt, 1998), adir decision tree
learner available in the ACE-ilProlog data mining system (Blockeel et al.,)2@lackeel (1998)
formalizes the learning task of TILDE as follows:
given:

e a set of classes

e a set of classified exampl&s each examplée,c) € E is an independent logic program for
which the predicat€lasgc) denotes that is classified into class.

e alogic progranB that represents the background knowledge
e alanguage biag that specifies a hypothesis spacef logic programs.

find: a hypothesi$i € § (a logic program) such that for all labeled examples) € E,
e Vec E:HAeABEClasgc)

e Yec E,Vc € C\{c}:HAeABFClasgc).

1308

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

TILDE is a first-order generalization of the well-known C4.5 algorithm fecidion tree induc-
tion (Quinlan, 1993). Like C4.5, TILDE (Blockeel and De Raedt, 1998 cReel et al., 2002) ob-
tains classification rules by recursively partitioning the data set accotaliogical conditions that
can be represented as nodes in a tree. This top-down induction of Idgitialon trees (TILDE) is
driven by refining the node criteria according to the provided languigdb Unlike C4.5, TILDE
is capable of inducing first-order logical decision trees (FOLDT). A BEQLis a tree that holds
logical formula containing variables instead of propositions. Blockeel@dRaedt (1998) show
how each FOLDT can be converted into a logic program.

2.2 Event Logs

In process discovery, an event log is a database of event segudfaeh event reports an instan-
taneous state change of an activity of a particular activity type. Activitieseaents that pertain
to the same process instance are identified by a so-called case identifieocéss discovery, the
MXML format for event logs (van Dongen and van der Aalst, 2005a) ésdbmmonly accepted
format for event logs. To use event logs with TILDE event logs havestoepresented as a logi-
cal program. LeiX be a set of event identifier®, a set of case identifiers, the alphalea set of
activity types, and = {completedcompleteRejectdda set of event types. An event predicate is
a quintupleEventx, p,a, e,t), wherex € X is the event identifierp € P is the case identifieg € A
the activity typege € E the event type, ande IN the time of occurrence of the event. The function
Casec X UL — P denotes the case identifier of an event or a sequence. The fuAdtierX — A
denotes the activity type of an event. The functithe X — E denotes the event type of an event.
The functionTimee X — IN denotes the time of occurrence of an event. ThXs#tidentifiers has a
complete ordering, such thex,y € X : x<yVvy < xandvx,y € L:x<y= Timgx) < Timgy). The
event type€ = {completedcompleteRejectgddespectively indicate the completion of a particular
activity or that the completion of a particular activity could not take place gatnee event.

Let an event lod- be a set of sequences Let o € L be an event sequence, an ordered set of
event identifiersx € X of events pertaining to the same process instance as denoted by the case id;
o0 = {x| x e X A Caséx) = Casdo)}. The functionPositione X x L — INy denotes the position
of an event with identifiex € X in the sequence € L. Two subsequent event identifiers within a
sequence can be represented as a sequetag€& o. We define the .-predicate as follows

Xy IXKYET X<YAfzeo:x<z<y.

In the text, this predicate is used within the context of a single sequemdgch is therefore left
implicit. Given thatAT(x) = a, AT(y) = b the information in the sequence can be further abbreviated
asab, because the order of the activity types in a sequence is the most impoftantation for the
purpose of process discovery. This notation is used to representehtleg in Example 1. Each
row gj in the event log represents a different execution sequence thasponds to a particular
process instance.

2.3 Petri Nets

Example 1 is a Petri net representation of a simplified driver’s license agiplicprocess. Petri nets
represent a graphical language with a formal semantics that has begmouspresent, analyze,
verify, and simulate dynamic behavior (Murata, 1989). Petri nets coofistaces, tokens, and
arcs. Places(drawn as circles) can contatokensand are a distributed representation of state.

1309

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

Each different distribution of tokens over the places of a Petri net itelaifferent state. Such a
state is called anarking Transitions(drawn as rectangles) can consume and produce tokens and
represent a state chang&cs(drawn as arrows) connect places and transitions and represewt a fl
relationship. More formally, a marked Petri net is a gé&i, T,F),s) where,

e Pis a finite set of places,

T is afinite set of transitions such tHraN T = 0, and

F C(PxT)U(T x P) is afinite set of direct arcs, and
e sc P— INis a bag oveP denoting the marking of the net (van der Aalst, 1997, 1998).

Petri nets are bipartite directed graphs, that means that each arc musttanransition to a place
or a place to a transition. The transitions in a Petri net can be labeled or ramtsiflons that are
not labeled are calledilent transitions Different transitions that bear the same label are called
duplicate transitions

The behavior of a Petri net is determined byfinag rule. A transitiont is enabledff each input
placep of t contains at least one token. When a transition is enabled ifirsar¥When a transition
fires, it brings about a state change in the Petri net. In essence, itraeasne token from each
input placep and produces one token in each output plpoét. To evaluate the extent to which a
Petri netis capable of parsing an event sequence, transitions migirckd fo fire. A transition that
is not enabled, can Herced to fire When a transition is forced to fire, it consumes one token from
each input place that contains a token—if any—and produces one tokestinoutput place. Petri
nets are capable of representing structures such as sequensgspand-splits (parallel threads),
or-joins, and-joins, loops (iterations), history-dependent or-splitd,duplicate activities that are
typical for organizational processes.

3. Artificial Negative Events

Event logs generally contain sequences of positive events only. To ana&ideoff between overly
general or overly specific process models, learners make additiocnahpsons about the given
event sequences. Such assumptions are part of the inductive bideashar. Process discovery
algorithms generally include the assumption that event logs portray the corbpledgior of the
underlying process and implicitly use this completeness assumption to make effttzeteveen
overly general and overly specific process models. Our techniquesrttikecompleteness assump-
tion explicit by inducing artificial negative information from the event log iroaftigurable way.

For processes that contain a lot of recurrent and concurrenvioehitie completeness assump-
tion can become problematic. For example, a process containing five pacaidties (ten parallel
pairs) that are placed in a loop, hg&l(S!)i different possible execution sequenca®éing the
maximum number of allowed loops).

The more recurrent behavior a process has, the more differentdfietient sequences a process
can produce. This makes a given event log less likely to contain all possbévior. The problem
of recurrent behavior is addressed by restricting the window sizarfpeterwindowSizg Window
size is the number of events in the subsequence one hopes to detect ahdeam the sequence
database. The larger the window size, the less probable that a similagsabse is contained by
the other sequences in the event log. A limited window size can be advautgethe presence

1310

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

of loops (recurrent behavior) in the underlying process. Limiting the winsiaze to a smaller sub-
sequence of the event log, makes the completeness assumption less strigtlindited window
size (vindowSize= —1) results in the most strict completeness assumption.

The problem of concurrent behavior is addressed by exploiting sorikalale parallelism in-
formation, discovered by induction or provided as prior knowledge bgraain expert. Given a
subsequence and parallelism information, all parallel variants of theguesce can be calculated.
Taking into account the parallel variants of a subsequence makes théetenass assumption less
strict. The functionAllParallelVariantg1) returns the set of all parallel variants that can be obtained
by permuting the activities in each sub-sequence while preserving potential dependency rela-
tionships among non-parallel activities.

Negative events record that at a particular position in an event segjuangarticular event
cannot occur. At each positidin each event sequentgit is examined which negative events can
be induced for this position. Algorithm 1 gives an overview of the negatient induction and is
discussed in the next paragraphs. In a first step, the event log is madecampact, by grouping
process instanceas € L that have identical sequences into grouped process instarec®s (line
1). By grouping similar process instances, searching for similar behavibe event log can be
performed more efficiently.

In the next step, all negative events are induced for each groupedgw instance (lines 2—12).
Making a completeness assumption about an event log boils down to assuatitgiavior that
does not occur in the event log, should not occur in the process mothel kwarned. Negative
examples can be introduced in grouped process instanbgshecking at any given positive event
Xk € T; at positionk = Position(xk, Tj) whether another event of interezt of activity typeb €
A\{AT(x«)} also could occur. For each evexie 1, it is tested whether there exists a similar

sequence&a‘j| € AllParallelVariantgTj) : T # T; in the event log in which at that point a state transition

Vk has taken place that is similar zp(line 6). If such a state transition does not occur in any other
sequence, such behavior is not present in the evenLlo@his means under the completeness

assumption that the state transition cannot occur. Consequartdn be added as a negative event

at this pointk in the event sequenag(lines 7—8). On the other hand, if a similar sequence is found
with this behavior, no negative event is generated.

Finally, the negative events in the grouped process instances are usddde negative events
into the similar non-grouped sequences. If a grouped sequertcgains negative events at position
k, then the ungrouped sequenzeontains corresponding negative events at poskiot each
position, a large number of negative events can generally be genefatadbid an imbalance in the
proportion of negative versus positive events the addition of negatdrégcan be manipulated with
a negative event injection probability(line 13). 1tis a parameter that influences the probability that
a corresponding negative event is recorded in an ungroupedotrddes smallert, the less negative
events are generated at each position in the ungrouped event segju@n@lue ofit= 1.0 means
that every induced negative event for a grouped sequence is iddludeery similar, corresponding,
non-grouped sequence. A valuerof 0 will result in no negative events being induced for any of
the corresponding, non-grouped sequences.

Example 2 illustrates how in an event log of two (grouped) sequen@wt; artificial negative
events can be generated. The event sequences originate from a sihtplifex’s license process,
depicted at the bottom. Given the parallelism informatierallel(e,), the event sequences each
have two parallel variants. When generating negative events into exgquntisce, it is examined
whether instead of the first evehtthe eventsc,d,e, f,g,h, ori could also have occurred at the

1311

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

Algorithm 1 Generating artificial negative events
1. Group similar sequencesc L intot e M
2: forall i e M do

3. forall xx et do

4: k = Positionxk, Tj)

5: for all b e A\{AT(x)} do

6: if ﬂrlj‘ € AllParallelVariantyT;) : V1; € MAT| # TiA
Yy € I‘J-',Positior(yhr‘j') = | = Position(x, Tj),k — windowSize< | < k: AT(y) =
AT(X)A
Yk € t‘J-',Positior(yk,r‘j‘) =k,AT(yk) = bthen

7 z = event withAT(z) = b,ET(z) = completeRejected

; recordNegativeEverty, K, Tj)

9 end if

10: end for

11: end for

12: end for

13: Induce negative events in the non-grouped sequemeds according to an injection frequency

Tt

first position. Because there is no similar sequeﬁhm which c,d,e, f,g,h, or i occur at this
position, it can be concluded that they are negative events. Condbguen-d, —-e —f,—g,—h,
and—i are added as negative events at this position. Other artificial negatwseare generated
in a similar fashion. Notice that history-dependent processes geneitilfgquire a larger window
size to correctly detect all non-local dependencies. In Example 2,lamitad window size is used.
Should the window size be limited to 1, for instance, then it would no longer tstpeso take into
account the non-local dependency between the activity pagrandd-h. In the experiments at the
end of this paper, an unlimited window size has been used (parameter Yalue -

4. Process Discovery

Having an algorithm to artificially generate negative events, it becomesbfmisrepresent process
discovery as a binary classification problem, that learns the conditiondiscaiminate between the
occurrence of an activity (a positive event), or the non-occurrehea activity (a negative event).
Algorithm 2 outlines four major steps in the AGNEs process discovery pgrgee These four steps
are addressed this section.

4.1 Step 1: Induce Parallelism and Locality Information

The starting point is the gathering of information about local dependdrama(a, b)), and par-
allelism relationshipsRarallel(a, b), or Seriala, b)) that exist between pairs of activitiesb € A

in an event log.. Locality information is used in the language bias of the classification learner,

to constrain the hypothesis space to locally discriminating preconditions velggired. Without
locality information, the classification learner is likely also to come up with nontibeeendencies

1312

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

Example 2 (Continued from example 1.) DriversLicense—Generating artificial negatrents for
a simplified event log with two abbreviated event sequences.

_ 1| b c e f g i
g ! ~c|-b|-b|-b|[-b|-b
h i -d | -e|-c|-c|-c|-c

T1|b c e f
To|b d f e

-e|-f|-d|-d|-d|-d
Parallel(e, f). -f|-g|-g|-g|-e|-e
-g | -h|=h|=h|-f]|-f
(a) given event log and background knowledge Sh| =i | =i | =i | =h| g
=i =i | =h
2| b | d f e | h i
-c|-b|-b|-b|-b|-b
i -d| -e| -c|-Cc|-C| —C
i —e ﬁf ‘\d ‘\d “d "d
i -f|-g|-g|—-g|—e| e
i

-g | =h | =h| =h| —f | —f
=h| =i | =i | —=i|-g|-g

—i —-i | —=h

o T|jQ «Q

o o|o o
a alo o
® —-|® -
- @ | ®

(b) the derived parallel variants
(c) the induced negative events

(d) the underlying Petri net

Algorithm 2 Process discovery by AGNESs: overview
1. step 1. induce parallelism and locality from frequent temporal constraints
step 2: generate artificial negative events
step 3: learn the preconditions of each activity type
step 4: transform the preconditions into a Petri net

A wbd

that cannot easily be transformed into a graphical model. Parallelism infiorms used to prevent
the construction of sequential models, where in reality concurrency ecteg.

This information is either gathered by the analysis of frequent temporatrearts that hold
in the event log or by means of user-specified prior knowledge. Fnédamporal constraints
are temporal constraints that hold in a sufficient number of sequenegthin an event logL.
Goedertier (2008), defines a number of temporal constraints and $toowlecal dependency and
parallelism information can be derived from it.

Additionally, the end-user can also specify locality and parallelism informatiterms of prior
knowledge. In particular, the following predicates can be uBerParallel(a, b), PriorSerial(a, b),
PriorLocal(a,b), andPriorNonLocala, b). Information specified using these predicates defeats any
inference about locality or parallelism made on the basis of the informatioergaktlfirom frequent
temporal constraints.

4.2 Step 2: Generate Artificial Negative Events

A second step in the process discovery technique is the induction of artifegiative events, as
described in Section 3. The inferred information about parallel activitg pan be used for parallel

1313

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

variant calculation. Furthermore, the induction of negative events isndepé on the window size
windowSizeand negative event injection probabiliyparameters.

4.3 Step 3: Learn the Preconditions of each Activity Type

It is now possible to represent process discovery as a multiple, first-gtdssification learning
problem that learns the preconditions that discriminate between the cooeiwéeither a positive
or a negative completion event for each activity type. In our experimestsnake use of TILDE,
an existing multi-relational classification learner, to perform the actualifitzg®n learning.

The motivation for representing process discovery as a classificatbtobepn is that it allows
using classification learning and evaluation techniques that are well-kimattve machine learning
community. Furthermore, classification learners have the potential to deadavithlledduplicate
tasks Duplicate tasks refer to the reoccurrence of identically labeled transitimmsonyms, in
different contexts within the event logs. Classification learning can deteatifferent execution
contexts for these transitions and derive different preconditions &nthlransforming these pre-
conditions into graphs will eventually result in duplicate, homonymic activitiesargtiaph model
that correspond to the different usage contexts. Techniques foessaliscovery, such as heuris-
tics miner and genetic miner, which have causal matrices as internal nefattese (Weijters et al.,
2006; Alves de Medeiros et al., 2007), are unable to discover duplicetéias. Alves de Medeiros
(2006), however, presents a non-trivial extension of the genetic rtiineicludes duplicate tasks.

The motivation for using a multi-relational, first-order representation is tretdrder learning
allows relating the occurrence of an event to the occurrence of any @teat. This enables the
detection of patterns that involve non-local, historic, dependencies betexents. Alternatively,
the history of each event could in part be represented as extra firopssfor instance by including
all preceding positive events as extra columns in the event log. This sitimpal representation
would have many difficulties.

Being able to detect non-local, historic patterns in an event log can aldoggeounter-intuitive
results. A non-local relationship might have more discriminating power thanz tme and can
therefore be preferred by a learner. Unfortunately, an exceserefatal patterns makes it more
difficult to generate a graphical model, a Petri net, containing local atioms. Because TILDE al-
lows specifying a language bias with dynamic refinement (Blockeel anciedtiR1998), it becomes
possible to constrain the hypothesis space to locally discriminating pattermevéienecessary.
One technique is the dynamic generation of constants, that can be usetst@izothe combina-
tions of activity type constants that are to be considered for a particulgudae bias construct.
Additionally, it is also possible to constrain the occurrence of particular liémea hypothesisH,
given the presence or absence of other literals that are alreadyf paetto/pothesis.

The classification task of TILDE is to predict whether for a given activipets € A, at a given
time pointt € IN in a given sequence € L, a positive or a negative event takes place. In the
case of a positive event, the target predicate evaluat€datega, o,t,completed. In the case of
a negative event, the target predicate evaluat€ldega, o,t,completeRejectad In the language
bias, the target activity, indicated lay will be used for dynamically constraining the combinations
of activity type constants generated.

The primary objective of AGNESs being the construction of a graphical irfoala an event log,
the language bias consists of a logical predicate that can represeanttitans under which a Petri
net place contains a token. This predicate is called the “no-sequel” pteditSa;,a, o,t). Let

1314

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

a1, a € A be activity typesg € L the sequence of a process instance,tatheé time of observation.
TheNSpredicate is defined as follows:

Vaj,ac AtcIN:3Ixec o: AT(X) =a; A Timgx) <t
APyeo:AT(y)=a A Timgx) < Timgy) <t = NSay,a,0,t).

In the remainder of this text, the argumeptandt will be implicitly assumed and therefore left
out. The predicat®dlSa;,a) evaluates to true when at the time of observation, an actityas
completed, but has not (yet) been followed by an actigityn combination with conjunction/),
disjunction (/) and negation-as-failure<), theNSa;,a) predicate makes it possible to learn frag-
ments of Petri nets using a multi-relational classification learner.

Example 3 shows how the preconditions in the Petri net can be represantedjunctions and
disjunctions oNSatoms. This representation accounts for the different contexts in whicctive
ities applyForLicenseandendcan take place and derives different preconditions for these activities
In addition, it can represent the non-local, non-free, history-dégetrchoice construct between the
activities attendClassesCarsloPracticalExamCars and attendClassesMotorBikes
doPracticalExamMotorBikeand the maximum recurrence of the activitgplyForLicense The
Petri net fragments included in the language bias of AGNEs are enuméndtgglire 1 and are
briefly discussed in the remainder of this section.

Example 3 (Continued from example 2) DriversLicensel—A Petri net in terms of B&puditions

@)
O
[Oceurs LessThan(applyFor Licensqy3)]
lapplyFoernsn JapplyForLz[eme
\ activity \ precondition KT} (applyFor Licensy\3)]

a | start true
b | applyForLicense NS(a,b) attendClassesCars | [attendClassesMotor Bikes |
b | applyForLicense (NS(i,b) A NS(i, j) A NS(i,k))

Q -~ 0® QO

attendClassesCars
attendClassesMotorBikes
obtainlnsurance
doTheoreticalExam
doPracticalExamCars

doPracticalExamMtrBikes

A OccursLessThdh, 3)
NSb,c) A NSb,d)
NS(b,c) A NSb,d)
NSc,e) vV NSd,e)

NS(c, f) v NSd, f)

(NS(f,g) A NS(f, h
(NS(e,g) A NSe h)
(NS(f,g) ANSf,h

) A
) A

ANS(c,g)

===

(NS(e,g) A NS(e,h)) A NSd, h)
i | getResult NS(g,i) vV NSh,i)
j | receiveLicense NS(i,b) A NS, j) A NS, k)
k | end NSj, k) receive License
k | end NSi,b) A NS, j) A NS, k)

(a) DriversLicensel—activity preconditions

-

[Lobtaintnsurance | [doTheoretical Ezam |

doPractical ExramCars | |doPractical ExamM otor Bikes

getResult

(b) DriversLicensel-trPeet

Figure 1(a) shows a graphical representation of the local sequeediegte that is part of the
language bias. A local sequence of two transitions labeleslc Ain a Petri net can be represented
by NSas,a). In the language bias, the following constraints apply:

1315

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

[OccursLessThan(a, N)) [Attribute = Value]
© o]
N¥@,) OccursLessThga,N) : Attribute= Value
(@) local sequence (b) max occurrence (c) data condition
= —
NSay,a)
NSa;,a) ANSay,a2) ' NSa,a) VNSap,a)
. e) global sequence .
(d) or-split ©g q (f) or-join

NS(a;,a) ANSay,az)

(g) skip sequence

Figure 1: Petri net patterns in the language bias

sequence NSa,a)
constraints: Local(az,a). 1)
Bed: =N a). ()

The conversion frofSbased preconditions into Petri nets requires the conditions to refer to lo-
cal, immediately preceding events as much as possible. Therefore, aun(@raequires to restrict
the generation of constards to constants that are local & In constraint (1) we do not requieg
andato be different activity types. This is sufficient for the discovery of lbrgne loops. Graphi-
cally, a conjunction oNSconstructs can be considered to be the logical counterpart of a sirtgle Pe
net place. Besides the case of length-one loops—that can be expnatdsa singleNSconstruct—
there is no reason for a Petri net place to contain both an input and aut autpthat is connected
to the same transition. Constraint (2) has been put in place to keep a multifreldéarner from
constructing such useless hypotheses. The constraint stipulates thatstireicNS a;, a) can only
be added to the current hypothe$is if H{ does not already contain a logical condition that boils
down to an output arc towarads.

The sameéNSa;,a) construct, with different constraints, can be used to keep track of alglob
sequence (see Figure 1(e)). Global sequences are used tergpres-local, non-free choice con-
structs. We require TILDE only to consider global sequence betwdasityatypes for which both
a precedence and a response relationship has been detected framanthie@ this is expressed as
a language bias constraint. Because we assume that any transition mustllyeclonnected, that
is connected to other transitions to which it is local in the event log, we reqsin additional
constraint that the global sequence construct must not be addet fisy hypothesis. The other
Petri net based language constructs depicted in Figure 1 have simildtiolesiand are described
in detail by Goedertier (2008).

1316

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

The language bias of TILDE is limited to conjunctions and disjunctionsl®tonstructs of
length two and three. Or-splits and or-joins that involve more activity typeslatained by grouping
conjunctions and disjunctions dfSconstructs into larger conjunctions and disjunctions in step 4.
However, this limitation in length sometimes leads to TILDE make inadequate refitensatving
this language bias issue, requires constructing a proprietary ILP aasisifi algorithm that during
each refinement step allows considering conjunctioméSxfonstructs of variable lengths. We leave
this improvements to future work.

4.4 Step 4: Transform the Preconditions into a Petri Net

In the previous step, TILDE has learned preconditions for each actiyty independently. In
a Petri net, the preconditions for each activity type are nonethelesselated. Therefore, the
logic programs of activity preconditions are submitted to several rule-fgweling steps, to make
sure that they do not produce redundant duplicate places in the Pt Ine constructed. These
pruning steps occur among the conditions within a single precondition, witleihcd preconditions
to the same activity type and among preconditions of activity types that pertdia sgame or-split.
Given a pruned rule set of preconditions for each activity type, thetoaction of a Petri net is
fairly straightforward. Each induced precondition corresponds tofardift transition in a Petri
net to be constructed. Because AGNEs may produce several pigaosifor an activity type, the
constructed Petri net may contain duplicate transitions. Algorithm 3 proaideserview of these
procedures. In the remainder of this section, these different pruépg svill be discussed and
illustrated for a sample of rules from the DriversLicensel example.

The logic programs constructed by TILDE contain rules that classify tharoence of either
a positive or a negative event. By construction, the language bias ofE&G&Nsuch that TILDE
will never consider a negation of &fSconstruct to be explanatory for the occurrence of a positive
event. Therefore, TILDE will never construct a tree in which a right pradicts a positive event.
The latter entails that, in equivalent the logic program, the rules witlasga, o,t, comleted rule
head can be taken from the logic programs without loss of information (IlnExigmple 4 depicts
the preconditions that are induced by TILDE for the apply for license eardi activities in the
DriversLicensel example.

In a second step, a number of intra-rule pruning operations take plaes @i#6). The top-
down refinement of hypotheses, can result in the derivation of logicadiyndant conditions. These
logical redundancies are removed for each rule (line 3). Each rule logieprogram consists of
conjunctions of groups dfiSconstructs. A conjunction of a pair of or-split constructs that originate
from the same activityy; can be combined into a larger or-split (line 4). Likewise, a conjunction
of a pair of or-joins can be combined into a larger or-join (line 5). Example 4tilides intra-rule
pruning for the DriversLicensel example.

In a third step, a number of inter-rule pruning operations are perfororeld preconditions that
pertain to each activity type. In particular, a precondition that subsunmserprecondition for the
same activity type, is redundant and thus removed from consideratioa {irel2). Furthermore,
it is examined whether a more specific or-join can be constructed out ofdhpgofNSconstructs
within the different preconditions of the same rule (lines 13—-15). Finallyu#s are examined to
find the most specific or-split condition from the preconditions extracte@lbRE (lines 18—26).
Example 4 illustrates this pruning for the DriversLicensel example.

1317

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

Example 4 (Continued from example 3.) DriversLicensel—pruning

rules induced by TILDE

b apply for license (NS(i,b) VNSa,b)) A (NS(i,b) ANS, j)).
b apply for license (NS(i,b) VNSa,b)).

k end (NS(j,k)).

k end (NS(i,b) ANSi,k)).

intra-rule pruning:
b apply for license (NS(i,b) ANS, j)). (line 3)
b apply for license (NS(i,b) VNSa,b)).
k end (NS(j,k)).
kend (NS(i,b) ANS(i,k)).
inter-rule pruning, most specific or split:
b apply for license (NS(i,b) ANSi, j) ANS(i,k)). (lines 18-26)
b apply for license (NS@a,b)). (lines 10-12)
kend (NS(j,k)).
k end (NS(i,b) ANSi,) ANS(i,k)). (lines 18-26)

5. Evaluation Metrics

Discovered process models preferably allow the behavior in the ever{tdogll) but no other,
unobserved, random behavior (specificity). Having formulated gsodiscovery as a binary classi-
fication problem on event logs supplemented with artificial negative eviebegomes possible to
use the true positive and true negative rate from classification learniogytteequantify the recall
and specificity of a process model:

e true positive rate TP Or recall: the percentage of correctly classified positive events in
the event log. This probability can be estimated as folloWg ;e = TPL%, whereTP is the
amount of correctly classified positive events & is the amount of incorrectly classified

positive events.

e true negative rate TN;4te OF specificity: the percentage of correctly classified negative events
in the event log. This probability can be estimated as folloWS;ate = (s, WhereTN
is the amount of correctly classified negative events BRds the amount of incorrectly

classified negative events.

Accuracy is the sum of the true positive and true negative rate, weighytéloelbrespective class
distributions. The fact that accuracy is relative to the underlying clasghdisons can lead to
unintuitive interpretations. Moreover, in process discovery, thess datributions can be quite
different and have no particular meaning. In order to make abstractitwe @roportion of negative
and positive events, we propose, from a practical viewpoint to attachl @gportance to both
recall and specificity:acc= %recall+ %specificity According to this definition, the accuracy of
a majority-class predictor i%. Flower models, such as the one in Example 1(b), are an example
of such a majority-class predictors. Because a flower model represemtsm behavior, it has a
perfect recall of the all behavior in the event log but it also has nadlctitional behavior compared
to the event log. Because of the latter fact, the flower model has zeriigpe@nd an accuracy of
%. Any useful process model should have an accuracy higher%than

1318

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

Algorithm 3 Rule-level pruning

1: Rt ={r e R|r has rule headlasga,o,t,comleteq }.
[/l intra-rule pruning:
2: forall r e R" do
. reducer accordingtodNS VNS)ANS =NS.
4. group or-splits:NSa;,a) ANSaz,az) € r andNSa;,a) ANSag,a3) € r into NSag,a) A
NSai1,a2) ANSay, a3).
5. group or-joins: NSa;,a) V NSap,a) € r and NSag,a) V NSas,a) € r into NSay,a) v
NSay,a) VNSaz,a) VNSas,a).
6: end for
/linter-rule pruning:
7. forall ac Ado
. R ={reR"|risaprecondition o&}
9: forall re R} do

10: if 3se Ry : sis more specific thanthen

11: remover.

12: end if

13: if 3s€ R} : scombined withr lead to a more specific or-join tharthen
14: replace the or-join im with the more specific or-join.

15: end if

16: end for

17: end for

/lkeep the most specific or-split:
18: for all ac Ado
100 R$P™={r e R | r contains an or-split going oat}.
20 s=the most specific or-split by combining the or-splits going airt R3"".
21 forall r e RS do

22: if sis more specific thanthen

23: replace the or-split im with the or-split ins.
24: end if

25: end for

26: end for

The metrics that are introduced in this section will be used to evaluate therparfoe of
AGNEs in the following sections. They have been defined and implementeefonets. However,
they can also be applied to other generative models.

5.1 Existing Metrics

Weijters et al. (2006) define a metric that has a somewhat similar interpretafi®ha: the parsing
measuré®’M. The measure is defined as follows:

e parsing measurePM: the number of sequences in the event log that are correctly parsed by
the process model, divided by the total number of sequences in the egefRoloefficiency,
the similar sequences in the event log are grouped.klrepresent the number of grouped

1319

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

sequencesy; the number of process instances in a grouped sequenca variable that is
equal to 1 if grouped sequencean be parsed correctly, and 0 if grouped sequéramnot
be parsed correctly. The parsing measure can be defined as follajters\et al. (2006):

PM = ZI ln|c|
S

PM is a coarse-grained metric. A single missing arc in a Petri net can resultsimgdailure for all
sequences. A process model with a single point of failure is generally tiedie a process model
with more points of failure. This is not quantified by the parsing meaBie

Rozinat and van der Aalst (2008) define two metrics that have a somsintikr interpretation
asTPrae andTNyqe: the fitness metrid and the advanced behavioral appropriateness naggric

e fitness f: Fitness is a metric that is obtained by trying whether each (grouped) reegjire
the event log can be reproduced by the generative model. This precsdtalledsequence
replay. The metric assumes the generative model to be a Petri net. At the starsefjiience
replay, f has an initial value of one. During replay, the transitions in the Petri net maitlycce
and consume tokens to reflect the state transitions. However, the propoftiokens that
must additionally be created in the marked Petri net, so dert@ a transition to fire, is
subtracted from this initial value. Likewise, the fithess meag$ysanishes for extra behavior
by subtracting the proportion of remaining tokens relative to the total nunfgemoduced
tokens from this initial value. Lekrepresent the number of grouped sequengele number
of process instances, the number of tokens consumend,the number of missing tokenp,
the number of produced tokens, andhe number of remaining tokens for each grouped
sequence (1 <i < k). The fitness metric can be defined as follows (Rozinat and van der

Aalst, 2008):
f:1<l_zikk1nim> 1 <1_2kk1nr>
2 2i=1MiCi 2 Yicanip

e behavioral appropriatenessa'B: Behavioral appropriateness is a metric that is obtained by
an exploration of the state space of a Petri net and by comparing theediftgpes ofollows
andprecedeselationships that occur in the state space with the different typfedlafvsand
precedeselationships that occur in the event log. The metric is defined as the picpof
number offollowsandprecedeselationships that the Petri net has in common with the event
log vis-a-vis the number of relationships allowed by the Petri net. Sfebe theS: relation
andSY be theS relation for the process model, aBd the S- relation andS, the Ss relation
for the event log. The advanced behavioral appropriateness raétisiacdefined as follows
(Rozinat and van der Aalst, 2008):

o — < SENSF o SN SF > _
21 T 2[5
Rozinat and van der Aalst (2008) also report a solution to two non-tpvidlems that are encoun-

tered when replaying Petri nets with silent steps and duplicate activitiese Iprésence of silent
steps (or invisible tasks) it is non-trivial to determine whether there exigitalde firing sequence

1320

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

of invisible tasks such that the right activities become enabled for the Reto pptimally replay a
given sequence of events. Likewise, in the presence of multiple enalpbdidatte activities, it is a
non-trivial problem of determining the optimal firing, as the firing of oneldape activity affects
the ability of the Petri net to replay the remaining events in a given sequépgerds. Rozinat and
van der Aalst (2008) present two local approaches that are baskduistics involving the next
activity event in the given sequence of events.

Fitnessf and behavioral appropriatenea§ are particularly useful measures to evaluate the
performance of a discovered process model. Moreover, these medriesbieen implemented in
the ProM framework. However, the interpretation of the fithess measquéres some attention:
although it accounts for recall as it punishes for the number of missingsdkat had to be created,
it also punishes for the number of tokens that remain in a Petri net afteepdayr The latter can be
consideredxtrabehavior. Therefore, the fithess metfi@also has a specificity semantics attached
to it. Furthermore, it is to be noted that the behavioral appropriatea'%esmtric is not guaranteed
to account for all non-local behavior in the event log (for instancepralocal, non-free, history-
dependent choice construct that is part of a loop will not be detectéldgebyneasure). In addition,
theag metric requires an analysis of the state space of the process model or arfiesexhaustive
simulation to consider all allowable sequences by the model.

5.2 New Metrics

The availability of an event log supplemented with artificial negative eveltassafor the definition
of a new specificity metric that does not require a state space analysisadnspecificity can be
calculated by parsing the (grouped) sequences, supplemented witiveeyants. We therefore
define:

e behavioral recall r5: The behavioral recallf metric is obtained by parsing each grouped
event sequence. The valuesTé?andFN are initially zero. Starting from the initial marking,
each sequence is parsed. Whenever an enabled transitions firemLih&vTP is increased
by one. Whenever a transition is not enabled, but must be forced to éinsathe forFN is
increased. As an optimization, identical sequences are only replayed batk represent
the number of grouped sequencesthe number of process instancé®, number of events
that are correctly parsed, aié\; the number events for which a transition was forced to fire
for each grouped sequenicél < i < k). At the end of the sequence repla,is obtained as

follows:
p_ < Y TR)
rB —_— k k .
Y NiTR + Y1 niEN;

In the case of multiple enabled duplicate transitions, sequence replay Brésisition of
which the succeeding transition is the next positive event (or makes armaoldoice). In
the case of multiple enabled silent transitions, log replay fires the transitiorhichvthe
succeeding transition is the next positive event (or makes a randoneghoidlike the fithess
metric f, rg does not punish for remaining tokens. Whenever after replaying sesequ
tokens remaining tokens cauaéditional behaviotby enabling particular transitions, this is
punished by our behavioral specificity metsic

e behavioral specificity s3: The behavioral specificitgy metric can be obtained during the
same replay asg. The values fofTN and TP are initially zero. Whenever during replay,

1321

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

a negative event is encountered for which no transitions are enabkedaline forTN is
increased by one. In contrast, whenever a negative event is @rcediuring sequence
replay for which there is a corresponding transition enabled in the Péttheevalue foiFP

is increased by one. As an optimization, identical sequences only aredplaged once. Let
k represent the number of grouped sequengele number of process instanc&sl; number
of negative events for which no transition was enabled, Eigdhe number negative events
for which a transition was enabled during the replay of each groupegtseq (1 <i <k).

At the end of the sequence replay,is obtained as follows:

o - < SN,) '

T TN+ 5K nFP,

Because the behavioral specificity mesficchecks whether the Petri net recalls negative event, it
is inherently dependent on the way in which these negative events semgsh For the moment,
the negative event generation procedure is configurable by the veegaént injection probability

1, and whether or not it must account for the parallel variants of thengdegjuences of positive
events. For the purpose of uniformity, negative events are generaieel test sets witht equal to

1.0 and account for parallel variants = true.

6. Experimental Evaluation

AGNEs has been implemented in Prolog. In particular, the frequent temporsiraint induction,
the artificial negative event generation, the language bias constramdtsh@ pruning and graph
construction algorithms all have been written in Prolog. As mentioned bef@BEs makes use
of TILDE, an existing multi-relational classifier (Blockeel and De Raedf8)9available in the
ACE-ilProlog data mining system (Blockeel et al., 2002). To be able to lidrafi the facilities of
the ProM framework, a plugin was written that makes AGNESs accessible M.PFigure 3 depicts
a screen shot of AGNEs in ProM.

In this section the results of an experimental evaluation of AGNEs areniesse First we
will discuss the properties of the event logs and the parameter settingstteabéen used. Then,
in Section 6.1, we analyse the expressiveness of AGNEs and benclimeaability of AGNEs
to generalize from incomplete event logs. In Section 6.2, we analyze thksre$ a number of
noise experiments with different types and levels of noise that have lbeeadcout to test how the
learning algorithm behaves in the presence of noise.

In order to evaluate and compare the performance of AGNES, a bericlexgaariment with 34
event logs has been set up. These event logs have previouslydezbbyAlves de Medeiros (2006)
and Alves de Medeiros et al. (2007) to evaluate the genetic miner algorithste Talescribes the
properties of the underlying artificial process models of the event loge nlimber of different
process instance sequences (colugmptocess inst.”) gives an indication of the amount of different
behavior that is present in the event log. This number is to be compared witbtdh number of
process instances in the event logs. In general, the presence otlodpsirallelism exponentially
increases the amount of different behavior that can be producegrogeass. Therefore, the number
of activity types that are pairwise parallel and the number and type of loayes been reported in
Table 1. In correspondence with the naming conventions used by AlMdedeiros, nfc stands for

1. The AGNEs plugin is available froit t p: / / ww. pr ocessi nt el | i gence. be/ AGNEs. php.

1322

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

non-free-choice, |11 and 12| stands for the presence of a lengtfaoténgth-two loop respectively,
and st and unst stands for structured and unstructured loops. frootfee the presences of special
structures such as skip activities and (parallel or serial) duplicate adifiiee been indicated. For
most of the event logs in the experiment, a reference model was availabathbe assumed to
represent the behavior in the event log. Columifsreference model” andsg reference model”
indicate the behavioral recall and specificity of the reference models esibect to the original
event logs.

In the experiments, the performance of AGNEs is compared to the perfoenwdiriour state-
of-the-art process discovery algorithns? (van der Aalst et al., 2004; Alves de Medeiros et al.,
2004),a"* (Wen et al., 2007), genetic miner (Alves de Medeiros et al., 2007) amistiest miner
(Weijters et al., 2006). Being the first large-scale, comparative ben&hstady in the literature
of process discovery, we have chosen to include algorithms that allesdyappeared as journal
publications ¢, a™ ", and genetic miner) or that are much referenced in the literature (heuristics
miner).

During all experiments, the algorithms were run with the same, standard pgarasatings of
their ProM 4.2 implementation, as reported in Table 2. These parameter setingisle with the
ones used to run similar experiments by the authors of the algorithms. To enaedseparison on
the same terms, AGNEs was not provided with prior knowledge regardiradlgdesm or locality
of activity types. In particular, the thresholds used to induce frequemtdeal patterns have been
given the following valuestf{psence= 0.9, tchain = 0.08,tsycc = 0.8, tordering = 0.08,tiripie = 0.10). In
practice, a good threshold depends on the amount of low-frequeatioelinoise) one is willing to
accept within the discovered process model. The negative event injgctbability tinfluences
the proportion of artificially generated negative events in an event logrofig imbalance of this
proportion may bias a classification learner towards a majority class prediatitrout deriving
any useful preconditions for a particular activity type. As a rule of thuitis,a good idea to set
this parameter value as low as possible, without the learner making a majorgypetaiiction. In
the experimentst has been given a default value of 0.08. Ex-post, AGNEs warns thevirss too
low a value forrthas led to a majority-class prediction. TILDE’s C4.5 gain metric was used as a
heuristic for selecting the best branching criterion. In addition, TILBEIS5 post pruning method
was used with a standard confidence level of 0.25. Furthermore, TikD&ced to stop node
splitting when the number of process instances in a tree node drops beldve Same parameter
settings have been used on all 34 data sets. Empirical validation has sheoparéimeter settings
to work well across all data sets.

The AGNESs technique, has run times in between 20 seconds and 2 hiotlrs étata sets in the
experiments on a Pentium 4, 2.4 Ghz machine with 1GB internal memory. Thasesping times
are well in excess of the processing timesdf o™ and heuristics miner. In comparison to the run
times of the genetic miner algorithm, processing times are considerably shddst.of the time
is required by TILDE to learn the preconditions for each activity type. Jémeration of negative
events also can take up some time. As process discovery generally iseaittare data mining
application, less attention has been given to computation times.

6.1 Zero-noise, Cross Validation Experiment

To evaluate AGNES’ expressiveness and ability to generalize, a 1@+fodd-validation experiment
has been set up. In the literature on process discovery, crosstialitias only been considered by

1323

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

3 | B
. S E |y
£0< 43|88
E; ? £ S S I Q
2818|588 | g
/8| 8|% e |8 &8 |a =
3] o D:n = @®© o 'z O 5
@ | a e K = 9 » c S
alOskip 12| 6 | 300 | 1.000| 1.000| 1 1
al2 14| 5 | 300 | 1.000| 1.000| 2
a5 7 | 13 | 300 | 1.000| 1.000| 1 111l
aénfc 8 | 3 | 300 |1.000| 1.000| 1 1
a7 9 | 14 | 300 | 1.000| 1.000| 4
a8 10| 4 | 300 | 1.000| 1.000| 1
all 9 | 98 | 300 | 1.000| 0.996| n.a.| Z1lunst
al2 13| 92 | 300 | 1.000| 0.992| n.a.| 2unst
betaSimplified 13| 4 | 300 | 1.000| 1.000| O 1 1 2
bnl 42| 4 | 300 | 1.000| 1.000| O
bn2 42| 25 | 300 | 1.000| 1.000| O 1st
bn3 42| 150| 300 | 1.000| 0.999| O 2 st
choice 12| 16 | 300 | 1.000| 1.000| O
DriversLicense 9 2 300 | 1.000| 1.000| O
DriversLincensel| 11 | 87 | 350 | 1.000| 0.986| 1 1st 1 1 1
herbstFig3p4 12| 32 | 300 | 1.000| 0.999| 3 1st
herbstFig5p19 8 | 6 | 300 | 1.000| 1.000| 1 1
herbstFig6p18 7 | 153| 300 | 1.000| 0.977| O |111l, 112
herbstFig6p19 5 1136| 300 | na. | na. | na n.a. n.a.| n.a.| n.a
herbstFig6p31 9| 4 | 300 | 1.000| 1.000| O 1
herbstFigép33 | 10| 4 | 300 | 1.000| 1.000| O 1
herbstFigép36 | 12| 2 | 300 | 1.000| 1.000| O 1
herbstFig6p37 | 16 | 135| 300 | 1.000| 0.996| 36
herbstFig6p38 7 5 | 300 | 1.000| 1.000| 3 1 par.
herbstFig6p39 7 | 12 | 300 | 1.000| 1.000| 1
herbstFigép41 | 16 | 12 | 300 | 1.000| 1.000| 4
herbstFig6p45 8 | 12 | 300 | 1.000| 1.000| 5
111 6 | 69 | 300 | 1.000| 0.988| 1 211l
111Skip 6 | 269| 300 | 1.000| 0.732| O 211l
121 6 | 10 | 300 | 1.000| 1.000| O 1121
I2I0Optional 6 | 9 | 300 |1.000| 1.000| O 1121
12ISkip 6 | 8 | 300 | 1.000| 0.999| O 112l
parallel5 10| 109 | 300 | 1.000| 1.000| 10
repair2 8 | 48 | 1000| 0.998| 0.995| 2 1 unst

Table 1: Event log properties

Goedertier et al. (2008) and Rozinat et al. (2007). The reason éaatikence of cross-validation
experiments, is that process discovery is an inheratgcriptivelearning task rather thane-
dictiveone. The primary intent of process discovery is to produce a modeldbataely describes
the event log at hand. Nonetheless, it is interesting to tegiredtictiveability of process discovery
algorithms in an experimental setting. To apply cross-validation, a randonmzatibine has been

1324

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

Algorithm (Ref.) Parameter settings
derive succession from partial order information = true
at enforce causal dependencies within events of the sametpctifalse
(Alves de Medeiros et al., 2004) enforce parallelism by overlapping events = false
att (no settings)

(Wen et al., 2007)

relative to best threshold = 0.05
positive observations = 10
dependency threshold = 0.9
length-one-loops threshold = 0.9
length-two-loops threshold = 0.9
long-distance threshold = 0.9
dependency divisor = 1
and threshold = 0.1
use all-activities-connected heuristic = true
use long-distance dependency heuristic = false
population size = 100
max number generations = 1000
initial population type = possible duplicates
power value = 1
genetic miner elitism rate = 0.2
(Alves de Medeiros et al., 2007) selection type = tournament 5
extra behavior punishment with= 0.025
enhanced crossover type with crossover probability = 0.8
enhanced mutation type with mutation probability = 0.2

heuristics miner
Weijters et al. (2006)

prior knowledge none

temporal constraints tabsence= 0.9, tchain = 0.08,tsucc= 0.8,
tordering = 0.08,tiripie = 0.1

negative event generation injection probabitity: 0.08

calculate parallel variants = true

AGNES include global sequences = true

language bias: include occurrence count = false
data conditions = none
TILDE splitting heuristic: gain

minimal cases in tree nodes =5
C4.5 pruning with confidence level = 0.25
graph construction teonnect= 0.4

Table 2: Parameter settings

written in SWI-Prolog that groups similar sequences, randomly partitionsrthugpgd event log in
n = 10 uniform subgroups, and producegairs of training and test event logs. Training event
logs are used for the purpose of process discovery. Test evenategused for evaluation, this is
for calculating the specificity and recall metrics. For the purpose of thisrergnt, no noise was
added to the event logs.

Specificity metrics must be calculated based on the combination of training aegéeslogs,
the entire event log. Although this might seem unintuitive, specificity andfsggcmetrics make
a completeness assumption as well, as they account for the amaoexttabehavior in a process
model visa-vis the event log (Rozinat and van der Aalst, 2008). To correctlyatathe proposed
learning technique, it is important that the negative events in the test seataly indicate the state
transitions that are not present in the event log. For this reason, tagugegvents in the test log are
created with information from the entire event log. Should the negative gesreration be based
on training set instances only, it is possible that additional, erroneowdivegvents are injected
because it is possible that some behavior is not present in the test dwirtlrilee experiment applies
the above-described partitioning, after having generated negatimeseioe each grouped process
instance. Intended to be used by the evaluation metric, the negative exeatsden generated with

1325

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

an injection probabilityt equal to 1, an infinite window size, and by considering parallel variants.
Evidently, the thus generated negative events were not retained in thiedragt. For training
purposes, negative events have been calculated based on the informatie training set only.
For the same reasons, the behavioral appropriateness ragetms also been calculated based on
the whole of training and test set data.

In the experiment, only 19 out of the 34 event logs were retained, as teeeiént logs have
less than 10 different sequences. Table 3 shows the aggregatejearesults of the 10-fold cross
validation experiment over 190 event logs. Thestaverage performance over the 34 event logs
is underlined and denoted in bold face for each metric. We then use a pdesdto test the
significance of the performance differences (Van Gestel et al., 20@djformances that aret
significantly different at the 5% level from the top-ranking performance with respect to a one-
tailed paired t-test are tabulated in bold face. Statisticatipificant underperformances at the 1%
levelare emphasized in italics. Performances significantly different at the 58bhav not at the
1% level are reported in normal font. For tR& measure, no paired t-tests could be performed,
because the metric could not be calculated on some of the process model®didcbya™ and
a*™*. The latter is the case when the discovered process models have distednglements.

From the results for the parsing measki, the fithess measurie and behavioral recall mea-
suresrg, it can be concluded that genetic miner scores slightly better on the regaitement.
Moreover, the behavioral specificity metgg shows genetic miner and heuristics miner to produce
slightly more specific models.

| PM f & acc| B & acd"|

zeranoise at 0.72 096 096 096 | 097 0.83 0.90
att 0.77 097 0.81 0.88/0.97 090 0.93

AGNEs 0.80 098 0.81 0.89]098 091 0.94

genetic 0.83 099 084 091|098 0.93 0.95

heuristics | 0.79 0.97 085 0.91|0.97 0.93 0.95

Table 3: 10-fold cross validation experiment - aggregated results

From the cross-validation experiment, we conclude that AGNESs portiiajlsusgeneralization
behavior to other process discovery algorithms. The reason that it sensttive to incomplete
event logs can be attributed to the following. Given an incomplete event IGINES is likely
to generate a proportion of incorrect negative events. However, tbgogion of negative events
is relatively small, as the negative event injection parametir not required to be excessively
large. More importantly, the coarse-grained language bias that com8esnstructs into larger
structures, prevents TILDE from overfitting the incomplete event log dodisiit to generalize,
to some extent, beyond the observed behavior. The additional inctgroof process knowledge
expressed by a domain expert would only add to this benefit. Finally, tretinegvent injection
procedure takes into account parallelism and window size. Conclanentecurrent behavior are
the root causes of incomplete event logs. The ability to include informatiout gawallel variants
and window size, gives our learning technique a configurable indumtage with different strategies
to account for incompleteness.

1326

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

O antificialStartTask O®]__ A Artificial EndTask

ArtificialStartTask

(b) heuristics miner result

Figure 2: herbstFig6p33: AGNEs detects the duplicate activity

The metricsrg andsj do not indicate a large or significant difference for the performance of
a™*, AGNESs, genetic miner, and heuristics miner. Only by looking at the indiVidrgcess mod-
els, the expressiveness of AGNEs with respect to the detection of nah-fon-free choice con-
structs or the discovery of duplicate tasks becomes apparent. Examjde&sid in Section 4.3,
shows how AGNEs is capable of detecting non-local, non-free choigstrets, even within the
loop of the DriversLicensel reference problem. AGNEs is also partigudaited for the detection
of duplicate activities. In the herbstFig6p33 event log, the acti&ibccurs in three different con-
texts and AGNEs draws three different, identically labeled transitions sforelingly. Figure 2
compares the results of heuristics miner and AGNESs on this event log.

The goal of process discovery is to give an idea of how the processesded in the event log
actually have taken place. This goal makes process discovery an inhedasityiptivelearning
task. To evaluate the accuracy of the discovered process model, itesaitesjustified to compare
the learned process models on the same sequence the process modesatkeftem. In the
process discovery literature, this training-log-based evaluation hastheedominant evaluation
paradigm (Alves de Medeiros et al., 2007; Weijters et al., 2006). Comesely, the remaining
experiments of this paper use training-log-based evaluation.

6.2 Training-log-based Noise Experiment

In these experiments we have stirred up the 34 event logs with artificial. nbiséae literature,

six artificial noise types have been described (Maruster, 2003; Alwddatieiros et al., 2007): (1)
missing head the removal of the head of a sequence, rt#$sing body the removal of the mid
section of a sequence, (Blissing tail the removal of the end section of a sequences{gp tasks

the interchange of two random events in a sequencere(Bpve task the removal of a random
event in a sequence, and (@)x all: a combination of all of the above. The noise has been added
with the AddNoiseLogFilter event log filter available in the ProM frameworkisTiiter has been
applied after ungrouping the 34 event logs. To keep the size of theimgrgrunder control, we

1327

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

have limited the noise types used in our experimenisitoall andswap tasksFor both noise types,
the used noise levels of 5%, 10%, 20% and 50% are applied.

Table 4 reports the average results of the discovered process moeeth@all 34 correspond-
ing zero noise event logs. As is known from the literature, heuristics minesikent to noise,
whereas the formal approachesodf anda** and the genetic miner are known to overfit the noise
in event logs. On 11 event logs from the bnl, bn2, and bn3 progekses * implementation was
incapable of producing an outcome. These missing values resulted ineso§€oior each measure.
Furthermore, the state space analysis required to calculate the behapjorapriateness measure
ag produces invalid outcomes that occur 27 times for the results of the geneticatgoethm out
of a total of 272 (34 x 8) experiments, the reported results for the geneter mie less suitable
for comparison. For this reason, we only indicate the significance afftla@ds) outcomes with
respect to the top ranking performance. For@hé, f, anda}3 metrics, the algorithm that has ob-
tained thebest average score, is underlined. For every noise level, AGNE®slatecuracy results
that are robust and not significantly different from the results obtdigdteuristics miner. This is a
remarkable result, as AGNESs is a more expressive algorithm than heunisties also capable of
detecting more complex structures such as non-local dependenciesitdi activities.

To calibrate the metrics, we also report their evaluation of the so-calledrflmedel for the
zero-noise case. Because the flower model parses every posgibdmee, it has a perfect recall but
zero specificity. These properties are to some extent reflected in the neffaisle 4. The fitness
measuref and the behavioral recall measugkare both 1.0, whereas the behavioral specificity
metrics} amounts to 0. The behavioral appropriateness mea/gutees not really seem to quantify
the lack of specificity of the flower model.

The reasons why AGNES is robust to noise can be put down to the followingt of all, the
generation of negative events is not invalidated by the presence of Magse isadditional low-
frequent behavior that will result in less negative events being gexteby AGNES. However, the
presence of noisy positive events does not lead to the generation gfregjative ones. Another
property that adds to robustness, is that the constraints in AGNEs ’ lgadpias allows it to come
up with structured patterns and to some extent prevents the constructiobitcdirg connections
between transitions, while remaining expressive with regard to short,laymicate tasks and
non-local behavior. Finally, the formulation of process discovery dassification allows for the
application of an already robust classification algorithm (TILDE). Like ynaassification learners,
TILDE takes into account the frequency of an anomaly, when constguttie preconditions for
each activity type. Moreover, TILDE applies the same tree-level prumieiinod as C4.5 (Quinlan,
1993).

7. A Case Study

This section shows the result of the AGNESs process discovery algorjpiied to an event log of
customer-initiated processes, recorded by a European telecom prdvigegoal of the case study
was to investigate whether AGNESs can be usefully applied to map the routimgeshbat are made
between queues of a workflow management system (WfMS). With 18 62&gs instances and 127
gueues, the obtained log file has a size of over 130 megabytes in the f@rmooima-separated
text file. The case study gives an idea of the scalability of the algorithm tisnarge event logs
and the usefulness of the AGNES process discovery algorithm on reakstidife processes.

1328

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

| PM f @ acc | rf § acq

zero-noise at 0.72 096 092 094 096 085 091
att 0.82 0.98 0.87 0.92]098 093 0.96

AGNEs 0.90 0.99 0.87 0.93]0.99 0.96 0.98

genetic 091 1.00 0.83 0091|099 095 0.97

heuristics | 0.88 0.99 0.86 0.92|0.99 0.95 0.97

flower 100 1.00 0.23 0.61] 1.00 0.00 0.50
mix_all0.05 ot 0.11 083 0.85 0.84 0.87 0.62 0.74
ot 0.00 0.79 065 0.72/0.75 0.63 0.69

AGNEs 0.89 099 0.87 093 |0.99 0.95 0.97
genetic 0.74 099 063 081098 091 0.95
heuristics | 0.88 0.98 0.87 093|098 0.94 0.96
mix_all0.1 at 0.08 080 0.84 0.82 0.84 059 0.72
att 0.00 0.73 0.80 0.76/ 0.64 0.64 0.64
AGNEs |0.83 099 089 094|099 096 097
genetic 051 097 059 0.78 0.94 0.78 0.86
heuristics | 0.88 0.99 086 0.92/ 099 095 0.97
mix_all0.2 at 0.00 0.77 091 0.84 0.82 051 0.67
att 0.00 065 0.65 0.65 0.49 0.63 0.55
AGNEs 0.79 097 0.87 0.92 | 097 094 0.96
genetic 0.47 096 053 0.74/ 093 0.73 0.83
heuristics | 0.86 0.98 0.85 0.92]|0.98 0.94 0.96
mix_all0.5 at 0.00 0.63 0.75 0.69 0.67 0.46 0.56
att 0.00 051 061 058 026 0.70 0.48
AGNEs 054 096 0.77 0.87 | 0.97 0.90 0.93
genetic 0.20 095 043 0.69 0.86 0.53 0.69
heuristics | 0.66 0.97 0.74 0.85/0.96 0.88 0.92
swaptasks0.05 a™ 0.00 0.65 0.85 0.75/0.76 0.45 0.60
att 0.00 059 0.67 0.63 052 061 0.56
AGNEs [0.90 099 087 093|099 096 097
genetic 0.44 095 061 0.78/090 0.74 0.82
heuristics | 0.88 0.99 085 0.92/ 099 0.95 0.97
swaptasks0.1 o™ 0.00 058 0.86 0.72/0.69 0.48 0.58
att 0.00 053 0.66 059 0.38 0.61 0.49
AGNEs |0.78 098 087 093|098 094 096
genetic 0.38 094 053 0.74/0.89 065 0.77
heuristics | 0.80 0.97 0.86 0.92] 0.98 0.94 0.96
swaptasks0.2 ot 0.00 054 0.77 0.66| 059 052 0.55
att 0.00 045 0.65 0.55 0.27 0.67 0.47
AGNEs [0.73 097 086 092 |098 093 095
genetic 0.19 093 0.62 0.77/0.84 052 0.68
heuristics | 0.69 0.96 0.87 092|096 0.88 0.92
swaptasks0.5 ot 0.00 041 061 051 040 063 0.51
att 0.00 0.36 0.61 0.48H 0.16 0.77 0.46
AGNEs 032 091 0.72 0.81 | 095 0.82 0.89
genetic 0.07 093 0.77 0.85 0.79 040 0.59
heuristics | 0.45 0.94 0.66 0.80| 0.94 0.83 0.89

Table 4: noise experiments - average, zero-noise training-log-baseltisr

The event log consists of events about customer-initiated processesmréhiaandled at three
different locations by the employees of the telecom provider. The hanafiiceses is organized in a
first line and a second line. First-line operators are junior operatordéfaatvith frequent customer
requests for which standardized procedures have been put in Whes a first-line operator cannot
process a case, it is routed to a queue of the second line. Seconddinbaralling is operated by
senior experts who have the authority to make decisions to solve the moreeidvcdges. The

1329

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

& prom [4.2] [_[2]x]
File Mining Analysis Comversion Exports Window Help
v
o0
mQ® 0@ === = m

—
[5] swap_tasks0.5.mxml || 5] Settings for mining Raw swap_tasks0.5.mxmi (unfiltered) using Process Discouery by AGNEs -

swap_tasks0.5.mxml Process Discovery by AGNEs

Prior knowledge

working directory [WsMhomEAGNESICpTooIsLog \‘ select |

_ % e.g. prior_local(atA,atg) -
. d prior knowledge % .. prior_global(at, atB)
Cases Temporal constraints Negative event generation Tilde Graph construction
Min18 Mean27 BEETRED -
Fvents chain A window size - splitting heuristic gain :
successio n node coverage % connect |04

Event classes lm,g,mn parallel variants? confidence

Yiiple

Event
vent types Language bias

include global sequences?

Originators i
i Min16 Mean1g include occurrence? { |

data attributes

q start mining
13

Zoom: B2 %

Figure 3: AGNEs in ProM 4.2

second-line processes are coordinated and supported by meansdflaw management system
(WfMS). The obtained event log consists of these second-line cas#ifigevents. The second-
line WIMS is organized as a system of 127 logical queues. Each queresponds to a number
of similar types of activities that are to be carried out. At any given momectt eative case
resides in exactly one queue. Employees can process a case by takihdfittte queue into their
personal work bin. Every evolution of a case is documented by additeg.ngloreover, employees
can classify the nature of the case according to a number of data fieldsldition, a worker or
dispatcher has the ability to reroute cases to different queues whehisvismecessary. The system
imposes no restrictions with regard to the routing of cases. Queueserpeework distribution
system and are akin to roles in WfMS. For the purpose of this analysisequee considered to
be activity types. The 40 most frequently occurring queues were retéonéurther analysis. Nine
process instances that did not involve at least one of these 40 quetesatained from the event
log.

We compare the mining results of AGNES, genetic miner, and heuristics mirmee garameter
settings that are different from the experimental evaluation in the pregecison. In particular,
AGNEs was provided with the prior knowledge that no activity can occacaoently:Va,b € A:

1330

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

PM f ag acc \ e 8 acd” ‘
AGNEs 0.06 0.94 0.67 0.800.93 0.67 0.80
genetic 0.03 xxx xxx xxx| 083 0.62 0.73
heuristics 0.80 0.97 0.72 0.85| 0.96 0.88 0.92
flower model| 0.00 1.00 0.76 0.88 1.00 0.00 0.50

Table 5: telecom—training-log-based results

PriorSerial(a,b). This prior knowledge is justifiable, as no case can be routed to or rességenal
gueues at the same time. Genetic miner has been running for 5000 gersgnatibra population
size of 10. These parameter settings correspond to the parameter settireggsaee study described
by Alves de Medeiros et al. (2007). To account for the prior knowdeltigt no concurrent behavior
is contained in the event log, heuristics miner needs to have an infinite ANBhttice In general
AGNEs allows to provide a-priori locality and parallelism information for indiwal pairs of activity
types. This fine-grained a-priori knowledge cannot be providedr®ytiining the AND threshold
with heuristics miner. Currently, it is not possible to constrain the searatesplagenetic miner
with this a-priori knowledge.

The results of applying these process discovery algorithms on the filtegatlleg are displayed
in Figure 4. Table 5 gives an overview of the metrics that compare the dissbprocess models to
the original event log. As the purpose of the case study is to provide theammsrate description
of the event log, the use of training data for evaluation is justified. To cédilth@ metrics, we also
report their evaluation of the so-called flower model. Because the flowdelmepresents random
behavior, it has a perfect recall of the all behavior in the event logtlal$o has mucladditional
behavior compared to the event log. Because of the latter fact, the flovasl imas zero specificity.
These properties are to some extent reflected in the metrics in Table 5. Hss fileasuré and the
behavioral recall measurg are both 1.0, whereas the behavioral specificity meimmounts to 0.
The table also indicates the usefulness of the metrics proposed in this papgrarsing measure
PM does not reflect the recall of the flower model. Furthermore, the belahdppropriateness
measurea;3 does not really seem to quantify the lack of specificity of the flower modet. the
genetic miner mining result, the ProM implementationsxﬁ,czainda;3 did not produce an outcome. To
calculate these metrics, a conversion of the heuristics nets into Petri negsiiede The resulting
Petri nets, which have many invisible transitions, are seemingly too complelctdata the metric.
These results are an indication of the usefulness of the new specificity preipicsed in this paper.

Comparing the availabl% andsg outcomes, it can be observed that AGNEs performs better
than genetic miner, but worse than heuristics miner on the obtained eveiitlegliscovered pro-
cess model by AGNEs has an accuracy of 80%, whereas the modelgetestdy genetic miner
and heuristics miner have an accuracy of 73% and 92% respectivetycase study brings forward
that human-centric processes contained in the event log can take platasgsaructured fashion
than often is assumed by process discovery algorithms. In this particsrfoainstance, it seems
that OR-splits and OR-joins can involve a rather high number of outgoingonimg activities. In
the current implementation, the language bias of TILDE is limited to conjunctichsgligjunctions
of NSconstructs of length two and three. This imposes limitations on the hypothesesthibe
learned by AGNESs. As indicated in Section 4.3, solving this language bias iEsuires construct-

1331

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

; ’, = , |
== - |
§ M Ji "“‘E i

N iy

(b) genetic miner (c) heuristics miner

Figure 4: telecom—mining results

ing a proprietary ILP classification algorithm that during each refinenteptalows considering
conjunctions ofNS constructs of variable lengths. In this regard, the language bias ofdtlesr
Miner seems to be less limiting, although Heuristics Miner does not have mang detharative
properties of AGNEs. Another outcome of the case study, is that the ggdpueasures for behav-
ioral recallr§ and behavioral specificits}} in practice turn out to be valuable metrics for assessing
the accuracy of a discovered process model.

8. Related Work

Process discovery can be seen as an application of the machine ledrgirmgnonars from posi-
tive data, of which Angluin and Smith (1983) provide an overview. Gold{d%has shown that
important classes of recursively enumerable languages caniagttdied in the limitfrom a finite
number of positive examples only. Instead, both positive and negatarap@gs are required for
grammar learning to distinguish the right hypothesis among an infinite numbeairohgars that fit
the positive examples. Whereas Gold’s negative learnability result applies learning of gram-
mars with perfect accuracy, process discovery is more concernetheitibility to discover process
models that havenlya good recall and specificity. Learning grammars from only positive elesnp
requires a tradeoff between overly general and overly specificthgpes. Muggleton (1996) shows
that in a Bayesian framework, logic programs are learnable with arbitravilyetoor from positive
examples only. Bayes’ theorem allows to formulate this tradeoff as a tifalewieen size and
generality of the hypotheses and learning can be considered to maximizaiposterior proba-
bility over all hypotheses. In this paper, a new approach for making tledfbetween generality
and specificity is proposed, by inducing artificial negative events usihgghly configurable) as-
sumption about the completeness of the behavior displayed by the posiirgkss in the event
log. Another difference with grammar learning is that in grammar learning, {tpethesis space
is often expressed as production rules, automata or regular expressimereas process discovery
uses formalisms that can represent the concurrency and synchi@mzancerns of processes more
elegantly.

1332

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

Process models are in general deterministic. In the literature, there arefararglisms to
represent and learn the probability distributionstafchastic generative grammars over sequences
of observed characters and unobserved state variables. Historiealniques like Markov mod-
els, hidden Markov models, factorial hidden Markov models, and dynamje&an networks have
been first applied to speech recognition, and bio-informatics (Durbih, 61988). Each representa-
tion has its own particular modeling features that makes it more or less suitegpfesenting the
human-centric behavior of business processes. Factorial hidddwWiaodels, for instance, have
a distributed state representation that allows for the modeling of conclrebavior (Ghahramani
and Jordan, 1997). Hidden Markov models have furthermore beeidptbwith a first-order, ex-
tension that allows for the representation of sequences of logical attimes tiaan alphabets of flat
characters (Kersting et al., 2006). Other authors describe learningrsmmadels to identify mean-
ingful clusters of (hidden) Markov models (Smyth, 1997; Cadez et ad3R0Whereas stochastic
models provide useful information, their probabilistic nature tends to compeaiméscomprehen-
sibility of discovered process models. Business processes have \ie#distart, end, split, and
synchronization nodes. The network structure of stochastic modelsnddessualize this. For
instance, although hidden states could be useful in representing duplataiées—the same ac-
tivity label is logged in different contexts—a hidden Markov model is unlikel\oe capable of
comprehensively representing its different usage contexts.

In contrast, Mannila and Meek (2000) describe a technique to learn ampa@nent mixture
models of global partial orders that provide an understandable, glaalof the sequential data.
The authors assume the presence of one dominant, global partial ocleomsider a generic par-
tial order with random behavior to deal with low-frequent variations @)disom the former model.
Silva et al. (2005) describe a probabilistic model and algorithm for peodissovery that discov-
ers so-called and/or graphs in polynomial time. These and/or graphsramehensible, directed
acyclic graphs that have the advantage over global partial orderseqations that they can dif-
ferentiate between parallel and serial split and join points. Pei et al6j2f8scribe a scalable
technique for discovering the complete set of frequent, closed partiatrofrom sequential data.
The three aforementioned techniques assume each item to occur only itloeaveequence, and
do not consider recurrent behavior (cycles), nor duplicate activities

The term process discovery was coined by Cook and Wolf (1998), appdy it in the field
of software engineering. Their Markov algorithm can only discoveusatjal patterns as Markov
chains cannot elegantly represent concurrent behavior. The fdgaplying process discovery in
the context of workflow management systems stems from Agrawal et 88 Hd Lyytinen et al.
(1998). The value of process discovery for the general purpbpeoocess mining (van der Aalst
et al., 2007) is well illustrated by the plugins within the ProM framework. Inl@gpawith the
WEKA toolset for data mining (Witten and Frank, 2000), the ProM Frameworisists of a large
number of plugins for the analysis of event logs (Process Mining GibufEindhoven, 2008). The
Conformance Checkeglugin (Rozinat and van der Aalst, 2008), for instance, allows identifihieg
discrepancies between an idealized process model and an event logovegio with a model that
accurately describes the event log, it becomes possible to use the time-itidorimaan event log
for the purpose of performance analysis, using, for instanceR¢hfmrmance Analysis with Petri
netsplugin.

Table 6 provides a chronological overview of process discoveryrigthgas that have been ap-
plied to the context of workflow management systems. dfagorithm can be considered to be a
theoretical learner for which van der Aalst et al. (2004) prove thadntlearn an important class

1333

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

of workflow nets, called structured workflow nets, from complete evegd.l@hea algorithm as-
sumes event logs to be complete with respect to all allowable binary seguamg¢essumes that
the event log does not contain any noise. Thereforegathdorithm is sensitive to noise and in-
completeness of event logs. Moreover, the origmnalgorithm was incapable of discovering short
loops or non-local, non-free choice constructs. Alves de Medeirals €004) have extended the
algorithm to mine short loops and callechit. Wen et al. (2007) made an extension for detecting
implicit dependencies, for detecting non-local, non-free choice carstrilone of the algorithms
can detect duplicate activities. The main reason whyotladggorithms are sensitive to noise, is that
they does not take into account the frequency of binary sequendextha in event logs. Weijters
and van der Aalst (2003) and Weijters et al. (2006) have developasliat; heuristic-based method
for process discovery, called heuristics miner, that is known to be nesiéent. Heuristics miner
can discover short loops, and non-local, non-free choice as itaasider non-local dependencies
within an event log. However, heuristics miner cannot detect duplicatatsesi

Algorithm (Ref.) Summary

global partial orders Learns a two-component mixture model of a dominant seriesiphpalrtial order and

(Mannila and Meek, 2000) a trivial partial order by searching for the dominant partieder that yields the highest
probability for generating the observed sequence database

little thumb , heuristics miner Extends thex algorithm by taking into account the frequency of the fokorelation-

(Weijters and van der Aalst, 2003) ship, to calculate dependency/frequency tables from teatdeg and uses heuristics to

(Weijters et al., 2006) convert this information into a heuristics net.

a,at Derives a Petri net from local, binary ordering relationtedeed within an event log.

(van der Aalst et al., 2004)
(Alves de Medeiros et al., 2004)

splitpar—InWoLvE Derives a so-called stochastic activity graph and conveitgo a structured process
(Herbst and Karagiannis, 2004) model in the Adonis Modeling language.

multi-phase miner Constructs a process model for every sequence in the log @mdgeges the model into
(van Dongen and van der Aalst, 2005b) an event-driven process chain.

att Extends thex algorithm to discover non-local, non-free choice congtuc

(Wen et al., 2007)
- A probabilistic approach to process discovery.
(Silva et al., 2005)

frecpo A scalable technique for discovering the complete set ofufeat; closed partial orders
(Pei et al., 2006) from sequential data.

FSM/Petrify miner Derives a highly configurable finite state machine from thenelag and folds the finite
(van der Aalst et al., 2006) state machine into regions using the theory of regions.

- Learns the case data preconditions and effects of actvitith ILP classification tech-
(Ferreira and Ferreira, 2006) niques and user-supplied negative events.

genetic miner A genetic algorithm that selects the more complete and préeiggstics nets over gen-
(Alves de Medeiros et al., 2007) erations of nets.

DecMiner A classification technique that learns the preconditionadiivities with the ICL ILP
(Lamma et al., 2007) learner from event logs with user-supplied negative secggen

fuzzy miner An adaptive simplification and visualization technique lobse significance and corre-
(Gunther and van der Aalst, 2007) lation measures to visualize unstructured processes.

Table 6: Chronological overview of process discovery algorithms

van Dongen and van der Aalst (2005b) present a multi-phase appt@acocess mining that
starts from the individual process sequences, constructs so-catadde graphs for each sequence
that account for parallelism, and then aggregates these instance quagutding to previously
detected binary relationships between activity types. Interestingly, theega@pn ensures that
every discovered process model has a perfect recall, but genscalgs less on specificity. Herbst
and Karagiannis (2004) describe the working of the splitpar algorithmghgrt of the InWoLVE
framework for process analysis. This algorithm derives a so-calledhastic activity graph and

1334

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

converts it into a structured process model. The splitpar algorithm is caplatdtecting duplicate
activities, but it is not able to discover non-local dependencies.

Alves de Medeiros et al. (2007) describe a genetic algorithm for psatissovery. The fitness
function of this genetic algorithm incorporates both a recall and a specifi@gsure that drives
the genetic algorithm towards suitable models. The genetic miner is capablecting non-local
patterns in the event log and is described to be fairly robust to noiser Phie Alves de Medeiros
(2006) describes an extension to this algorithm for the discovery of dupltasks.

van der Aalst et al. (2006) present a two-phase approach to grog&sovery that allows to
configure when states or state transitions are considered to be similar.bilibheta manipulate
similarity is a good approach to deal with incomplete event logs. In particeeeral criteria can
be considered for defining similarity of behavior and states: the inclusifutwfe or past events,
the maximum horizon, the activities that determine state, whether ordering méteeiactivities
that visibly can bring about state changes, etcetera. Using these catepafigurable finite state
machine can be constructed from the event log. In a second phasajtisttite machine is folded
into regions using the existing theory of regions (Cortadella et al., 1998).tHe moment, the
second phase of the algorithm still poses difficulties with respect to catisgusuitable process
models. The approach presented in this paper considers window sizengmakorizon) and par-
allel variants as similarity criteria when generating artificial negative events.

Gunther and van der Aalst (2007) present an adaptive simplificationiandlization technique
based on significance and correlation measures to visualize the behaei@nnlogs at various
levels of abstraction. The contribution of this approach is that it can alapfed to less structured,
or unstructured processes of which the event logs cannot easilyrireamized in concise, structured
process models.

Several authors have used classification techniques for the pulfgoseess discovery. Maruster
et al. (2006), for instance, were among the first to investigate the usdesinduction to predict
dependency relationships between activities from a corpus of refelegs that portray various
levels of noise and imbalance. To this end, the authors use a propositiaduction technique,
the uni-relational classification learner RIPPER (Cohen, 1995), oneadébirect metrics for each
process task in relation to each other process task, which is generatpreipabcessing step.

Ferreira and Ferreira (2006) apply a combination of ILP learning antiaparder planning
techniques to process mining. Rather than generating artificial negaéinésemegative examples
are collected from the users who indicate whether a proposed execl#iors fleasible or not. By
iteratively combining planning and learning, a process model is discovkeatds represented in
terms of the case data preconditions and effects of its activities. In additithiistoew process
mining technique, the contribution of this work is in the truly integrated BPM lifdecp€ process
generation, execution, re-planning and learning. Lamma et al. (20@vylescribe the use of ILP
to process mining. The authors assume the presence of negative cegjtemguide the search
algorithm. Unlike the approach of Ferreira and Ferreira, who use partiakF planning to present
the user with an execution plan to accept or reject (a negative exampgeapibroach does not
provide an immediate answer to the origin of the negative events. Contraty tapproach, the
latter two approaches are not concerned with the construction of aigahptontrol-flow based
process model and do not consider the generation of artificial negatvrds.

1335

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

9. Conclusion

Process discovery aims at accurately summarizing an event log in a stdipiwcess model. So
far, the discovery of structured processes by supplementing evenwltitartificial negative events
has not been considered in the literature. The advantage is that it allpreseating process dis-
covery as a multi-relational classification problem to which existing classificéi@mrners can be
applied. In this paper, the generation of artificial negative events gisedo a new process dis-
covery algorithm and to new metrics for quantifying the recall and specifidity process model
vis-a-vis an event log.

Process discovery algorithms must deal with challenges such as expness, noise, incom-
plete event logs and the inclusion of prior knowledge. Dealing with one ctgglsometimes leads
to poor performance with respect to another. The technique preserited paper, simultaneously
addresses many of these challenges. This can be concluded fronsulie of a large benchmark
study applied to AGNEs and four state-of-the art process discoveoyithligns. A comparative
benchmark study of this scale is the first in the field of process discoVdry.benchmark exper-
iments indicate that our technique can discover complex structures subbrasosps, duplicate
activities, and non-free choice constructs, while remaining robust t@ namsaddition, our tech-
nique has a new, declarative way of dealing with incomplete event logsithatishes the effects
of concurrent and recurrent behavior on the generation of artifi@ghtive events. Finally, our
technique is capable of having prior knowledge constrain the hypothzsig sluring process dis-
covery. These declarative aspects—the inclusion of prior knowletthgeconfigurability of the
negative event generation procedure and the language bias—potentdilyit very useful in prac-
tical applications. Another outcome of the benchmark study is the usefudhdss new specificity
metric, which in contrast to existing metrics can always be calculated andgesdhtuitive results.

Acknowledgments

We extend our gratitude to the guest editors, the anonymous reviewdrtheaproduction editor,
as their many constructive and detailed remarks certainly contributed much tuéiity of this
paper. Further, we would like to thank the Flemish Research Council fandial support (FWO
postdoctoral research grant, Odysseus grant B.0915.09).

References

Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining psocexlels from workflow
logs. InProceedings of the 6th International Conference on Extending Databesienology
(EDBT'98), volume 1377 of_ecture Notes in Computer Scienpages 469-483. Springer, 1998.

Ana Karla Alves de MedeirogGenetic Process Mining”hD thesis, Technische Universiteit Eind-
hoven, 2006.

Ana Karla Alves de Medeiros, Boudewijn F. van Dongen, Wil M. P. vanAlgst, and Anton J.
M. M. Weijters. Process mining: Extending the alpha-algorithm to mine shopsloETA
working paper series 113, Eindhoven University of Technology4200

1336

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

Ana Karla Alves de Medeiros, Anton J. M. M. Weijters, and Wil M. P. vam Aalst. Genetic
process mining: an experimental evaluatioData Mining and Knowledge Discovery4(2):
245-304, 2007.

Dana Angluin and Carl H. Smith. Inductive inference: Theory and meth@d_M Computing
Surveys15(3):237-269, 1983.

Hendrik Blockeel. Top-Down Induction of First-Order Logical Decision TreesPhD thesis,
Katholieke Universiteit Leuven, 1998.

Hendrik Blockeel and Luc De Raedt. Top-down induction of first-ordgical decision trees.
Artificial Intelligence 101(1-2):285-297, 1998.

Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda JanssenRahaaon, and Henk Vandecas-
teele. Improving the efficiency of inductive logic programming through treeaigjuery packs.
Journal of Atrtificial Intelligence Research6:135-166, 2002.

Igor Cadez, David Heckerman, Christopher Meek, Padhraic Smytl§tewdn White. Model-based
clustering and visualization of navigation patterns on a web &k&ta Mining and Knowledge
Discovery 7(4):399-424, 2003. ISSN 1384-5810.

William W. Cohen. Fast effective rule induction. Rroceedings of the 12th International Confer-
ence on Machine Learningages 115-123, Tahoe City, CA, 1995. Morgan Kaufmann Publishers

Jonathan E. Cook and Alexander L. Wolf. Discovering models of soétiyancesses from event-
based dataACM Transactions on Software Engineering and Methodql@():215-249, 1998.

Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alelxar¥akovlev. Deriving petri
nets from finite transition systemkiEEE Transactions on Computer7(8):859-882, 1998.

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme MitchBatogical Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids&ambridge university press, 1998.

Sa&o Dzeroski. Multi-relational data mining: an introductio®IGKDD Explorations5(1):1-16,
2003.

S&o Dzeroski and Nada Lavéalnductive Logic Programming: Techniques and Applicatideltis
Horwood, New York, 1994.

Sao Dzeroski and Nada Lavéaeditors.Relational Data Mining Springer-Verlag, Berlin, 2001.

Richard Dybowski, Kathryn B. Laskey, James W. Myers, and SimonoRarsintroduction to the
special issue on the fusion of domain knowledge with data for decisionogsupgournal of
Machine Learning Research:293-294, 2003.

Hugo Ferreira and Diogo R. Ferreira. An integrated life cycle for workiimanagement based on
learning and planninglnternational Journal of Cooperative Information SysterhS(4):485—
505, 2006.

Zoubin Ghahramani and Michael I. Jordan. Factorial hidden markov isiol&chine Learning
29(2-3):245-273, 1997.

1337

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

Stijn GoedertierDeclarative Techniques for Modeling and Mining Business Procegdas$thesis,
Katholieke Universiteit Leuven, Faculty of Business and EconomicsyémuSeptember 2008.

Stijn Goedertier, David Martens, Bart Baesens, Raf Haesen, andcaddhidéhen. Process mining as
first-order classification learning on logs with negative eventProteedings of the 3rd Work-
shop on Business Processes Intelligence (BP)'0@ume 4928 ofLecture Notes in Computer
ScienceSpringer, 2008.

E. Mark Gold. Language identification in the limihformation and Contrql10(5):447-474, 1967.

Christian W. Ginther and Wil M. P. van der Aalst. Fuzzy mining - adaptive process singlific
tion based on multi-perspective metrics. Rroceedings of the 5th International Conference on
Business Process Management, BPM 28@Wme 4714 ol ecture Notes in Computer Science
pages 328-343. Springer, 2007.

Joachim Herbst and Dimitris Karagiannis. Workflow mining with InWoL @@mputers in Industry
53(3):245—-264, 2004.

Kristian Kersting, Luc De Raedt, and Tapani Raiko. Logical hidden markodels. Journal of
Artificial Intelligence Researgl25:425-456, 2006.

Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio 8tdnaucing declar-
ative logic-based models from labeled tracesPtoceedings of the 5th International Conference
on Business Process Management, BPM 200lyme 4714 ofLecture Notes in Computer Sci-
ence pages 344-359. Springer, 2007.

Kalle Lyytinen, Lars Mathiassen, Janne Ropponen, and Anindya Dattenfating the discovery
of as-is business process models: Probabilistic and algorithmic appsofaioemation Systems
Research9(3):275-301, 1998.

Heikki Mannila and Christopher Meek. Global partial orders from sedjal data. IrProceedings
of the 6th ACM SIGKDD International Conference on Knowledge Disgoaad Data Mining
(KDD '00), pages 161-168, New York, NY, USA, 2000. ACM.

Laura Maruster.A Machine Learning Approach to Understand Business ProcesBb® thesis,
Eindhoven University of Technology, Eindhoven, 2003.

Laura Maruster, Anton J. M. M. Weijters, Wil M. P. van der Aalst, and Artn den Bosch. A
rule-based approach for process discovery: Dealing with noise araldmd® in process logs.
Data Mining and Knowledge Discover$3(1):67-87, 2006.

Stephen Muggleton. Inductive logic programming.Pimceedings of the 1st International Confer-
ence on Algorithmic Learning Theqrnyages 42—-62, 1990.

Stephen Muggleton. Learning from positive data. In Stephen Mugglettitor, Inductive Logic
Programming Workshqgwolume 1314 of ecture Notes in Artificial Intelligen¢@pages 358—-376.
Springer, 1996.

Tadao Murata. Petri nets: Properties, analysis and applicatirezeedings of the IEEEZ7(4):
541-580, 1989.

1338

RoOBUSTPROCESSDISCOVERY WITHARTIFICIAL NEGATIVE EVENTS

Jian Pei, Haixun Wang, Jian Liu, Ke Wang, Jianyong Wang, and Philip SDMecovering frequent
closed partial orders from stringdEEE Transactions on Knowledge and Data Engineeritig)
(11):21467-1481, 2006.

Process Mining Group, TU/Eindhoven. Process mining web page:robséaols and application.
http://processm ning. org, 2008.

J. Ross QuinlanC4.5: Programs for Machine LearningMorgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

Anne Rozinat and Wil M. P. van der Aalst. Conformance checking afgsses based on monitoring
real behaviorlnformation System$83(1):64-95, 2008.

Anne Rozinat, Ana Karla Alves De Medeiros, Christian Wir@er, Anton J. M. M. Weijters, and
Wil M. P. van der Aalst. Towards an evaluation framework for processngialgorithms. BETA
working paper series 224, Eindhoven University of Technology7200

Ricardo Silva, Jiji Zhang, and James G. Shanahan. Probabilistic workilamg. In KDD ’05:
Proceedings of the Eleventh ACM SIGKDD International Conferencermwiedge Discovery
in Data Mining pages 275-284, New York, NY, USA, 2005. ACM.

Padhraic Smyth. Clustering sequences with hidden markov modebfsdvances in Neural Infor-
mation Processing Systemwslume 9, pages 648-654. MIT Press, 1997.

Wil M. P. van der Aalst. Verification of workflow nets. IRroceedings of the 18th International
Conference on the Application and Theory of Petri Nets 1997 (ICATHIN ®lume 1248 of
Lecture Notes in Computer Scienpages 407—-426. Springer, 1997.

Wil M. P. van der Aalst. The application of petri nets to workflow manageninitnal of Circuits,
Systems, and Compute&1):21—-66, 1998.

Wil M. P. van der Aalst, Anton J. M. M. Weijters, and Laura Maruster. Kfloww mining: Discov-
ering process models from event logEEE Transactions on Knowledge and Data Engineering
16(9):1128-1142, 2004.

Wil M. P. van der Aalst, Vladimir Rubin, Boudewijn F. van Dongen, Ekkamdler, , and Chris-
tian W. Ginther. Process mining: A two-step approach using transition systemsgioms.
BPM-06-30, BPM Center Report, 2006.

Wil M. P. van der Aalst, Hajo A. Reijers, Anton J. M. M. Weijters, Boudewijrv&n Dongen, Ana
Karla Alves de Medeiros, Minseok Song, and H. M. W. (Eric) Verbdiksiness process mining:
An industrial applicationInformation System82(5):713-732, 2007.

Boudewijn F. van Dongen and Wil M. P. van der Aalst. A meta model forggsenining data. In
EMOI-INTEROR volume 160 ofCEUR Workshop ProceedingSEUR-WS.org, 2005a.

Boudewijn F. van Dongen and Wil M. P. van der Aalst. Multi-phase pr@ceming: Aggregat-
ing instance graphs into EPCs and Petri nets.Ploceedings of the 2nd International Work-
shop on Applications of Petri Nets to Coordination, Workflow and Busifes=ss Management
(PNCWB) 2005b.

1339

GOEDERTIER MARTENS, VANTHIENEN AND BAESENS

Tony Van Gestel, Johan A.K. Suykens, Bart Baesens, Stijn Viaen&aighienen, Guido Dedene,
B. De Moor, and J. Vandewalle. Benchmarking least squares sugxidr machine classifiers.
Machine Learning54(1):5-32, 2004.

Anton J. M. M. Weijters and Wil M. P. van der Aalst. Rediscovering workffnodels from event-
based data using little thummtegrated Computer-Aided Engineeriri)(2):151-162, 2003.

Anton J. M. M. Weijters, Wil M. P. van der Aalst, and Ana Karla Alves de Mieds. Process mining
with the heuristics miner-algorithm. BETA working paper series 166, Eineihdyniversity of
Technology, 2006.

Lijie Wen, Wil M. P. van der Aalst, Jianmin Wang, and Jiaguang Sun. Minioggss models with
non-free-choice constructBata Mining and Knowledge Discover¥5(2):145-180, 2007.

lan H. Witten and Eibe FrankData Mining: Practical Machine Learning Tools and Techniques
with Java Implementationdviorgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

1340

