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ROBUST PRODUCTION MANAGEMENT

VINCENT GUIGUES

Abstract

The problem of production management can often be cast in the form of a linear program with
uncertain parameters and risk constraints. Typically, such problems are treated in the framework
of multi-stage Stochastic Programming. Recently, a Robust Counterpart (RC) approach has been
proposed, in which the decisions are optimized for the worst realizations of problem parameters.
However, an application of the RC technique often results in very conservative approximations of
uncertain problems. To tackle this drawback, an Adjustable Robust Counterpart (ARC) approach
has been proposed in (Ben-Tal et al. 2003). In ARC, some decision variables are allowed to depend
on past values of uncertain parameters. A restricted version of ARC, introduced in (Ben-Tal et
al. 2003), which can be efficiently solved, is referred to as Affinely Adjustable Robust Counterpart
(AARC).

In this paper, we consider an application of the ARC and AARC methodologies to the problem
of yearly electricity production management in France. We provide tractable formulations for the
AARC of quadratic and of some conic quadratic optimization problems, as well as for the ARC
and AARC of the electricity production problem. We then give the quality of robust solutions
obtained by using different uncertainty sets estimated using simulated and historical data. Our
methodology is finally compared with other management methods.

Keywords: Uncertain linear programs; Affinely Adjustable Robust Counterpart; Robust Op-
timization; Stochastic Programming; Mid-term generation problem.

Mathematics Subject Classification: 90C31, 90C20, 90C22, 91B28, 62G05.

1. Introduction

Given a fixed mix of electric power plants (nuclear, thermal, hydroelectric, and demand side
management contracts modelled as virtual production plants) we need to minimize the production
costs over the management horizon while satisfying the demand and some operational constraints
at each time step. In practice, the modelling approach is highly dependent on the time horizon
of the optimization problem: for short time horizons, typically of one day or of one week, the
problem is generally assumed to be deterministic (Batut and Renaud 1992), whereas for longer
management horizons, a special emphasis is done on the stochastic nature of data. In particular, on
a yearly scale, reservoir inflows, demand, as well as availability of the plants cannot be considered
deterministic.

Production management problems (and particularly electricity production management prob-
lems) have been widely studied both concerning the modelling and the solution methods (Brignol
and Renaud 1997; Dentcheva and Römisch 1998; Philpott et al. 2000; Gröwe-Kuska and Römisch
2005 for instance). Generally, the evolution of the uncertain parameters over the management pe-
riod is modelled by a scenario tree and the goal is to minimize the expected production cost over
this set of scenarios (Gröwe-Kuska and Römisch 2005). Recent solution methods (e.g. Bacaud
et al. 2001), use Lagrangian relaxation and various nondifferentiable optimization methods and
tools to solve the associated local subproblems.

From the modelling point of view, we present an alternative to the use of scenario trees. Our
objective is to propose robust management methods. Little attention has been paid so far to this
preoccupation while non-robust policies could lead to large financial losses if difficult scenarios
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2 VINCENT GUIGUES

occur. To our knowledge, a robust approach for the electricity production management problem
was first introduced in (Brignol and Rippault 1999) where the scenarios of the scenario tree are
ranked in order to find the most unfavorable. The deterministic optimization problem correspond-
ing to the worst scenario Sdet with optimal value Cdet is then solved. A stochastic optimization
over the scenario tree is then done adding a constraint ensuring that the cost on the scenario Sdet

must be close to Cdet i.e., Csto ≤ Cdet + ε, where Csto is the cost on the scenario Sdet resulting
from the global optimization on the scenario tree and ε a tolerance level. One critical step in this
approach is to determine a procedure for ranking the scenarios between them. More recently, a
robust methodology also based on a scenario tree was proposed in [13] while risk measures were
used in (Eichhorn et al. 2004).

The paper is organized as follows. We introduce the physical model and its mathematical
formulation in Section 2. In Section 3, we introduce ARC and AARC, and give some tractability
results for ARC and AARC of uncertain optimization problems (from (Ben-Tal et al. 2003) for
linear programming problems). We then explain in Section 4 how to apply the ARC and AARC
methodologies to the electricity production management problem. In particular, in this section,
we provide closed-form expressions for AARC of this problem and comment on the calibration of
the uncertainty sets. Finally, in Section 5, simulated and real data are used to compare the robust
methods of this paper with other management methods.

2. Modelling of the electricity power generation problem

The goal is to decide the production levels of the plants composing the mix in such a way that
the demand and the operational constraints are satisfied at each time step, and the production
cost is minimized. The physical model we consider is a stochastic dynamical system for which the
uncertain parameters are the electric consumption, the availability rates of thermal plants and
the water inflows into reservoirs. The modelling uses some aspects of (Dentcheva and Römisch
1998) and (Gröwe-Kuska and Römisch 2005), introduces availability rates for the thermal plants,
and value functions for hydroelectric plants and EJP contracts (“Effacement Jours de Pointe” in
French, or “demand side management” contracts in English).
Let T be the number of subintervals obtained by partitioning the time horizon. This partition
can be chosen uniformly (daily, weekly, monthly) or adaptively. Let L = LT ∪ LH ∪ LJ be a
partition of the set of production units in which LT represents the set of thermal plants, LH the
set of hydroelectric plants and LJ the set of EJP contracts. We denote the duration (in hours) of
time step t by Duration(t) and for every ℓ ∈ L, the minimal and maximal theoretical production
powers for unit ℓ are respectively denoted by P ℓ

min and P ℓ
max (in MW).

2.1. Thermal plant modelling. For every thermal plant ℓ ∈ LT , we denote the production level
(in MWh) or control at time step t by pℓt . Each thermal plant ℓ is made of a certain number of
thermal groups, some of which can be out of commission at time step t. Thus, for each time step
t and each thermal plant ℓ, the minimal and maximal theoretical powers P ℓ

min and P ℓ
max must be

corrected taking into account the availability rate τ ℓt of thermal plant ℓ at time step t. The real
minimal and maximal powers for time step t and thermal plant ℓ are then respectively τ ℓt P

ℓ
min and

τ ℓt P
ℓ
max. The constraints on the production levels of the thermal plants may thus be expressed as

(1) τ ℓt P
ℓ
minDuration(t) ≤ pℓt ≤ τ ℓt P

ℓ
max Duration(t), ℓ ∈ LT , t = 1, . . . , T.

The production cost is a linear function of the production level with a fixed unit production cost
cℓ (in Francs1/MWh) for plant ℓ. For mid or long-term management, nuclear power plants can be
modelled similarly, (Brignol and Renaud 1997).

2.2. Hydroelectric power station modelling. The hydroelectric network is made up of a set
of interconnected hydroelectric plants and reservoirs. Each plant can have one or several turbines
and each turbine can receive water from different reservoirs. For the simplicity of the exposure,
we suppose that each hydroelectric plant only has one upstream reservoir. The index of station
ℓ ∈ LH and of its upstream reservoir are the same. For every station ℓ ∈ LH , let (pℓt , sp

ℓ
t) be the

11 Euro=6.55 957 Francs
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control applied to station ℓ at time step t, where pℓt is the production (in MWh) of station ℓ at
time step t and spℓt the spillage at time step t for reservoir ℓ if there is some overflow. State xℓ

t

of hydroelectric plant ℓ at time step t corresponds to the volume (in MWh) of reservoir ℓ at the
beginning of this time step. Two kinds of inflows tend to increase the reservoir levels. On the one
hand, the natural inflows due to rainwater: we denote the natural inflow (in MWh) of reservoir
ℓ at time step t by Iℓ

t . On the other hand, for each reservoir ℓ, water can come from upstream
hydroelectric plants. For every station ℓ ∈ LH , we denote the index of the reservoir downstream
station ℓ (if it exists) by f(ℓ); the time (in time steps) for the water to go from station ℓ to
reservoir f(ℓ) being d(ℓ, f(ℓ)). We assume that the stations are always available. The operational
constraints of the stations are of two kinds: (i) box constraints on the production levels and the
reservoir volumes and (ii) flow balance equations for each reservoir. These constraints read

(2)

xℓ
t+1 = xℓ

t + Iℓ
t − pℓt +

∑

m | f(m)=ℓ

pmt−d(m,f(m)) − spℓt , ∀ ℓ ∈ LH , ∀ t = 1, . . . , T,

Duration(t)P ℓ
min ≤ pℓt ≤ Duration(t)P ℓ

max, ∀ ℓ ∈ LH , ∀ t = 1, . . . , T,
xℓ
min ≤ xℓ

t+1 ≤ xℓ
max, sp

ℓ
t ≥ 0, ∀ ℓ ∈ LH , ∀ t = 1, . . . , T,

where xℓ
min and xℓ

max are the minimal and maximal levels (in MWh) of reservoir ℓ volume. The
initial stock of each reservoir is known. To use the water in a parsimonious way (the more water
we have at the end of the year, the more we can use the next period), two strategies are frequently
used. The first one (Gröwe-Kuska and Römisch 2005) consists of constraining the level of the
reservoir at the end of the management period to be greater than the level it had at the beginning
of this period. An alternative choice consists of associating to each reservoir ℓ, value function
V ℓ
H(·) for the water stock at the last time step. This function associates a value (in Francs) to

each admissible value of the water stock. It is an increasing function which is quadratic in (Brignol
and Rippault 1999) and linear in (Philpott et al. 2000). We suppose this function is concave and
piecewise affine. We then wish to maximize the value

∑

ℓ∈LH
V ℓ
H(xℓ

T+1) of the hydro energy stock
at the end of the period.

2.3. EJP contract modelling. The EJP contracts can be seen as independent reservoirs, having
a limited production capacity. They cannot be used more than a certain number of time steps
fixed by the contract and for each time step either the full production capacity is used or this
capacity is not used at all. For every EJP contract ℓ ∈ LJ , let pℓt be the production (in MWh)
or control applied to this contract ℓ for time step t. If the EJP contract is used for time step
t, pℓt = Duration(t)P ℓ

max and pℓt = 0 otherwise. The state of EJP contract ℓ for time step t

is represented by the variable xℓ
t giving the energy stock still available on this contract at the

beginning of time step t. The energy stock xℓ
1 available on contract ℓ over the optimization period

is given. The equations ruling the evolution of the controls and states is thus

(pℓt −Duration(t)P ℓ
max) p

ℓ
t = 0, xℓ

t+1 = xℓ
t − pℓt , x

ℓ
t+1 ≥ 0, ℓ ∈ LJ , 1 ≤ t ≤ T.

In this article, we use flexible EJP contracts convexifying the constraints, in such a way that the
states and controls of the EJP contracts satisfy

(3) 0 ≤ pℓt ≤ Duration(t) P ℓ
max, xℓ

t+1 = xℓ
t − pℓt, xℓ

t+1 ≥ 0, ℓ ∈ LJ , 1 ≤ t ≤ T.

This means that for each EJP contract, we have a certain amount of energy, which, every day, and
as long as this reserve is not finished, can be used all or part of the day. This modelling amounts to
considering that an EJP contract is a particular hydro reservoir without inflows. Indeed, similar
to hydro reservoirs, we associate to each contract ℓ a value function V ℓ

J (·) for the energy stock at
the end of the horizon. This function is concave and piecewise affine. We then maximize the sum
∑

ℓ∈LJ
V ℓ
J (x

ℓ
T+1) of the energy stock at the end of the horizon.

2.4. Deterministic formulation of the problem. The production units have to be used in or-
der to satisfy the demand. If Dt is the electric consumption for time step t, the demand satisfaction
constraints read

(4)
∑

ℓ∈L

pℓt =
∑

ℓ∈LT

pℓt +
∑

ℓ∈LH

pℓt +
∑

ℓ∈LJ

pℓt ≥ Dt, t = 1, . . . , T.
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The electricity production management problem then consists of minimizing

∑

ℓ∈LT

T
∑

t=1

cℓ p
ℓ
t −

∑

ℓ∈LH

V ℓ
H(xℓ

T+1)−
∑

ℓ∈LJ

V ℓ
J (x

ℓ
T+1),

under constraints (1),(2), (3), and (4). Function V ℓ
H(·) can be expressed as

V ℓ
H(x) = min

0≤k≤mℓ
H
−1

f ℓ
H,k(x),

where functions f ℓ
H,k(·) are affine. More precisely, between values denoted by gℓH,k and gℓH,k+1

(0 ≤ k ≤ mℓ
H − 1), function V ℓ

H(·) coincides with function f ℓ
H,k(·). Thus, we can replace the

contribution −∑

ℓ∈LH
V ℓ
H(xℓ

T+1) of the hydroelectric plants to the objective by −∑

ℓ∈LH
aℓ

adding the constraints

(5) aℓ ≤ f ℓ
H,k(x

ℓ
T+1), ℓ ∈ LH , 0 ≤ k ≤ mℓ

H − 1.

If we define cℓH,k =
V ℓ
H(gℓ

H,k+1)−V ℓ
H (gℓ

H,k)

gℓ
H,k+1

−gℓ
H,k

and dℓH,k = V ℓ
H(gℓH,k) − cℓH,k g

ℓ
H,k, then inequality (5)

becomes

(6) aℓ ≤ cℓH,k x
ℓ
T+1 + dℓH,k, ℓ ∈ LH , 0 ≤ k ≤ mℓ

H − 1.

For each EJP contract ℓ ∈ LJ , function V ℓ
J (·) is also concave, piecewise affine and can be written

as V ℓ
J (x) = min0≤k≤mℓ

J
−1 f ℓ

J,k(x), where functions f ℓ
J,k(·) are affine. We can then introduce the

quantities cℓJ,k and dℓJ,k defined replacing H by J in cℓH,k and dℓH,k. The electricity production

management problem then consists of minimizing
∑

ℓ∈LT

∑T

t=1 cℓ p
ℓ
t −

∑

ℓ∈LH
aℓ −

∑

ℓ∈LJ
bℓ,

under constraints (1), (2), (3), (4), (6), and bℓ ≤ cℓJ,k x
ℓ
T+1 + dℓJ,k, ℓ ∈ LJ , 0 ≤ k ≤ mℓ

J − 1.
In what follows, we assume that the hydroelectric network is made up of a set of independent

hydroelectric plant-reservoir pairs. The flow balance equations for the hydro and EJP reservoirs
can then be written

xℓ
t+1 = xℓ

1 +

t
∑

k=1

(Iℓ
k − pℓk − spℓk), ℓ ∈ LH , xℓ

t+1 = xℓ
1 −

t
∑

k=1

pℓk, ℓ ∈ LJ ,

for all t = 1, . . . , T. Plugging these equality constraints into constraints xℓ
min ≤ xℓ

t+1 ≤ xℓ
max, ℓ ∈

LH , and xℓ
t+1 ≥ 0, ℓ ∈ LJ , on the states of the hydro reservoirs and EJP contracts, we can express

the electricity production management problem as

(7)


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min
T
∑

t=1

∑

ℓ∈LT

cℓ p
ℓ
t −

∑

ℓ∈LH

aℓ −
∑

ℓ∈LJ

bℓ

aℓ + cℓ
H,k

T
∑

t=1

(pℓ
t + spℓ

t) ≤ cℓH,k (xℓ
1 +

T
∑

t=1

Iℓ
t ) + dℓH,k, ℓ ∈ LH , 0 ≤ k ≤ mℓ

H − 1,

bℓ + cℓ
J,k

T
∑

t=1

pℓ
t ≤ cℓJ,kx

ℓ
1 + dℓJ,k , ℓ ∈ LJ , 0 ≤ k ≤ mℓ

J − 1,

Duration(t) τℓt P ℓ
min ≤ pℓ

t
≤ Duration(t) τℓt P ℓ

max, ℓ ∈ LT , 1 ≤ t ≤ T,

xℓ
1 +

t
∑

k=1

Iℓ
k − xℓ

max ≤

t
∑

k=1

pℓ
k
+ spℓ

k
≤ xℓ

1 +
t

∑

k=1

Iℓ
k − xℓ

min, ℓ ∈ LH , 1 ≤ t ≤ T,

Duration(t) P ℓ
min ≤ pℓ

t
≤ Duration(t) P ℓ

max, 0 ≤ spℓ
t
, ℓ ∈ LH , 1 ≤ t ≤ T,

0 ≤ pℓ
t
≤ Duration(t)P ℓ

max , ℓ ∈ LJ , ∀ t,

T
∑

k=1

pℓ
k
≤ xℓ

1, ℓ ∈ LJ ,
∑

ℓ∈L

pℓ
t ≥ Dt, ∀ t.

In this problem, the demand satisfaction constraint is active. Variables sp have been introduced
to make the problem feasible (if the production capacity is important enough), whatever the nat-
ural inflows.
Besides, this modelling supposes that all the parameters of the system (availability rates, reservoir
inflows and electric consumption) are known. In this case, the deterministic optimization problem
(7) indeed gives an optimal generation schedule. However, in practice, these parameters are un-
certain. The goal is then to determine management strategies, that is to say, adaptive production
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schedules (which will depend on the realizations of the parameters) and allowing us, following this
strategy, to satisfy the consumption, whatever this consumption may be.

3. Adjustable and Affinely Adjustable Robust Counterpart

In the case where the parameters are uncertain, we intend to use the methodology of robust
optimization and more particularly the concepts of Adjustable Robust Counterpart (ARC) and
Affinely Adjustable Robust Counterpart (AARC) which are introduced in this section. This needs
an adapted modelling of the uncertainty.

3.1. Modelling of the uncertainty. We consider that the unknown parameters of the system
belong to a nonempty convex, compact and known uncertainty set Z. No statistical assumption is
made on the parameters. Notice that from a practical point of view, the set Z will be estimated
and the hypotheses made in this section will not necessarily be satisfied. This means that the
values of the parameters over the management period will not necessarily belong to the set Z.

A compromise will thus have to be found to determine uncertainty sets Z which will contain
the realizations of the parameters with a large probability without obtaining too conservative a
solution.

3.2. Presentation of the ARC. Consider an uncertain optimization problem of the kind

(8) PZ =
{

min
x

{c⊤x : x ∈ X, fi(x, ξi) ≥ 0, i = 1, . . . ,m}
}

(ξ1,...,ξm)∈(Z1×...×Zm)

which is a family of optimization problems parameterized by vector ξ = (ξ1, . . . , ξm) ∈ Z =
(Z1 × . . . × Zm) of uncertain parameters, where c ∈ R

n is fixed, X is a compact and convex set
and sets Zi are convex. The Robust Counterpart of problem PZ (Ben-Tal and Nemirovski 1998)
is defined as follows:

(9) (RC) min
x

{

c⊤x : x ∈ X, inf
ξi∈Zi

fi(x, ξi) ≥ 0, i = 1, . . . ,m

}

.

The solution of (RC) problem thus provides the best possible solution which satisfies the constraints
for every realization of the parameter ξ in the uncertainty set Z. In the above problem (RC),
it is supposed that all decision variables, grouped in vector x, have to be determined before
the realizations of the uncertain parameters are known. If this is the case, such modelling is an
adapted robust modelling. However, in the majority of uncertain optimization problems, only part
of the decision variables must be determined before the realization of the uncertain parameters.
The other variables can adjust to the uncertain data when this data becomes known. These
adjustable variables are of two kinds. On the one hand, auxiliary variables such as slack variables
or the variables introduced to present the problem in a simplified form (eliminating piecewise
linear functions like |xi| or max(xi, 0) for instance). On the other hand, variables that can be
determined when part of the uncertain data becomes known (uncertain when the decision has to
be taken). These variables are called the “wait and see” variables. We can thus partition the
variables into two groups: variables that have to be determined before the realizations of the
uncertain parameters (“here and now” decision variables) and variables that can adjust to all or
part of the uncertain data (“wait and see” decision variables). Generally, each adjustable variable
may have its own information, that is to say that it depends on a specific part of the data. In
order to simplify the notation and the presentation of the results, we suppose that part of the
variables, grouped in vector u, is not adjustable, and the remaining part, grouped in vector v,
can adjust to all the uncertain data. The results can easily be extended to the case where each
adjustable variable has its own information. Consequently, decision vector x is partitioned into
x = (u⊤, v⊤)⊤. We can then always write generic uncertain optimization problem PZ under the
form

PZ =

{

min
u,v

{c⊤u : (u, v) ∈ X, fi(u, v, ξi) ≥ 0, i = 1, . . . ,m}
}

ξ∈Z

.
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Its Robust Counterpart then reads

(RC) min
u,v

{

c⊤u : (u, v) ∈ X, inf
ξi∈Zi

fi(u, v, ξi) ≥ 0, i = 1, . . . ,m

}

;

which is the same as

(10) (RC) min
u

{c⊤u : ∃ v | (u, v) ∈ X, ∀i = 1, . . . ,m, ∀(ξi ∈ Zi), fi(u, v, ξi) ≥ 0} .

A more flexible robust model for uncertain problem PZ is then the Adjustable Robust Counter-
part (ARC) recently introduced in (Ben-Tal et al. 2003) as follows

(ARC) min
u

{c⊤u : ∀ξ ∈ Z, ∃ v|(u, v) ∈ X, ∀i = 1, . . . ,m, fi(u, v, ξi) ≥ 0} .

The Adjustable Robust Counterpart provides a more flexible policy than the Robust Counterpart
defined by (10). Indeed, the ARC feasible set is larger, which allows us to obtain a better optimal
value while getting a solution satisfying the constraints for every realization of the uncertain
parameters. In (Ben-Tal et al. 2003) , the simple example of an uncertain linear equality constraint
u+ v = a is given to illustrate this, the uncertainty set being Z = {a | a ∈ [0, 1]}. In this case, the
feasibility set of the RC is empty while the feasibility set of the ARC is R (for every u ∈ R, for
every 0 ≤ a ≤ 1, v = a − u satisfies the constraint). However, Adjustable Robust Counterparts
generally yield problems that are much more difficult to solve than the Robust Counterparts for
which efficient numerical treatments exist for a wide range of problems and of uncertainty sets.
In the following section, we recall the results of (Ben-Tal et al. 2003) and focus on the Adjustable
Robust Counterparts of uncertain linear programming problems.

3.3. ARC of linear programs. Partitioning the decision vector in x = (u⊤, v⊤)⊤ as in the
previous section, we can write an uncertain linear optimization problem under the form

(11) LPZ =

{

min
u,v

{c⊤u : Uu+ V v ≤ b}
}

ξ=[U,V,b]∈Z

,

where Z is a nonempty convex and compact set and the uncertain parameter ξ is made up of the
matrices U and V and the right hand side b. Using the terminology of (Ben-Tal et al. 2003), we
call V the recourse matrix. The Adjustable Robust Counterpart of such a problem is given by

(12) (ARC) min
u

{c⊤u : ∀ (ξ = [U, V, b]) ∈ Z, ∃ v | Uu+ V v ≤ b},

and its Robust Counterpart by

(13) (RC) min
u

{c⊤u : ∃v | ∀ (ξ = [U, V, b]) ∈ Z, Uu+ V v ≤ b}.

Under quite restrictive hypotheses, the RC and the ARC of an uncertain linear programming
problem are equivalent (Ben-Tal et al. 2003). One of these hypotheses is that the constraints
are constraint-wise (the uncertain parameters of a given constraint do not appear in the other
constraints). Nevertheless, we can easily construct examples showing that the ARC is more flexible
than the RC. Beyond the case of uncertain equality constraints previously mentioned, let us take
an example with two uncertain inequality constraints to illustrate this phenomenon. Consider the
uncertain optimization problem minu,v u subject to u ≥ −1, v ≤ (ξ − 1)u+ 1, v ≥ ξu+ 1, where
ξ ∈ [−1, 1] is an uncertain parameter. The only feasible point for the RC is (u, v) = (0, 1) so the
RC optimal value is 0. The ARC optimal value is -1 so it is lower. Indeed, the ARC feasibility
set is [-1,0] : for every u ∈ [−1, 0] and every ξ ∈ [−1, 1], v = ξu (for instance) is feasible. Besides,
notice that the uncertainty is not constraint-wise.

In the case of an uncertain linear programming problem, the RC is a tractable problem as
soon as the uncertainty set is tractable (see (Ben-Tal and Nemirovski 1999) for a definition of
tractability). A simple case where the ARC (12) of problem (11) is tractable (and is in fact a linear
programming problem) is the case where the recourse matrix V is fixed and the uncertainty set Z
is a convex hull of scenarios Z = Conv{[U1, V, b1], . . . , [US , V, bS ]}. In this case, the ARC, given in
(Ben-Tal et al. 2003), is the linear program min

u,v1,...,vS
c⊤u subject to Uℓu+V vℓ ≤ bℓ, ℓ = 1, . . . , S.

In the case when the recourse matrix is not fixed and when Z is also given by a convex hull of
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scenarios i.e., Z = Conv{[U1, V1, b1], . . . , [US , VS , bS ]}, the ARC can be NP hard (Ben-Tal et al.
2003). Similarly, if the recourse matrix is fixed and if Z is a polytope defined by a list of linear
inequalities, the ARC can also be NP hard (Ben-Tal et al. 2003). In this case, we look for tractable
approximations of the ARC for a wider range of uncertainty sets. This motivates the introduction
of Affinely Adjustable Robust Counterparts (AARC) described in the next section.

3.4. AARC of linear programs. In many applications of the control theory, we look for optimal
controls which are linear functions of the observations of the state of the system. This restriction
on the link between the decision variables and the state of the system often allows an efficient
computation of the control. In the same spirit, we can impose, for fixed u, that adjustable variables
v of problem LPZ are affine functions of the data

(14) v = w +Wξ, where ξ = [U, V, b].

In this setting, a non-adjustable vector u can be completed in a robust solution (u,w,W ) iff
Uu+ V (w+Wξ) ≤ b, ∀ (ξ = [U, V, b]) ∈ Z. The Affinely Adjustable Robust Counterpart (AARC)
of the uncertain linear programming problem (11) is then defined in (Ben-Tal et al. 2003) as the
optimization problem

(15) (AARC) min
u,w,W

{c⊤u : Uu+ V (w +Wξ) ≤ b, ∀(ξ = [U, V, b]) ∈ Z}.

Notice that the RC feasibility set is contained in the AARC feasibility set, itself contained in the
feasibility set of the ARC. Consequently, the AARC is more conservative than the ARC but less
conservative than the RC.

If recourse matrix V is fixed and if uncertainty set Z is tractable then the AARC (15) of problem
LPZ is tractable (Ben-Tal et al. 2003). If the recourse matrix is not fixed and if the uncertainty
set is defined by a finite intersection of concentric ellipsoids, we can build an SDP problem which
is a good approximation of the AARC (Ben-Tal et al. 2003).

The hypothesis of affine dependence in (14), whose essential motivation is the tractability of
the resulting AARC, can be discussed. Indeed, the dependency of the adjustable variables as a
function of the uncertain data is not necessarily affine. However, in some cases, such modelling can
be justified (see Section 4.2). Finally, this approach can also be justified if it provides satisfying
robust solutions in practice (in particular better than those obtained by applying the Robust
Counterpart (13)).

3.5. AARC of quadratic and conic quadratic optimization problems. Consider an uncer-
tain quadratic optimization problem of the kind

QPZ =

{

min
u,v

{c⊤u : U
i
u+ V

i
v + u

⊤
Aiu+ v

⊤
Biv + u

⊤
Civ ≤ b

i
, i = 1, . . . ,m }

}

ξ ∈Z

;

where ξ = [U, V,Ai, Bi, Ci, b], Z is a nonempty convex compact set and U i and V i are the ith rows
of matrices U and V . Suppose that symmetric matrices Bi are known and let us reparametrize
the problem writing the uncertain parameters as

[U, V,Ai, Ci, b] = [U0, V0, Ai,0, Ci,0, b0] +

p
∑

ℓ=1

ζℓ[Uℓ, Vℓ, Ai,ℓ, Ci,ℓ, bℓ],

parameter ζ belonging to a nonempty convex compact set χ. We can then write the adjustable
variables under the form v = v0 +

∑p

ℓ=1 ζℓ vℓ. If x = [u, v0, . . . , vp], then the constraints of the
AARC of QPZ read

∀ζ ∈ χ, αi(x) + 2ζ⊤βi(x) + ζ⊤Γi(x)ζ ≥ 0, i = 1, . . . ,m,

where for all i = 1, . . . ,m

• αi(x) = −U i
0u− V i

0 v0 − u⊤Ai,0u− v0
⊤Biv0 − u⊤Ci,0v0 + bi0,

• βℓ
i (x) =

1
2
(−U i

ℓ
u− V i

ℓ
v0 − V i

0 vℓ − u⊤Ai,ℓu− 2v0⊤Bivℓ − u⊤Ci,0vℓ − u⊤Ci,ℓv0 + bi
ℓ
), ℓ = 1, . . . , p,

• Γℓ,k
i (x) = − 1

2
(V i

k
vℓ + V i

ℓ
vk + u⊤Ci,kvℓ + u⊤Ci,ℓvk + 2vℓ

⊤Bivk), ℓ, k = 1, . . . , p.
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Theorem 3.1. Let Q ≻ 0 and ρ > 0. The AARC of problem QPZ with uncertainty set χ =
{ζ | ζ⊤Qζ ≤ ρ2} is the semidefinite problem















min c⊤u
(

Γi(x) +
λi

ρ2Q βi(x)

β⊤

i (x) αi(x) − λi

)

� 0, i = 1, . . . ,m,

λi ≥ 0.

Proof. It suffices to follow the proof of Theorem 4.2 in (Ben-Tal et al. 2003) which deals with the
AARC of linear program. �

Lemma 3.1. Consider a conic quadratic problem of the form

(16) min c⊤u : ‖Aiu+ bi‖2 ≤ p⊤

i u+ q⊤

i v + di, i = 1, . . . ,m,

where u (resp. v) is the vector of unadjustable (resp. adjustable) variables and for i = 1, . . . ,m,

the vectors (pi; di) are uncertain. If the uncertainty set for the vectors (pi; di) is the convex hull
of S scenarios ((p1i ; d

1
i ), . . . , (p

S
i ; d

S
i )), the ARC of problem (16) is the optimization problem

(17) min
u,v1,...,vS

c⊤u : ‖Aiu+ bi‖2 ≤ pℓi
⊤

u+ q⊤

i vℓ + dℓi , i = 1, . . . ,m, ℓ = 1, . . . , S.

Proof. Let u belong to the feasibility set of the ARC of (16). For every α such that α ≥ 0,
∑

i αi =
1, ∃ v(α) |

(18) ‖Aiu+ bi‖2 ≤
S
∑

ℓ=1

αℓu
⊤pℓi + q⊤

i v(α) +
S
∑

ℓ=1

αℓ d
ℓ
i , i = 1, . . . ,m.

For ℓ = 1, . . . , S, choosing α = eℓ for eℓ a canonical vector and vℓ = v(eℓ), we see that u is feasible
for problem (17). However, if u is feasible for (17), then for every α such that α ≥ 0,

∑

i αi = 1,

and for all 1 ≤ i ≤ m, multiplying term by term ‖Aiu + bi‖2 ≤ pℓi
⊤

u + q⊤

i vℓ + dℓi by αℓ (for

1 ≤ ℓ ≤ S) and adding term by term these S inequalities, we see that there exists v(α) =

S
∑

ℓ=1

αℓ vℓ

such that (u, v(α)) satisfies constraints (18) and so u is feasible for the ARC of (16). �

3.6. Comparison with other modellings in stochastic optimization. In this section, we
comment on the advantages and disadvantages of using the methodology of Robust Optimization
(RO) over Stochastic Programming (SP) and Stochastic Dynamic Programming (SDP) to deal
with uncertainty in stochastic optimization. We also introduce another robust model that we call
Extended Robust Counterpart that enjoys the same tractability properties as the RC and that we
compare to the RC and ARC.

Comparison between SP, SDP and RO. We first compare the computational effort needed
when using SP, SDP, and RO. To that end, we provide for the following T -stage uncertain opti-
mization problem

P (ω)



















min
xt+1(ω),ut(ω)

T
∑

t=1

ft(ut(ω)),

xt+1(ω) = gt(xt(ω), ut(ω), ξt(ω)), t = 1, . . . , T,
xt+1(ω) ∈ χt, ut(ω) ∈ U(ξt(ω)), t = 1, . . . , T ;

the number, type, and size of the optimization problems solved when using SP, SDP, and RO to
deal with the T uncertain parameters ξ1(ω), . . . , ξT (ω) (realizations of random vectors ξ1, . . . , ξT )
in R

M in the above problem. To fix the ideas, we then also give this piece of information when
problem P (ω) is the stochastic counterpart of problem (7) when using data detailed in Section 5.

For the problem P (ω) above, we suppose that for each time step t = 1, . . . , T, there are p

constraints, and that the sizes of the state vector xt+1 (state of the system at the beginning of
time step t+1) and of the vector of controls ut are respectively nx and nu. To use SP or SDP, we
consider problem EP in (19) below, which amounts to choosing the expectation of the total cost
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as a criterion to minimize. For the simplicity of the exposure, we suppose that ξt, t = 1, . . . , T,
are independent and that for every t, the M components of ξt are also independent.

In SP, the evolution of the uncertain parameters over the optimization period is organized in
a tree. For time step t, there are kt nodes in this tree and the realization of ξt at node number
n (for n = 1, . . . , kt) is ξnt . The probability to be at node n of time step t is πn

t and we denote
by F (n) the father node of node n. With this convention and this notation, an optimal solution
to problem SP in (19) below provides a solution to EP, i.e., optimal states (xn

t+1)t,n and controls
(un

t )t,n for time steps t and nodes n:

(19) EP



















min
xt+1,ut

Eξ1,...,ξT [

T
∑

t=1

ft(ut)],

xt+1 = gt(xt, ut, ξt), ∀ t,
xt+1 ∈ χt, ut ∈ U(ξt), ∀ t,

SP















min
xn
t+1

,un
t

∑

t,n

πn
t ft(u

n
t ),

xn
t+1 = gt(x

F (n)
t , un

t , ξ
n
t ), ∀ t, n,

xn
t+1 ∈ χt, u

n
t ∈ U(ξnt ), ∀ t, n.

If there are N nodes in the tree, the number of variables in SP is N(nx + nu) and the number
of constraints Np. This problem has the same analytical structure as any instance P (ω). If K
realizations are possible for each of the components at each time step, we end up with N = KMT

nodes. The size of problem SP thus exponentially increases with the number of time steps and
components. Even if scenario tree reduction techniques can be used to reduce drastically the size
of the tree, this size (and thus the size of SP) must remain large when there are many time steps
and components for ξt. Moreover, once problem SP is solved and if the scenarios of the scenario
tree do not reproduce all the possible evolutions of the parameters over the optimization period,
some dynamic programming technique may be used (as in (Guigues et al. 2009)) to compute
Bellman functions. For a given realization (ξ1(ω), . . . , ξT (ω)), these Bellman functions then allow
us to compute adaptive feasible strategies. For the problem considered in (Guigues et al. 2009),
if Di is the number of discretization points for the ith component of the state vector xt+1, then

we have to solve N

nx
∑

i=1

Di optimization problems. Even if the size of the problems are small, the

considerable number of optimization problems to be solved makes the procedure computationally
heavy.

Another alternative to solve problem EP is to use SDP. To that end, we introduce for t =
1, . . . , T , the following future cost-to-go functions αt(·) defined by

(20) αt(xt) = Eξt











min
xt+1,ut

ft(ut) + αt+1(xt+1),

xt+1 = gt(xt, ut, ξt),
xt+1 ∈ χt, ut ∈ U(ξt),

with αT+1 ≡ 0. The optimal value of EP is given by α1(x1). SDP allows us to obtain approxima-
tions for the cost-to-go functions as follows. For each time step t = 2, . . . , T, we fix Dnx states
(xi

t)i obtained discretizing each component of state vector xt in D admissible values (state x1

being given). We then calculate iteratively for t = T down to t = 2, the DnxT approximate values
(α̂t(x

i
t))t,i for (αt(x

i
t))t,i. To compute the approximate value α̂t(x

i
t) for αt(x

i
t), we need an approxi-

mation for αt+1(·). The previous step provides approximate values (α̂t+1(x
i
t+1))i for (αt+1(x

i
t+1))i.

A parametric form is then used for αt+1(·) that interpolates these values (α̂t+1(x
i
t+1))i. To com-

pute the expectation in (20) at time step t, we sample K values from the distribution of ξt. With
this method, we thus have to solve DnxKT optimization problems with nx + nu variables and p

constraints.
If constraints xt+1 ∈ χt, and ut ∈ U(ξt) are inequality constraints then we may also form

the Robust Counterpart of problem P (ω) which amounts to minimizing
∑

t ft(ut), under con-
straints ut ∈ U(ξt), ∀ t, ∀ ξt ∈ Zt and gt(gt−1(. . . (g2(g1(x1, u1, ξ1), u2, ξ2), . . . , ut−1, ξt−1), ut, ξt) ∈
χt, ∀ t, ∀ ξt ∈ Zt. In this case, we only have one optimization problem to solve. We can provide
uncertainty sets such that the RC of a Linear Program (LP) is an LP, a Conic Quadratic Program
(CQP) or a Semidefinite Program (SDP), the RC of a CQP is a CQP or an SDP, and the RC of an
SDP is an SDP. We can also give uncertainty sets for which only a tractable SDP approximation
of the RC of a CQP or of an SDP can be given. The analytical structure of the RC is thus not
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necessarily the same as that of problem instances P (ω) and only tractable approximations are
available in some cases. However, for LP, CQP, and SDP, we can define uncertainty sets such
that the RC respectively remains an LP, a CQP, or an SDP, i.e., a convex optimization problem
efficiently solved with interior point methods for instance. A simple particular case when the
structure of the original problem is conserved is when functions fi(x, ξ) in PZ are affine in ξ and
the uncertainty set is a convex hull of scenarios. We can also add that the AARC allows us to
provide an adaptive solution without having to solve additional optimization problems as is the
case in SDP and in SP.

However, the size of the RC, ARC, or AARC may be much larger than the size of any prob-
lem instance P (ω). In that case, it is possible to define an aggregation of the time steps (and
uncertainty sets accordingly) to end up with lower size problems. In Table 1 below, we provide
the computational effort for solving problem (7) using the data from Section 5 (in this case, each
instance has 387 variables and 828 constraints) with SP, SDP, and RO.

Method Nb. of opt. problems Nb. of variables Nb. of constraints
SP 13 681 Between 2 and 1425 Between 25 and 3819
SDP 3.84 × 106 Between 19 and 22 Between 37+I and 72+I
RC 1 387 828

AARC 1 17 913 30 086

Table 1. Computational effort needed when using SP, SDP, the RC and the
AARC using box constrained uncertainty sets, to deal with uncertainty in the
stochastic counterpart of problem (7). In this table, I stands for the number of
constraints needed to represent cost-to-go functions.

The above considerations show that for large values of the number T of time steps, of the number
of components M and of the size nx of the state vector, the SDP and SP methodologies would
entail prohibitive computational time and are thus not applicable, contrary to RO (eventually
after aggregating the time steps).

Now if the SP, SDP, and RO are all applicable, it remains to choose which model is the most
appropriate.

RO methodology is appropriate in one of the three following cases. First, if the domain of
variation of the uncertain parameters is bounded and known and the constraints are hard, i.e.,
they have to be satisfied for every value of the parameters in this domain. This is the case of load
constraints for a bridge for instance. Second, RO is also appropriate when the parameters, though
uncertain, are not random by nature (the RO does not need any statistical assumption contrary to
SP and SDP). This holds for instance when these parameters are physical measures (temperature,
pressure,...) obtained with a device only able to provide approximate measures. Finally, one
important fact about RO is that it is a worst case oriented methodology. Indeed, if the objective
function of the uncertain problem we consider is of the form f0(x, ξ) with ξ ∈ Z an uncertain
parameter, then writing the problem as (8) and forming the RC (9), we see that the objective
function of the RC is fwc(x) = max

ξ∈Z
f0(x, ξ). Under mild assumptions (Ben-Tal and Nemirovski

1998), the optimal cost of the RC is the supremum of the optimal cost of the instances. Thus if
the system can recover from the worst case scenario (the scenario associated to the instance of
highest optimal cost) only with an optimal strategy on this scenario, then the RO is necessary.

However an objection that can be formulated towards RO is that precisely, for the objective
function, it only deals with the worst case scenario. This robust strategy can be far from the
optimal strategy in mean or give a far from optimal cost when the scenario is not the worst
scenario. If it is not so critical to design an optimal strategy on the worst case scenario, but if we
however wish to limit the cost on 100p% of the worst scenarios (with p ∈ (0, 1)), other approaches
could be chosen instead. We could add to the objective function of model EP in (19) the CV aRp

of the cost for instance (mean cost of the 100p% worst scenarios), and then use SP to solve the
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problem. The ARC and AARC also appear as ways of designing less conservative robust solutions
than the RC even if the problem of calibration of the uncertainty sets remains for these methods.

Finally from the practical point of view, the RO needs the delicate step of calibration of uncer-
tainty sets instead of probability distributions for SP.

Extended Robust Counterpart. An Extended Robust Counterpart (ERC) for uncertain
problem PZ could be defined penalizing in the objective the decisions that are not feasible for the
RC. We define the ERC of uncertain problem PZ as follows:

min
u,w

{c⊤u+ η e⊤w : ∃ v, w | fi(u, v, ξi) ≥ wi, ∀ ξi ∈ Zi, i = 1, . . . ,m, w ≥ 0},

for some η > 0. When η = +∞, the ERC is the RC. For finite values of η, the feasibility set of ERC
is always nonempty. An advantage of the ERC with respect to the ARC is also its tractability.
Indeed, the ERC is tractable as soon as the RC is, so for LP the ERC is tractable as soon as the
uncertainty set Z is tractable which is not the case of the ARC. However, we believe that the
ERC changes the modelling more notably than the ARC. For the ARC, the objective function and
the constraints are robustified versions of the objective and of the constraints in PZ . The ERC,
on the other hand, changes the objective function and poses the problem of calibration of the
parameter η. When using a robust approach to deal with uncertainty in PZ , we want to satisfy
the constraints for all possible values of ξ in Z. When using the ERC modelling, we should thus
take sufficiently large values of η to obtain sufficiently small values of wi, and thus obtain a pair
(u, v) that will nearly satisfy all the constraints for every value of ξ ∈ Z. But the larger the η, the
more the objective function differs from the initial objective function c⊤u.

4. ARC and AARC of the electricity generation management problem

The goal of this section is to explain how to apply the methodology described in the previous
section to the stochastic counterpart of (7). Notice that (7) is a convex optimization problem and
thus the results of the previous section apply.

4.1. ARC. We first have to decide which variables are adjustable and which variables are not.
This decision is a modelling choice and different answers can be given. The control variables can be
seen as non-adjustable and the remaining variables (especially the state variables) as adjustable.
Nevertheless, at the beginning of the management horizon, no uncertain parameter has been
observed and only the controls applicable at the first time step are really not adjustable. We
thus adopt the following modelling choice: we consider that the control variables of the first time
step are not adjustable and that all the other variables are adjustable. If the uncertainty set is
the convex hull of S scenarios (Dt(s), Iℓ

t (s), τ
ℓ
t (s))

S
s=1, the Adjustable Robust Counterpart of the

electricity generation management problem is the linear programming problem given in (Guigues
2005).

We can then wonder if this ARC is equivalent to the RC of problem (7) obtained choosing the
same polytopic uncertainty set or if the ARC allows us to have a lower cost. Since the uncertainty
is not constraint-wise, the hypotheses in (Ben-Tal et al. 2003) giving conditions ensuring the
equivalence of the ARC and the RC are not satisfied. In fact, if the uncertainty set is polytopic,
we can give examples of electricity generation management problems for which the RC and the
ARC are equivalent and other examples for which they are not, see (Guigues 2005). However,
even when the RC and ARC optimal values are the same, the solution of the ARC provides a
solution, which, on average, can be better than the robust solution which is not adaptive. Indeed,
if the uncertainty set is the convex hull of the scenarios (ξ1, . . . , ξS) and if we denote the solution

of the ARC by (u, v1, . . . , vS), when the scenario
∑S

i=1 αi ξi occurs, then the solution of the

ARC provides a feasible point (u,
∑S

i=1 αi vi) whose associated cost is lower than or equal to
the optimal value of the ARC. On the other hand, the use of the ARC sets a problem from the
practical point of view. Indeed, for a given time step, the dependency of the controls as a function
of past realizations of the parameters is not known. In order to know the controls provided by the
ARC, we should know values (α1, . . . , αS) such that the vector of parameters over the management
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period is
∑S

i=1 αi ξi. In this case, we can use controls (u,
∑S

i=1 αi vi) which will probably yield
a cost lower than the RC cost.

However, as long as the management period is not over, we cannot determine such αi. A way
to use, from a practical point of view, the methodology of the ARC to robustify problem (7),
consists of determining an ARC at each time step with shorter and shorter management horizons.
We call this method “sliding” ARC. More precisely, to determine the controls to apply at time
step t ≤ T with this method, we solve the ARC of problem (7) written for the last T − t+ 1 time
steps using a polytopic uncertainty set. The non-adjustable variables of this problem correspond
to the controls to apply at time step t.

4.2. AARC. In order to know the dependency of the adjustable variables as a function of past
realizations of the parameters we can choose a particular parametric form for this dependency.
When the adjustable variables are affine functions of the uncertain parameters, we get the concept
of AARC introduced in Section 3. In this approach, we choose vector of controls (pℓt)t,ℓ for
the vector v of adjustable variables. Potentially, all the uncertain parameters can influence these
adjustable variables. Nevertheless, to limit the size of the AARC, for a given adjustable variable, we
choose the uncertain parameters which could most influence it. This step is part of the modelling
process and tests will be necessary to see if a given choice leads to a significant improvement
compared to the use of a more traditional RC. Parameters which most influence the controls are
electric consumption Dt for different time steps t. For time step t, we can thus reasonably suppose
that thermal controls pℓt, ℓ ∈ LT , hydro controls pℓt, ℓ ∈ LH , and EJP contract controls, pℓt, ℓ ∈ LJ ,

affinely depend on electric consumption Dj observed for time steps j ∈ It, where It is a given
subset of {1, . . . , t}, i.e.,

(21) pℓt = q
ℓ,0
t +

∑

j∈It

q
ℓ,j
t Dj , ℓ ∈ L.

Remark 4.1. The above dependency scheme may appear naturally in some situations, when
process Dt (Dt is a realization of Dt) is an AR(m) model for instance. In this case, we have
Dt =

∑m
i=1 αiDt−i + ηt, where ηt ∼ N (0, σ2). A (1− ε)-quantile of the distribution of Dt|Dt−1 =

Dt−1, . . . , Dt−m = Dt−m,(that could be a “robust” value for Dt) would be of the form
∑m

i=1 αiDt−i+
σΦ−1(1−ε). Since demand satisfaction constraints are active,

∑

ℓ∈L pℓt =
∑m

i=1 αiDt−i+σΦ−1(1−
ε). In this case, we have It = {t− 1, . . . , t−m} and

∑

ℓ q
ℓ,0
t = σΦ−1(1− ε).

Going back to (21), the new non-adjustable variables are now (qℓ,jt )t,ℓ,j . We then look for the
best linear combinations defined by (21), choosing different uncertainty sets for the demand. It
also seems reasonable to think that the controls applied to hydroelectric plant ℓ depend on the
upstream reservoir inflows. If this leads to an AARC of reasonable size, we can thus also increase
the information from which the hydro controls are computed under the form

(22) pℓt = q
ℓ,0
t +

∑

j∈It

q
ℓ,j
t Dj +

∑

j∈It

s
ℓ,j
t Iℓ

j , ℓ ∈ LH .

We can of course combine these dependency schemes. We can decide that only some controls are
adjustable and ruled by equations (21) or (22).

Set It depends on the available information at time step t. In practice, we know, for each time
step, all the past realizations of the problem parameters, so the most natural choice for It is
It = {1, . . . , t − 1}. If the information on the values of the parameters arrives with m time steps
delay, we have at best, It = {1, . . . , t−m}. To reduce the size of the AARC and to favor recent
information, we can choose to use only the values of the parameters for the last m time steps
taking It = {t− 1, . . . , t−m}. We can also imagine dynamical choices of the subset It whose size
may depend on t and on the data collected until time step t.

Contrary to the ARC previously introduced, the AARC provides a solution directly usable from
the practical point of view. Indeed, for time step t, the values of the parameters for all time steps
j ∈ It are known. We can thus use the solution of the AARC and equations (21) and/or (22) to
determine controls (pℓt)ℓ∈L provided by the AARC. Even in the case where the AARC and the
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RC optimal values are the same, the use of the controls given by (21) and/or (22) is preferable
because it has great chances of providing a better solution on average (see Section 5).

The above dependency schemes (21) and (22) imply a particular form for matrix W introduced
in the previous section when decomposing v as v = w +Wξ. To explicit the form of this matrix
W when It = {1, . . . , t− 1}, let us suppose that LT = {1, . . . ,m}, LH = {m+ 1, . . . ,m+ h}, and
LJ = {m+ h + 1, . . . ,m + h + nbJ}. For ℓ ∈ L, let pℓ• = (pℓ1, . . . , p

ℓ
T ), and let us order vectors v

and ξ as

v = (p1•, . . . , p
m
• , pm+1

• , . . . , pm+h
• , pm+h+1

• , . . . , pm+h+nbJ
• )⊤,

ξ = (τ11 , . . . , τ
1
T , . . . , τ

m
1 , . . . , τmT , I1

1 , . . . , I1
T , . . . , Ih

1 , . . . , Ih
T ,D1, . . . ,DT )

⊤.

Let Sℓ (for 1 ≤ ℓ ≤ |LH |), and Qℓ (for 1 ≤ ℓ ≤ |L|), be the (T, T ) matrices defined by

Qℓ(i, j) =

{

0 if j ≥ i,

q
ℓ,j
i if j < i,

and Sℓ(i, j) =

{

0 if j ≥ i,

s
ℓ,j
i if j < i.

With this notation, we can express matrix W as

(23) W =





0 0 QT

0 S QH

0 0 QJ



 , where S =







S1 0 0

0
. . . 0

0 0 S|LH |






,

QT =







Q1

...
Q|LT |






, QH =







Q|LT |+1

...
Q|LT |+|LH |






, and QJ =







Q|LT |+|LH |+1

...
Q|LT |+|LH |+|LJ |






.

We finally recover variables qℓ,0t in w using w((ℓ − 1)T + t) = q
ℓ,0
t , for 1 ≤ ℓ ≤ |L| and 1 ≤ t ≤ T.

We now intend to provide the AARC of the stochastic counterpart of problem (7) for box
constrained, polytopic and ellipsoidal uncertainty sets. This problem (7) is of the form

(24) Pξ

{

min c⊤u

Uu+ V v ≤ Aξ + b,

where U and V are fixed and ξ is the uncertain parameter.

Lemma 4.1. When the uncertainty set for ξ is the box χ = {ξ | ξinf ≤ ξ ≤ ξsup}, then the
AARC of uncertain problem (24) can be expressed by one of the two following linear programming
problems

LP1



















min
u,w,W,θi,θ̃i

c⊤u

U iu+ V iw − bi + ξ⊤

supθi + ξ⊤

inf θ̃i ≤ 0,
θi ≥ 0, θi

⊤ ≥ V iW −Ai,

θ̃i ≤ 0, θ̃⊤

i ≤ V iW −Ai,

LP2











min
u,w,W,θi

c⊤u

2[U iu+ V iw − bi] + [V iW −Ai][ξinf + ξsup] + [ξsup − ξinf ]
⊤θi ≤ 0,

−[V iW −Ai] ≤ θ⊤

i , θ
⊤

i ≥ V iW −Ai.

Proof. The AARC of (24) consists in minimizing c⊤u under the constraints in (u,w,W )

U iu+ V iw − bi + [V iW −Ai]ξ ≤ 0, ∀ ξ ∈ [ξinf , ξsup].

An equivalent representation of these constraints is

U iu+ V iw − bi + max
ξinf≤ξ≤ξsup

[V iW −Ai]ξ ≤ 0.
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We then express max
ξinf≤ξ≤ξsup

[V iW −Ai]ξ as

∑

[V iW−Ai](j)≥0

[V i
W − A

i](j)ξsup(j) +
∑

[V iW−Ai](j)<0

[V i
W − A

i](j)ξinf(j)

=
∑

j

max([V i
W − A

i](j), 0)ξsup(j) +
∑

j

min([V i
W − A

i](j), 0)ξinf(j)(25)

=
1

2

(

[V i
W − A

i](ξinf + ξsup) + |V i
W − A

i|(ξsup − ξinf)
)

,(26)

where vector |x| is defined by |x|i = |xi|, and where we have used for the last equality that for
x ∈ R, max(x, 0) = 1

2 (x + |x|) and min(x, 0) = 1
2 (x − |x|). Adding slack variables and using (25)

(resp. (26)), we obtain representation LP1 (resp. LP2). �

Lemma 4.2. When the uncertainty set for ξ is the polytope χ = Conv(ξ̄1, . . . , ξ̄k), then the AARC
of uncertain problem (24) is the linear programming

LP3











min
u,w,W,θi

c⊤u

U iu+ V iw − bi + θi ≤ 0,
θi ≥ [V iW −Ai]ξ̄ℓ, ℓ = 1, . . . , k.

Proof. The AARC of (24) consists in minimizing c⊤u under the constraints in (u,w,W )

U iu+ V iw − bi + [V iW −Ai]ξ ≤ 0, ∀ ξ ∈ Conv(ξ̄1, . . . , ξ̄k).

It suffices to observe that max
ξ∈χ

[V iW − Ai]ξ = max
1≤ℓ≤k

[V iW − Ai]ξ̄ℓ and to add slack variables to

conclude. �

Lemma 4.3. Let K be a definite positive matrix. When the uncertainty set for ξ is the ellipsoid
χ = {ξ | (ξ − ξ̄)

⊤

K−1(ξ − ξ̄) ≤ κ2}, then the AARC of uncertain problem (24) is the following
conic quadratic optimization problem

CQ1

{

min
u,w,W

c⊤u

U iu+ V iw − bi + [V iW −Ai]ξ̄ + κ
√

[V iW −Ai]K−1[V iW −Ai]T ≤ 0.

Proof. The AARC of (24) consists in minimizing c⊤u under the constraints in (u,w,W )

U iu+ V iw − bi + φχ([V
iW −Ai]⊤) ≤ 0,

where φχ(·) is the support function of the ellipsoid χ given for any x ∈ R
M by φχ(x) = max

ξ∈χ
x⊤ξ =

x⊤ξ̄ + κ
√
x⊤K−1x. �

Lemmas 4.1, 4.2 and 4.3 thus provide the AARC of the stochastic counterpart of (7) for re-
spectively box constrained, polytopic, and ellipsoidal uncertainty sets. When the thermal and
EJP controls are determined by equations (21), the hydro controls by equations (22) and when
It = {1, . . . , t− 1}, matrix W adopts the particular form given in (23). The detailed formulation
of these AARC (writing the constraints with the elements of U, V,A, b, c, and W ) can be found
in (Guigues 2005). Notice that the number of variables is in general much larger in the AARC.
For instance, if Pξ has nu (size of u) + nv (size of v) variables and p constraints then LP1 has
nu + nv + NW + 2pMT variables and p(4MT + 1) constraints where M = |LT | + |LH | + 1 and
NW is the number of non-zero elements in W. Thus, to obtain an AARC of reasonable size, we
can aggregate the time steps (which provides a smaller value of T ) and diminish NW by taking
smaller sets It.

4.3. Calibration of uncertainty sets. The robust methods developed in the previous sections
need uncertainty sets for the uncertain parameters over the optimization period. From the practical
point of view, the determination of uncertainty sets for robust optimization is a statistical problem
of great importance. The uncertainty sets for our application are calibrated using two different
approaches.
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In the first approach, we suppose we know the 456 possible scenarios for the uncertain parame-
ters over the optimization period. These scenarios of equal probability are provided by EDF (the
company providing electricity in France) after a statistical analysis. In this case, the uncertainty
sets are the convex hull of the scenarios or a box constrained uncertainty set containing these
scenarios.

In the second approach, we only consider uncertainty in the demand and calibrate a box con-
strained uncertainty set for the demand using historical data.

The determination of uncertainty sets in robust optimization is in fact made in one of the three
following contexts.

• (i) The domain of variation D of the uncertain parameters (support of the underlying
random vector if the uncertainty is of stochastic nature) is bounded and known. In this
case, we take as uncertainty set a nonempty closed and convex set containing domain D.
This is the case in our first approach. The two remaining situations (ii) and (iii) below
hold when the uncertainty is of stochastic nature.

• (ii) Support S of the underlying random vector is bounded but not known. In this case,
it first has to be estimated by a bounded set before determining a nonempty closed, and
convex set containing this support.

• (iii) Finally, in the case where S is not bounded, we do not look for an estimation of S
but for bounded, nonempty, closed, and convex prediction areas. If X has n components,
we look for a set E ⊆ R

n, such that P(X ∈ E) ≥ 1 − ε, or sets Ei ⊆ R, 1 ≤ i ≤ n, such
that P(Xi ∈ Ei) ≥ 1− ε, ε being a given confidence level. The difficulty of these problems
depends on the structure of sets E and Ei chosen and on the probability distribution of
X. This probability distribution can be known or estimated from available historical data
as is the case for the second approach we consider.

In case (i) and thus in our first approach, the assumption (used to build the Robust Counter-
parts) that the uncertain parameters over the optimization period belong to the uncertainty set
is satisfied.

In case (iii) and when uncertainty sets have to be determined using historical data, the appli-
cations presented in the literature so far propose in general simple nonparametric approaches that
do not rely on a statistical study. For instance, given a sample (ξ1, . . . , ξT ) of random vector ξ, we
can choose as uncertainty set for ξ the convex hull of the scenarios (ξ1, . . . , ξT ) or a shrinkage of
this convex hull. More precisely, if g is the barycenter of (ξ1, . . . , ξT ) and if ξ′i = g+α(ξi−g), with
0 < α < 1, a shrinkage of the convex hull of (ξ1, . . . , ξT ) could be the convex hull of (ξ′1, . . . , ξ

′
T ).

Using this contraction of the convex hull as an uncertainty set instead of the convex hull itself,
induces a less conservative Robust Counterpart. We can also take the ellipsoid of smallest volume
(or the sphere of smallest volume) which contains all points (ξ1, . . . , ξT ), which is an SDP problem.
We can also look for the closest ellipsoid or sphere to the cloud of points (ξ1, . . . , ξT ), (Calafiore
2002). Our second approach corresponds to case (iii) with unknown probability distribution for
the vector of demands over the optimization period. In this case, instead of using one of the non-
parametric calibration methods mentioned above, we do a statistical analysis of the underlying
random process for our stochastic optimization problem. This aspect has often been neglected so
far but is of crucial importance for the application of robust optimization methodology on real-life
problems. The methods used in such a study depend on the practical situations met. In the
case of the process of electricity consumption, we study different methods taking into account
certain specificities of the time series. These methods intend to provide lower bounds Dmin

t and
upper bounds Dmax

t for the electricity consumption at time step t over the optimization period.
The uncertainty sets are prediction intervals of level 95% for each demand Dt, i.e., satisfying
P(Dt ∈ [Dmin

t ,Dmax
t ]) ≥ 0.95.

In what follows, we briefly mention the two models that are tested for determining these predic-
tion intervals. The historical data of demands we use are the weekly observations in France from
1996 to 2003 (the largest set of data available on the RTE website when this study was done). We
refer to (Guigues 2005) for a detailed treatment of this study.
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Electricity consumption is essentially influenced by the temperature (for heating in winter and
air conditioning in summer) and the cloud cover (for lightning). The first model is a regression
model that uses as regressors the temperature and the cloud cover (measured in octa by a number
between 0 and 8). We introduce gradients of temperatures for heating (used below a given temper-
ature) and for the air conditioning (used above a given temperature). The increasing tendency in
the demand is modelled by an affine function αt+β of time t and the seasonal effect by a periodic
process with a one-year period. The prediction intervals are computed by adjusting this model
to the available data of demands and after testing and accepting the normality of the residuals.
In this approach, the values of the regressors need to be known over the optimization period (in
practice estimations of these values are used).

The second model fitted to the data is a seasonal SARIMA model (Box et al. 1976) of 52 week
seasonality and prediction intervals are computed following the lines of (Box et al. 1976).

In (Guigues 2005), we propose another seasonal model (affine tendency plus seasonal process)
where a hidden Markov chain model is fitted to the noise.

5. Numerical simulations

We now compare the robust management policies introduced in this article with other manage-
ment policies. The management horizon is one year and each time step lasts 15 days. Two data
sets are used.

On the one hand, a set of 456 simulated scenarios (provided by EDF) giving different possible
evolutions of the uncertain parameters over the year.

On the other hand, we use the electric consumption in France from 1996 to 2003. For 3 ≤ x ≤ 7,
using the historical data from 1996 to 1995 + x, we compare the costs when using the RC and
the AARC methodology over the year 1996 + x. These costs will be compared with the optimal
management cost (obtained when solving (7) using the demands, availability rates and inflows of
the year 1996 + x).

There are eleven thermal plants. Each thermal plant is described by its unit production cost,
its maximal and minimal power, the number of thermal groups and the probability that a thermal
group works a given day. There are two independent hydroelectric plants. Each hydroelectric
plant is connected to a different reservoir. We know the maximal and initial stock (in GWh) of
each reservoir and the maximal power (in MW) of each hydroelectric plant. There is finally one
EJP contract of 22 days.

The optimization problems are solved using Matlab and the Mosek optimization library. The
absolute error in the computed objective is at most 10−8.

5.1. Simulated data.

5.1.1. ARC. We implement the ARC of the stochastic counterpart of (7) with 24 time steps,
choosing for uncertainty set the convex hull of the 456 scenarios or a subset of these scenarios.

We show that the greater the number of scenarios, the more the solution of the ARC is in-
teresting compared to the solution of the RC. To that end, we implement the RC and the ARC
obtained choosing as uncertainty set the convex hull of the first x scenarios, x successively taking
the values 5, 200 and 456. The number of variables of the ARC linearly increases with the number
of scenarios. Using the 456 scenarios, we end up with an ARC with 170 103 variables and 248 991
constraints2. The ARC provides, for each scenario ξk, a solution (u, vk) adapted to this scenario.
In Table 2 which follows, “m(ARC)” is the mean cost (over the first x scenarios) obtained using
these adaptive solutions and “s(ARC)” is the standard deviation of these costs. In this table,
we also indicate the mean costs “m(R)”, “m(S)”, “m(Opt)” and the standard deviations “s(R)”,
“s(S)” and “s(Opt)” when using respectively (i) the RC, (ii) the solution of the problem where
each uncertain parameter is replaced by its mean over the set of the first x scenarios and finally
(iii) the optimal strategy (choosing on each scenario the optimal controls on this scenario).

2solved in about one hour with a 1.6GHz processor and 256MBytes of RAM.
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x m(ARC) s(ARC) m(S) s(S) m(R) s(R) m(Opt) s(Opt)
5 4.23 1.11 4.17 1.41 4.54 2.65 4.15 5.53
200 4.40 1.17 4.14 1.70 7.02 3.4 4.12 12.1
456 4.54 1.01 4.14 1.80 8.14 3.5 4.12 12.7

Table 2. Average cost (divided by 108) and standard deviation (divided by 106)
of the cost over a set of x scenarios for the uncertain parameters using the ARC
and RC techniques.

The costs obtained by replacing each uncertain parameter by an estimation of its mean over
the set of scenarios are very close to the optimal costs. Nevertheless, this policy cannot be used in
practice because for quite a number of time steps, the demand is not satisfied. The average cost
with the ARC is, as expected, less than with the RC. When the number of scenarios increases, the
use of the RC yields a far from optimal solution (nearly twice as costly if we use 456 scenarios).

The RC solution is the same for all the scenarios. If the inflows were fixed, the standard
deviation of the cost using the RC would be null. However, the differences between the inflows
from a scenario to another explain the standard deviation obtained using the RC. We even notice
that the standard deviation of the cost obtained using the RC is greater than the one obtained
using the ARC. The ARC thus doubly satisfies our objective: reduction of the mean cost and
reduction of the standard deviation of the cost. Choosing the controls of the first time step as the
only adjustable variables, we could however have expected the cost “m(ARC)” to be closer to the
optimal cost “m(Opt)”. The large number of scenarios and the presence of certain hard scenarios
could explain this gap.

These results on the use of the ARC are theoretical. In practice, to determine the controls for
time step t, we use the non-adjustable controls of the ARC of the electricity generation management
problem corresponding to the last T − t + 1 time steps. Using this approach and taking as
uncertainty set the convex hull of the first 5 scenarios, the mean cost is 4.30×108 and the standard
deviation of the cost is 1.75×106. The sliding “ARC” thus yields a mean cost not too far from the
optimal mean cost and a small standard deviation of the cost.

5.1.2. AARC. Polytopic uncertainty sets. We first consider the AARC obtained by choosing
for the uncertainty set the convex hull of a subset of the 456 scenarios.

In this paragraph, we confine ourselves to choosing a restricted number of scenarios (6 and 20)
to show the influence of the choice of interval It and of the dependency of the adjustable variables
as a function of the uncertain parameters on the quality of the solutions of the AARC.

First, we suppose that the uncertainty set is the convex hull of the first 6 scenarios and that the
adjustable variables are given by (21). For each time step, the use of the solution of the AARC
and of (21) gives the controls provided by the AARC for this time step. We then use different
sizes of interval It : It = {1, . . . , t−m} if t > m and It = ∅ otherwise; for different values of m. We
report in Table 3 below, for each choice of interval It, the mean cost and the standard deviation
of the cost over the 6 scenarios.

Value of m m = 1 m = 2 m = 4 m = 6 m = 12
Mean 4.26×108 4.261×108 4.288×108 4.33×108 4.57×108

S.d 1.04×105 3.95×104 7.66×104 1.71×105 4.05×106

Table 3. Influence of the quantity of information used on the performance of the AARC.

As expected, the mean cost is an increasing function of m. Indeed, the larger m is, the less
information is used to explain the adjustable controls and the smaller the feasibility set. When m

is 24 (the number of time steps), we get the solution of the RC.
We now fix It = {1, . . . , t − 1}, and we observe the influence of the choice of the adjustable

variables on the performances of the AARC. We propose 4 dependency schemes for the adjustable
variables as a function of the uncertain parameters.
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• For the first method (Method 1), the thermal controls, the hydro and EJP controls are
adjustable and given by (21). For the second method (Method 2), the thermal and hydro
controls are adjustable and given by (21). The EJP controls are not adjustable.

• For the third method (Method 3), all the controls are adjustable; the thermal and EJP
controls being given by (21), and the hydro controls by (22). For the last method (Method
4), the thermal and hydro controls are adjustable and given respectively by (21) and (22).
The EJP controls are not adjustable.

Choosing the convex hull of the first 6 and first 20 scenarios for the uncertainty set, we get the
results reported in Tables 4 and 5 which follow.

Method Method 1 Method 2 Method 3

Mean 4.26×108 4.26×108 4.25×108

Standard deviation 1.04×105 9.00×104 6.87×104

Table 4. Influence of the choice of the adjustable variables and dependency
schemes on the performances of the AARC. First 6 scenarios.

Method Method 1 Method 2 Method 3 Method 4

Mean 4.471×108 4.472×108 4.456×108 4.456×108
Standard deviation 2.391×106 2.387×106 6.223×104 6.394×104

Table 5. Influence of the choice of the adjustable variables and dependency
schemes on the performances of the AARC. First 20 scenarios.

As expected, the richer the information, the less the average cost. It seems interesting to use
both electric consumption and inflows to explain hydro controls. Besides, it does not seem neces-
sary, regarding these simulations, to consider the EJP variables as adjustable.

Box constrained uncertainty sets. We now choose an uncertainty set defined by box

constraints: Dmin
t ≤ Dt ≤ Dmax

t for the demand, Iℓ,min
t ≤ Iℓ

t ≤ Iℓ,max
t for the inflows, and

τ
ℓ,min
t ≤ τ ℓt ≤ τ

ℓ,max
t for the availability rates. We simply calibrate Dmin and Dmax estimating

for every time step t, Dmin
t and Dmax

t by the minimal and maximal values of the consumption for
time step t over the set of scenarios. The vectors Iℓ,min, Iℓ,max, τ ℓ,min and τ ℓ,max are calibrated
in the same way and we choose It = {1, . . . , t− 1}. Two AARCs are implemented. The adjustable
variables are functions of the uncertain parameters as in (21) for the first one (denoted by AARC1).
For the second one (denoted by AARC2), the thermal and EJP controls are given by (21) and the
hydro controls by (22). We denote by SAARC2 the sliding version of method AARC2. Problem AARC2

has 17 913 variables and 30 086 constraints.3 The mean cost and the standard deviation of the
cost over the set of 456 scenarios for these different AARCs are given in Table 6 which follows.

Method Optimal cost AARC1 AARC2 SAARC2

Mean 4.12×108 5.01×108 4.70×108 4.75×108

Standard deviation 1.27×107 2.4×106 3.57×106 1.2×107

Table 6. Performances of the AARC. Uncertainty set defined by box constraints.

The use of inflows to explain hydro controls seems here particularly interesting. If we were not
in a “back-testing” context, we would expect the sliding version SAARC2 to perform better than
AARC2.

3Solved in about 10 min with a 1.6GHz processor and 256MBytes of RAM.
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Now to highlight the importance of the size of uncertainty sets on the quality of robust methods,
we finally consider an AARC using a contraction of the box constrained uncertainty set used with
AARC2. To that end, if D̄ = 1

2 (Dmin + Dmax) and if we had used uncertainty set [D̄ − 1
8 (D̄ −

Dmin), D̄ + 1
8 (Dmax − D̄)] for the electric consumption, and replaced the demand scenarios by

scenarios uniformly drawn in [D̄ − 1
8 (D̄ −Dmin), D̄+ 1

8 (Dmax − D̄)], the mean cost of AARC2 would

have decreased significantly from 4.7×108 to 4.51×108.

5.1.3. Comparison of different management methods. In Table 7, we give the mean cost and the
standard deviation of the cost over the 456 scenarios and for different management methods.
As in (Guigues et al. 2009), let us denote by Tree a scenario tree based optimization method
described in (Guigues et al. 2009) and let Dual.Stab. be the management method described in
(Guigues 2005) based on a stabilization of the dual function. Notice that the scenario tree based
optimization method Tree was used in (Guigues et al. 2009) for a management horizon of one
year but with a daily time step. We aggregated the tree used in (Guigues et al. 2009) and adapted
the optimization methods in order to use a 15 day time step. This way, all the methods use the
same discretization of the optimization period. Methods ARC, AARC2 and SAARC2 are defined in
the previous paragraph. The methods are ranked according to the value of the sum mean plus
standard deviation of the cost.

Method ARC AARC2 Dual.Stab. Tree SAARC2

Mean 4.54×108 4.70×108 4.49 ×108 4.51×108 4.75×108

Sd 1.01×106 3.57×106 2.92×107 3.26×107 1.2×107

Rank 1 2 3 4 5

Table 7. Comparison of the different management methods.

The AARC methods introduced in this article yield a higher average cost and a significantly
smaller standard deviation of the cost. The ARC method yields both low mean and standard
deviation but is only of theoretical interest.

5.2. Simulations with real data. Given the electric consumption in France from 1996 to 2003,
we use the first x years of data (for 3 ≤ x ≤ 7) to determine a production schedule for year
1996 + x. We use the same production capacity as before. The inflows for the two reservoirs are
fixed (equal to the mean inflows over the 456 scenarios considered in the previous section) and we
suppose that all the availability rates are equal to one over the optimization period. We test 3
AARCs and 3 RCs obtained by taking box constrained uncertainty sets.

We define AARC1 and RC1 as the AARC and RC obtained taking as uncertainty set on the
demands, the prediction interval obtained using the regression model introduced in Section 4.3.
To explain the electric consumption of year 1996+x, we thus use the temperature and cloud cover
of that year.

We denote by AARC2 and RC2 the AARC and RC obtained when the uncertainty set on the
consumption is determined using the SARIMA model.

We also denote by AARC3 and RC3 the AARC and RC obtained when the uncertainty set
[Dmin,Dmax] on the consumption is such that Dmin

t (resp. Dmax
t ) is the smallest (resp. the

largest) consumption for time step t over the first x years of historical data.
Finally, let CS1, CS2, and CS3, be the methods consisting of replacing the uncertain consumption

by their forecasts using, respectively, the regression model, the SARIMA model, and the mean
consumption over the first x years of historical data. To implement the AARC, we choose, for
time step t, It = {1, . . . , t − 1} and we suppose the adjustable variables are functions of the
consumption given by (21). The results are given in Table 8 (the first row of the table gives the
optimal costs). The AARC gives the most interesting results. For AARC1, in particular, the mean
cost is only 3.9% above the optimal mean cost.
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x 3 4 5 6 7 8 Mean
Opt 3.80 3.86 3.98 4.12 4.27 4.42 4.07
AARC1 3.98 4.13 4.17 4.18 4.44 4.49 4.23
AARC2 - 4.50 4.53 4.64 4.77 4.89 4.67
AARC3 4.05 4.12 4.25 4.39 4.47 - 4.26
RC1 4.32 4.39 4.52 4.67 4.75 - 4.53
RC2 - 4.75 4.78 4.83 5.03 5.15 4.91
RC3 4.25 4.39 4.43 4.55 4.69 4.74 4.51
CS1 4.69 4.54 4.56 4.62 4.69 4.71 4.63
CS2 - 4.70 4.79 4.89 5.08 5.19 4.93
CS3 4.65 4.72 4.84 5.00 5.07 - 4.86

Table 8. Costs (divided by 108) of the AARC and RC of problem (7) imple-
mented for years 1998, 1999, 2000, 2001, 2002 and 2003 and using 8 years of
electric consumption data in France from 1996 to 2003.

6. Conclusion

The methodology of the AARC applied to the electricity production management problem
provides management policies whose mean cost is reasonable (though higher than the mean cost
obtained in (Guigues et al. 2009) for instance) and with a low standard deviation of the cost.
The superiority of this methodology to a more traditional RC approach is also illustrated in this
application.

From the theoretical point of view, an interesting perspective in the area of AARC is to study
the AARC of general conic quadratic and SDP problems.
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