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1. INTRODUCTION

High product variety, competitive market and the fluctu-
ating order stream are important characteristics of today’s
manufacturing industry. Taking the automotive sector into
consideration, suppliers have to meet strict due dates
and provide high quality products for their customers,
while keeping their production costs on the lowest possible
level. Flexible manufacturing/assembly systems exist for
decades, however, they are still one of the most funda-
mental solutions to react to the changes and disturbances
efficiently.

1.1 Flexible assembly lines

In the automotive industry, the cars themselves are usu-
ally assembled on platform-based mixed-model assembly
lines, while most of the main components are produced
in flexible assembly lines. The general difference between
these solutions lie in the control flexibility of the lines:
while the mixed model lines are capable of assembling an
arbitrary changing sequence of product variants without
any changeovers, flexible flow lines are designed for pro-
ducing different product variants in batches. Therefore,
in latter systems precise production planning is crucial to
minimize the changeovers required to setup the line from
one product variant to another. Besides, most of these lines
are not fully automated, which means human operators are
required to perform certain assembly tasks.

Focusing on the manually operated flexible assembly lines
—which is the main topic of the paper— the most general
planning decisions include the identification of required
capacities and production lot sizes. In the paper we fo-
cus on the mid-term planning of the assembly lines that
provides cost-optimal plans with the calculated production
lot-sizes, release dates as well as the capacity requirements.
In order to handle the changes and disturbances in a robust
way, the proposed planning method is combined with a
lower level capacity control, which means the assignment
of operators to the different tasks along the production
plan. In our view capacity control generally decides about
the work hours and when and to which workstations hu-
man resources are allocated (Rossi and Lödding, 2012).
While the objective of the mid-term planning is to de-
crease costs by eliminating the unnecessary changeovers
and decreasing the stock levels, the capacity control is
responsible for balancing the workload of the operators
and eliminating the idle times.

The paper introduces a method, which combines mid-term
planning and capacity control by applying mathematical
programming and discrete-event simulation. First, the ca-
pacity control policies for each product variants are deter-
mined to minimize the negative effects of shop-floor level
disturbances like reject rates and machine breakdowns.
Then the control policies are integrated in the mid-term
planning computation via regression models calculating
the real capacity requirements.
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1.2 Robustness in production planning and control

In general, production planning methods rely on deter-
ministic input data hence fail to cope with a dynamic
effects of the execution environment and the considerable
uncertainty of the underlying planning information. In
order to face the challenges, robust techniques are required
which can provide feasible production plans. Robustness
in production planning involves refined approaches that
aim at handling predictable or unpredictable changes and
disturbances. They respond to the occurrence of uncertain
events (reactive approaches) or protect the performance of
the plan by anticipating to a certain degree the occurrence
of uncertain events (proactive approaches) (Tolio et al.,
2011).

In our methodology robust planning is the logical layer
of the robust production. A production plan is called
robust if it results in an acceptable level of the selected
performance indicators even if unpredictable disruptions
occur during the execution of the plan. The robustness of
the systems often works against other efficiency criteria,
hence, it means a trade-off is required if the objective is
to increase system’s robustness. Efficient ways of taking
uncertainties into account, and to achieve more robust
solutions are either applying stochastic models (Csáji
and Monostori, 2008) (e.g., by estimating the underlying
stochastic processes), or using adaptive and cooperative
approaches which allows prompt responses to changes and
disturbances (Monostori et al., 2010).

1.3 Production planning for flexible assembly lines

Generally, the production and supply-chain planning tasks
are represented with a three-stage hierarchy (strategic,
tactical and operational levels), where the middle, tactical
level is responsible for the aggregate production plan-
ning. These planning problems are usually represented
by mixed-integer programming (MIP) models that can be
solved by systematic algorithms (e.g. branch and bound)
or heuristics, even though the NP-complete nature of
the problems. These planning problems usually apply a
discretized time horizon, and calculate the optimal plan
by assigning the production batch releases to the identical
time slots (time buckets). Besides the time representation,
an important reason for using integer variables in such
planning models is the existence of important discrete
parameters like setup times, setup costs and machine as-
signment decisions (Pochet and Wolsey, 2006). Although
efficient methods exist to solve those problems in an opti-
mal or quasi-optimal way, large-scale problem instances
occurring in industrial practice are still often hard to
solve in a reasonable time, which is always an important
requirement in practice.

The planing models applied for the manually operated
flexible assembly lines typically include the constraints
of due-dates, human and machine capacities and setups.
The objective functions of these models are usually the
minimization of the production costs including the cost of
the operation, setups, inventories and backlogs (if allowed)
(Sillekens et al., 2011). Even though precise modeling
and efficient solver methods are available, these models
provide plans which usually quickly become unfeasible

in the execution phase due to the variability of some
important parameters (i.e. manual processing times are
usually a stochastic). Similarly, machine breakdowns and
reject/scrap rates causing rework are disregarded in most
of the planning models.

1.4 Simulation-based optimization with regression models

In order to consider these important factors already in the
mid-term plans, the paper introduces a novel simulation-
based optimization technique production planning of flex-
ible lines. Advanced simulation-based optimization meth-
ods exist for decades now, and they are already applied
to solve production planning problems. In general, they
consist of a mathematical optimization model in which
the objective function or constraint(s) are represented by
functions that are approximated by using the results of
simulations (Azadivar, 1999). The reason for applying sim-
ulation in these cases are usually the computational com-
plexity or the lack of analytical expression of the objective
function and/or constraints. These challenges are often
faced when stochastic functions have to be represented in
the optimization models (e.g. lead time as a stochastic
function of the in-process buffer levels).

In production planning, simulation-based optimization is
usually applied in an iterative form, when some of the pa-
rameters are modified after executing the calculated plan
in a simulation environment. The parameters can be iter-
atively adjusted according to the results of the simulation,
until the target values of the performance indicators are
reached (Byrne and Hossain, 2005; Laroque et al., 2012).
In contrast, a simulation-based optimization method is
proposed in the paper that relies on linear regression
models instead of iterations, thus requires less computa-
tion and always relies on up-to-date data. Although linear
regression models may seem overly simplistic, they repre-
sent properly practical problems and can outperform more
sophisticated models which require higher computational
effort.

2. PROBLEM FORMULATION

2.1 Production and capacity planning

In the paper a production planning problem is consid-
ered, where the planner has to decide about both, the
production lot-sizes of different product variants and the
release dates of the lots. The target production system is
a manually operated, flexible flow assembly line built-up
by sequentially coupled workstations. The line is operated
in an unpaced way, which means that there is no conveyor
belt for the material flow but the operators pass the prod-
ucts from one station to another. The number of operators
is less than the number of workstations, therefore, different
capacity control policies can be applied to operate the line,
depending on the number of operators and the operator-
task assignments. The assembly line includes at least one
testing station that performs a quality check on every
product. The products that do not pass the test proceed to
a manual rework station that is separated from the line.
After performing the rework, the repaired products are
retested again. A lot should totally be completed before a
new one is started on the line.
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The production orders of the different variants are avail-
able for a certain planning horizon that is split up into a
set production shifts. Each order can be characterized by
its volume and a specific due date. Make-to-stock option
is available in every shift, therefore in case of capacity
shortage, orders can be fulfilled from stocks, however,
holding inventory is associated with extra costs. Order
fulfillment after the due date is possible (backlogging) but
also penalized with extra costs. The objective of the mid-
term planning is to provide an optimal, executable plan
that is based on the minimization of the production costs
on a certain horizon, and to increase the utilization of the
capacities (machines and human operators).

2.2 Capacity control

Within the capacity control part of our methodology, the
proper assignment of the operators to the assembly tasks
is solved, in order to balance their workload and decrease
the idle times caused by the shifting bottleneck —based on
the assembled product variant— and the reject rates. In
this case, the objective is to determine the best assignment
policies for each product variant and each possible number
of operators. It means that the number of operators can
be changed from shift to shift, according to the production
rates. However, more production lots are released in one
shift requiring different operator-task assignments while
the number of the operators cannot be changed.

Usually, standard work instructions and corporate policies
define how to operate the lines with a given number of
operators, however, they are all based on norm times and
idealistic data. In order to define proper capacity control
the underlying stochastic processes have to be considered,
that is solved by considering historical production data.
Therefore, the objective is to define how to assemble a
certain product variant with a given number of operators
to minimize the losses and balance the workload of the
operators instantly applying the preprocessed historical
dataset.

3. SOLUTION APPROACH

At most companies, production planning and scheduling
processes are supported by an enterprise resource planning
(ERP) system, which can handle the integrated infor-
mation and material flow as well as the corporate level
planning activities. However, they often fail to perform the
line-level control tasks, as for example the calculation of
the proper operation control and usually, these problems
are solved manually by the production planners or shift
leaders based on their experience. In order to define a
production planning method that combines the capacity
control with the mid-term planning efficiently, the co-
operation between the logical and physical layers of the
production system must be ensured. This means that the
mathematical model has to rely on the production log data
that reflect the real work contents, instead that of the norm
times that are predefined for each product. The notation
used in the prediction and planning models is summarized
in Table 3.1.

3.1 Define the capacity control policies

In order to determine the proper operator-task assign-
ments for each product and all the possible number of op-
erators, a discrete-event simulation (DES) tool is applied.
Even though state-of-the-art assembly lines are usually
equipped with advanced sensor network, the real workload
of the operators is hard to monitor. A detailed DES model
of the assembly line can provide reliable results about
the utilization and several various control policies can be
evaluated. The main advantage of using simulation for
such purposes is its capability to include the stochastic
nature of important processes. For the validation of the
simulation model, sensor-level as well as MES data is used
that reflect the real processing times, the production rates
and personnel.

Besides the simulation of the historical production, several
random generated but possible operator control scenarios
are analyzed. The input parameters of the simulation
are the number of the operators and the assignment of
the operators to different tasks. In order to define the
best policy for each product variant, only one variant
is produced in each scenario. The main output of the
simulation analysis are the utilization of the operators and
the performance of the line.

Table 1. The applied notation

Sets

N the set of production orders
P the set of products
T the set of working shifts

Variables

xit production of order i in shift t (binary)
ypt production of product p in shift t (binary indicator

variable)
qpt produced volume from product t in shift t (integer)
wt number of operators working in shift t (integer)

Parameters

pi product of order i

vi volume of order i [pcs.]
di due date of order i [shift]
hi inventory holding cost of order i [cost/order/shift]
li late delivery cost of order i [cost/order/shift]
cit deviation cost of order i in shift t

s duration of a shift
r cost of a setup
k cost of an operator per shift
wmax the max. number of operators working in the same shift
Q(qt) overall manual time requirement in shift t [minutes]

3.2 Prediction of real capacity requirements

In case of paced or highly automated assembly lines the
capacity requirements can be represented with determin-
istic values, as their variability is rather low. As already
mentioned in the introduction, in case the line is unpaced,
moreover, the number of workers is less than the number
of workstations, the capacity requirements cannot be rep-
resented reliably in a general way. Stochastic optimization
can be applied in that cases, however, this require high
computation efforts and special solver algorithms. Addi-
tionally, diverse reject rates of the product variants and
the varying amount of rework also increase the complexity
of the planning models.
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In order to tackle these problems, in our approach a
production planning model is introduced that determines
the near optimal production plan and the number of
human operators simultaneously, even besides the above
mentioned factors. The essence of the method is the
introduction of the capacity requirements as a general
function of the products produced in the same shift. These
functions can be approximated by regression models and
can be integrated directly in the production planning
calculation.

In order to approximate the real capacity requirement of
a given production lot mix assigned to the shift (Q(qt)), a
multivariate linear regression model is proposed. The effi-
ciency of applying regression models for capacity planning
in an uncertain environment was shown by the authors
in Gyulai et al. (2014a,b). The input variables of the
regression are the volumes of the products assembled in the
same shifts (qpt), and the output is the total manual time
that is required to assemble the products. The regression
models are defined by historical data gathered from the
SCADA (supervisory control and data acquisition) system
of the assembly line. The regression function is defined as
follows:

Q(qt) = β0 +

P
∑

p=1

βpqpt. (1)

By this way, the real capacity requirements (including
rework rates, machine downtimes operator movements
and capacity control policy effects) of the set of orders
assembled in the same shift can be estimated. The function
can be integrated in the aggregate production planning
model, which is described in the following section.

3.3 Production planning model

The core of the production planning is formulated as a
mixed-integer programming problem including the capac-
ity requirement function, as well as the other constraints
like the order due dates and inventory holding costs. The
decision variables of the model give the number of allo-
cated operators for each shift (wt), the number of setups
(ypt), the assembled volumes of products per shift (qpt) and
the production of the orders (xit). The model minimizes an
objective function that is the sum of the deviation (early
delivery and holding), setup and personnel costs (2).

minimize
N
∑

i=1

T
∑

t=1

citxit + r

P
∑

p=1

T
∑

t=1

ypt + k

T
∑

t=1

wt (2)

subject to
T
∑

t=1

xit = 1 ∀i (3)

xit ≤ ypt ∀t, p = pi (4)

qpt =

N
∑

i=1

xitvi ∀t, p = pi (5)

wts ≥ Q(qt) ∀t (6)

wt ≤ wmax ∀t (7)

xit ∈ {0, 1} ypt ∈ {0, 1} wt ∈ Z
+ (8)

cit =

{

hi(di − t) if t < di

li(t− di) otherwise
(9)

The constraints include the fulfillment of all customer
orders (3), the calculation of the setups (4) and volumes
(5), the capacity restrictions (6)(7) as well as integrity
constraints (8). Equation 9 defines the extra cost of the late
delivery and inventory holding. The resulting production
plan specifies the required number of operators over the
horizon, gives the assignment of the customer orders to
the production shifts.

3.4 Implementation of the method

The method is evaluated within a software framework that
is able to couple various modules developed for various
planning and control purposes. The framework is called
Simulation and Navigation Cockpit, and developed for in-
creasing the robustness of the plants and supply networks
by applying state-of-the-art solutions. The software has a
central database that provides the integrated data storage
and acquisition among the planning module, the simula-
tion and the graphical user interface (GUI). The proposed
method is implemented in the framework by applying a
loop-based work flow (Figure 1). The capacity control loop
use the sensor network data and the artificially generated
scenarios to determine the proper control policies and the
utilization of the resources. In the production planning
loop, regression models are built over the simulation re-
sults, and they are integrated in the production planner
module that implements the MIP model. The whole pro-
cedure can be controlled via the web-based graphical user
interface of the framework.

4. EXPERIMENTAL RESULTS

The efficiency of the combined production planning and
capacity control method is demonstrated by an industrial
use-case.

Fig. 1. Implementation of the method in the Simulation
and Navigation Cockpit
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Fig. 2. Schematic of the assembly line

4.1 The characteristics of the assembly line

The target system is a flexible assembly line of an automo-
tive supplier. The line consists of manually operated work-
stations, an automated testing machine with five slots,
final assembly stations and a rework station (Figure 2). In
the line, three product families (A,B,C) are produced, each
family has several variants. The total number of product
variants produced on the line is approximately 150 and
the diversity of the yearly volumes is rather high. The line
operates three shifts per day, currently the average number
of setups is 6-8 per shift. The reject rates of each product
type are distinct, therefore, it is important to balance their
effects with adjusted production sequence and the corre-
sponding capacity control. To ensure the reliability of the
resulted plan, sensor-based process monitoring provides a
large amount of data about processing times, setup times,
and throughput.

4.2 Simulation and capacity control

In order to determine the best capacity control policies
of the product variants, all combinations of the possible
input parameters were analyzed in the simulation module.
The result of this step is a p × wmax matrix, containing
the operator-task assignment that resulted the highest
throughput and least idle times for each p and wt.

4.3 Prediction of the capacity requirements

Fig. 3. Results of the multivariate regression

The multivariate regression for the approximation of the
capacity requirements was computed using the R statisti-
cal environment, by applying its general linear regression
function, which took less than 1 second. The regression

model was built over a historical dataset with 1728 shifts,
that was split up into a training (576 shifts) and test (1151
shifts) set. As for the input variables, the regression is
based on nine product variants (with the highest yearly
volumes) that are the most significant variables according
to the significance test (each product family is represented
by one candidate product). According to the results, the
multivariate linear model provides precise prediction for
the real capacity requirements: R2 = 0.937, and for all
p values, p < 2 · 10−16. It is also important to note
that the real capacity requirements are significantly higher
than the ones calculated according to the capacity norms
and applied in the general production planning tools. The
reason for the difference are the stochastic nature of the
underlying processes like the machine downtimes, reject
rates and processing times (Figure 3).

4.4 Production planning and capacity control of the line

The above regression model can be applied directly in
the production planning model that was implemented
in FICO Xpress and solved by its default branch and
bound method. The optimization algorithm was run until
an optimality gap of at most 2% was achieved, which
required 280 seconds on average. In the experimental case,
a fixed-horizon planning problem was investigated, and
solved by the current norm-time based planning as well
as with the improved, regression-based model. The input
of the production planning was 357 production orders
concerning nine products with the highest yearly volumes.
The horizon of the planning was 20 days, the due date of
the orders were given in production shifts from 1 to 60.

In the first case, the planning was done based on the
currently applied norm times, and the resulted plan was
executed in a simulation environment in which stochastic
effects were also included. The execution of the plan
resulted in a significant amount of backlogs —due to the
capacity shortages— that means 907 products were not
assembled and delivered in time (Table 2).

In the second case, the capacity constraints in the model
were represented by equation 6, the rest of the planning
model left unchanged. According to the simulation results,
the improved planning model resulted in a production plan
that is more robust against the negative effects of reject
rates, as the amount of backlogs was decreased to 106,
and the objective function value —including the deviation,
operator and setup costs— also much less than in the
previous case.
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An important fact that these results were achieved by
proper sequencing that can decrease the negative effects
of the rejects rates, and not by simply increasing the norm
times and thus the allocated capacities as well. Moreover,

the number of working shifts (
∑

T

t=1
wt, s = 480 minutes)

is decreased from 290 to 240 that is a positive ’side effect’
of the regression-based planning (Table 2 and Figure 4.4).
Comparing the total production costs (objective function
value), the regression-based method provides much better
results.

Beside the production planning, another important goal is
to identify the proper capacity control policies. This task
was solved by running the simulation model on a historical
dataset with different operator-task assignments. By this
way, the best scenarios were selected —for each of the nine
products with the highest yearly volumes— and included
in the planning problem. In the production plan execution
mode of the simulation model, these controls were applied,
in order to make the plan even more robust.

Table 2. Comparison of the planning methods

Method Obj. function Backlog [pcs.]
∑

T

t=1
wt [shifts]

Current 14 904 907 290
Improved 12 467 169 240

Fig. 4. Execution of the plans: the amount of realized
baklogs along the planning horizon

5. CONCLUSION

In the paper, a robust, regression based aggregate plan-
ning method was introduced that is aimed at providing
feasible production plans that face with changes and dis-
turbances occur during the production. The method is
based on a multivariate-regression to estimate the capacity
requirements of the orders that are assigned to the same
production period. The method relies on historical data
gathered from the SCADA system providing reliable ca-
pacity estimation that include the stochastic parameters
like the downtimes, varying rework rates occurred by the
rejects and the stochastic processing times. The capacity
requirements were represented by a multivariate linear
function that can be integrated directly in the mathe-
matical model of the aggregate planning model. By this
way, the production (order-shift assignment) and shift
planning is done simultaneously. By introducing addi-
tional constraints in the model, special requirements like
pattern-based shift planning can be solved, considering the
company-specific planning requirements. The efficiency of
the planning method is proven to be robust against the

reject rates by evaluating its feasibility with discrete-event
simulation.

As for the future work, the primary aim is to generalize
the planning method to be able to apply it for different
types of assembly system. Another important goal is to
define a self-building modeling framework that applies
uniform data structure to build-up the simulation model
of the systems simultaneously with the corresponding
mathematical models in order to ensure their co-evolution
and validation.
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