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ABSTRACT 

 

Improved fuel efficiency in hybrid electric vehicles, 

requires a fine balance between internal combustion 

engine usage and battery energy, using a carefully 

designed energy management control algorithm. 

 

Numerous energy management strategies for hybrid 

electric vehicles have been proposed in literature, with 

many of these centred on the Equivalent Consumption 

Minimization Strategy (ECMS) due to its potential for 

online implementation. The key challenge with the 

equivalent consumption minimisation strategy lies in 

estimating or adapting the equivalence factor in real 

time such that reasonable fuel savings are achieved 

without over-depleting the battery state of charge at 

the end of the defined driving cycle.   

 

To address the challenge, this paper proposes a novel 

proportional state of charge feedback ECMS controller 

which simultaneously optimises and selects the 

adaption factors (proportional controller gain and 

initial equivalence factor) as single parameters which 

can be applied in real time, over any driving cycle. 

Unlike other existing state of charge feedback 

methods, this approach solves a conflicting multi-

objective optimization control problem, thus ensuring 

that the obtained adaptation factors are optimized for 

robustness, charge sustenance and fuel reduction. 

 

The potential of the proposed “Proportional ECMS 
controller” was thoroughly explored over a number of 
legislative and real-world drive cycles with varying 

vehicle power requirements. The results showed that, 

whilst achieving fuel savings in the range of 8.40 to 

19.68% depending on the cycle, final battery state of 

charge could be optimally controlled to within ±5% of 

the target battery state of charge.   
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control, hybrid electric vehicles, Online control of 
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vehicles. 

 

1 INTRODUCTION 

 

The gradual decline of global oil reserves, in addition to 

stringent emission regulations around the world, has 

made even more critical the need for improved 

vehicular fuel economy [1-3]. In recent years, the 

scientific community and industries alike have 

proposed a variety of innovations to face this 

challenge, coming up with new solutions in the aspect 

of hybrid powertrain architectures. Hybrid electric 

vehicles (HEVs) are able to address this problem by 

introducing a powertrain with an additional propulsion 

system, constituted in its simplest form by an electric 

energy storage unit (an electric battery), an electric 

torque actuator (an electric motor), and a device which 

couples together the electric driveline and the thermal 

driveline. The additional driveline allows for greater 
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flexibility in engine use while ensuring the fulfilment of 

the power request at the wheels. 

In comparison to conventional vehicles, HEVs offer a 

number of advantages. The most popular of such 

advantages is the possibility of downsizing the original 

internal combustion engine while meeting the power 

demand at the wheels. This advantage is brought about 

by the capability of the hybrid powertrain to deliver 

power to the wheels from both the internal-

combustion engine and the electric motor at the same 

time, thus resulting in reduced fuel consumption[4, 

5].The introduction of an electric driveline in an HEV 

also allows for the regeneration of kinetic braking 

energy, which would otherwise be lost to mechanical 

brakes in conventional vehicles. Aside from fuel 

consumption related advantages, the use of HEVs also 

presents the possibility of cranking the engine with the 

electric motor, which allows for the removal of the 

starter motor from the powertrain. This new cranking 

procedure will allow for a faster, smoother and more 

improved cranking technique, as in the case of inertia 

cranking [6]. 

Crucial to achieving the aforementioned advantages is 

a real time control strategy capable of coordinating the 

on-board power sources in order to maximise fuel 

economy and reduce emissions. HEV power 

management strategies could be broadly classified into, 

optimisation-based methods which control the power 

split using exact knowledge of the future vehicle power 

demand and rule based real time implementable 

methods which control the power split without exact 

knowledge of the future vehicle power demand. 

Rule-based methods are based on heuristics and 

engineering intuition which define how the powertrain 

should respond to each situation. Consequently, these 

strategies are easy to implement online but do not 

contain any explicit optimization [7]. Most-rule based 

HEV control methods are created with the goal in mind 

of reducing fuel consumption to the greatest degree. 

As such, the rules defining the strategy are usually 

directed at employing the engine at its high efficiency 

area, as well as exploiting regenerative braking as much 

as possible. The development of rule-based HEV 

control methods is generally articulated in two steps: 

the first being the definition of the relevant rules for 

the powertrain control, and the second being 

calibration of the strategy, which is typically carried out 

by means of simulations on a vehicle model. The main 

advantage of rule based HEV control methods lies in 

their simplicity, which makes them fairly easy to 

understand and implement on actual vehicles[8-14]. 

Owing to their low computational demand, natural 

adaptability to online-applications, good reliability and 

satisfactory fuel consumption results, rule-based 

control strategies have monopolised the production 

vehicle market. Despite their widespread utilisation, 

rule-based HEV control methods still present some 

significant challenges. Typically, in a rule-based HEV 

control strategy, a huge amount of time and 

investment in qualified workforce is required to 

develop the strategy, owing to the long process of rules 

definition and calibration process. This situation is 

further worsened by the fact that the rules need to be 

redefined for every new driving condition and 

powertrain, thus posing some questions about the 

robustness of rule based HEV control strategies [15]. In 

addition to this, recent research studies show that in 

comparison with optimisation methods, rule-based 

HEV control methods produce inferior but satisfactory 

fuel consumption results [16]. 

In comparison, optimisation-based control strategies 

decide the control signals either by minimising the sum 

of the objective function over time (global 

optimisation) or by instantaneously minimising the 

objective function (local optimisation). Global 

optimisation strategies solve the control problem as a 

whole along the entire driving cycle, thus having both 

an advantage and a drawback. The advantage is that 

these strategies yield the optimal solution to the 

control problem, thanks to prior knowledge of the 

driving cycle. The drawback is that such strategies 

cannot be implemented in real time, due to the need 

for prior knowledge of the entire driving cycle. Dynamic 

programming is often employed in HEV energy 

management problems as a global optimisation 

technique to find the absolute optimal control policy 

for a specific driving cycle, and it serves as a benchmark 

for other control strategies [17-23].These energy 

management problems could be single objective or 
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multi-objective as in the case of simultaneously 

optimising for fuel economy and emissions [24]. 

 

Conversely, local optimisation techniques reduce global 

optimisation problems into a succession of local 

optimisation problems. This eliminates the need for 

future driving information, thus making it possible for 

the strategy to be implemented in real time. Despite 

yielding marginally suboptimal results in comparison to 

global optimisation strategies, local optimisation 

strategies have received the greatest research 

attention in HEV control. The Equivalent Consumption 

Minimisation Strategy (ECMS) [25-29] and Pontryagin’s 

minimum principle (PMP) [30, 31]feature as the most 

popular of these techniques among researchers. PMP is 

based on the instantaneous minimisation of a 

Hamiltonian function over a driving cycle [32, 33]. Kim 

et al.[32] employed PMP to solve an energy 

management problem for a power-split HEV 

architecture. In that study, the authors showed that by 

setting a correct initial estimate of the co-state, 

instantaneous minimisation of the Hamiltonian 

function over a driving cycle yields a control policy that 

closely matches results from dynamic programming 

when the state boundary conditions are met. 

Considering that PMP is a shooting method that solves 

a boundary value problem, the resulting control 

strategy is non-causal and thus not implementable 

online. 

 

A more readily implementable local optimisation 

approach is the ECMS [25, 33, 34]. ECMS was first 

developed based on the heuristic concept that the 

energy used to drive a vehicle over a driving cycle 

ultimately comes from the engine, and as such the 

hybrid system merely serves as an energy buffer [25]. 

This strategy is based on the instantaneous 

minimisation of a cost index, which is the sum of a 

number of operation metrics weighted by equivalence 

factors. Variations to ECMS optimization control 

strategy have been reported by a number of studies. 

Examples of these variations include the Adaptive 

ECMS [34-36] and Telemetry ECMS [37], which adjust 

the equivalence factor based on past driving data and a 

prediction for the future. Although widely reported as 

successful, these adaptive techniques can suffer from 

several drawbacks which currently impede their 

popularity among commercial HEVs. For example, 

telemetry ECMS requires additional predictive 

hardware, such as a Global Positioning System (GPS) , 

to be integrated within the vehicle which comes at an 

additional cost. Similarly, the adaptive ECMS is subject 

to additional computational burden and uncertainties. 

These uncertainties can be caused by a limited number 

of representative driving cycles (to account for 

different driving conditions), the impacts of driving 

pattern recognition on the controller performance, the 

impact of window size on pattern recognition and a 

limited number of “cycle characterizing” quantities. 
Mitigating these issues involves the development of an 

equivalence factor adaptation technique based on 

single adaptation parameters (proportional controller 

gain and initial equivalence factor) which can be 

applied in real time over any driving cycle. Using this 

technique, battery state of charge deviations of up to 

20% between the beginning and the end of driving 

cycles have been reported in literature [38]. In view of 

this challenge, a novel, simple, but effective robust 

proportional ECMS controller is proposed and tuned 

over seven standard driving cycles, to ensure that real 

time fuel savings are achieved whilst keeping the 

deviation between the initial and final battery state of 

charge within  5%. 

 

The disposition of this paper is outlined as follows: 

First, the energy management problem for a parallel 

HEV is quantified and defined, after which a quick 

derivation of the ECMS strategy is carried out using the 

Pontryagin’s Minimum Principle. Next, a brief overview 

about the challenges currently facing the 

commercialisation of ECMS strategies is discussed 

alongside the different solutions which have been 

proposed by different studies in literature. Afterwards, 

the proportional ECMS control strategy is developed, 

tuned and simulated over some standard driving cycles 

in real time. Finally, simulation results from the 

proportional ECMS controller are compared to results 

obtained from other ECMS controllers published in 

literature. 
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2 THE ENERGY MANAGEMENT PROBLEM 

 

Accurate vehicle modelling is imperative for the 

development of a robust energy controller. A quasi-

static modelling approach is employed to 

mathematically represent the dynamics of a parallel 

HEV. Detailed modelling and validation of this vehicle 

was carried out in a previous study [39] and, therefore, 

is not covered in this paper. This study, however, builds 

on the already modelled vehicle (whose data is detailed 

in Appendix 1) to define and solve the optimal HEV 

energy management problem in real time. The layout 

of the vehicle architecture is provided in Figure 1 for 

illustrative purposes. 

The rest of this section references formulas which were 

derived in a previous study by Enang et al.[39].  

 

Figure 1: Parallel hybrid electric vehicle [39] 

 

The optimal control problem in an HEV consists of 

finding the sequence of controls      that leads to the 

minimisation of the performance index  , defined as:  (            (  ))    (       (  )) ∑                      

1 

 

Where   represents the time,      is the control action,      is the state variable, [     ] is the optimisation 

horizon,    is the instantaneous cost function and   is 

the terminal cost (i.e. cost due to the final value of the 

state), which physically translates to the fuel lost or 

gained in order to attain charge sustenance. In the 

absence of plug in charging facilities on parallel HEVs, 

enforcing a charge sustaining constraint at the end of 

the driving cycle ensures that the hybrid system is 

readily available for use at any time and that the 

durability of the battery (battery life) is increased via 

reduced depth of discharge (DOD). Battery life directly 

depends on the total energy throughput that its active 

chemicals can tolerate. Ignoring other ageing effects, 

the total energy throughput is fixed, such that 1 cycle 

of 100% DOD is roughly equivalent to 2 cycles at 50% 

DOD, 10 cycles at 10% DOD and 100 cycles at 1% DOD.  

In this energy management problem, the optimal 

control law is denoted by      , and the corresponding 

optimal state trajectory is denoted by     . By 

definition, the optimal control is such that:   (              (  ))     (            (  )) 2 

 

The state variable      in this energy management 

problem is the battery state of charge (SOC), which is a 

measure of the charge left in a battery as a proportion 

of the total battery capacity. In simulation, the battery 

SOC is calculated as an integral of battery current over 

the maximum possible battery charge. The control 

vector      in this energy management problem is the 

electric motor mechanical power        and the 

instantaneous cost   is the vehicular fuel consumption  ̇ . 

Considering the convex nature of the internal-

combustion engine model, fuel consumption could be 

expressed as a function of engine speed and torque  ̇                     (Figure 2).Using the longitudinal 

model of a parallel HEV [39] as expressed by:                    ∑                                                                        

3 
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Figure 2: Engine fuel consumption map[39] 

The instantaneous cost (fuel consumption) could be 

expressed as a function of the control action thus:  ̇                . 

Equation 5[39] is defined to measure the effect of each 

control policy on the battery state of charge. 

                 √                              
5 

Where:-                   Charge: (+)              
 

Discharge: (-)           
(Assumed low to account for loses 

during regenerative energy 

conversion) 

 

                (Typical of lithium ion batteries, 

which is the same battery used in this study (see 

Appendix 1)). 

Where: 
     √                               is a measure of 

the current flowing through the battery. Consequently, 

the evolution of the battery state of charge as a 

function of the battery current could be expressed 

thus: 

    ̇       
6 

 

Limitations in the operating range of the electric motor 

and the battery mean that constraints must be applied 

to the state (battery state of charge and control 

policies (electric motor mechanical power       ) (as 

shown in Table 1) in order to ensure that both the 

electric motor and battery operate within their safe 

bounds. 

Initial state constraint          

Charge sustainability 

state constraint 

                

Instantaneous state 

constraint 

                     

Instantaneous control 

constraint 

                          

 

Table 1: Energy management control and state 

constraints 

3 ECMS DERIVATION FOR ENERGY 

MANAGEMENT 

 

The ECMS is based on the engineering intuition that in 

a charge sustaining HEV, the energy used to propel the 

vehicle originates from the fuel, and the battery is only 

used as an energy buffer. The ECMS, originally derived 

as a real time realisation of PMP, mathematically 

reformulates a global optimisation problem into a local 

optimisation problem, where the equivalent fuel 

consumed is minimised at each instant. 

PMP, originally proposed by the Russian mathematician 

Lev Pontryagin in 1958[40], provides a set of conditions 

necessary to ensure the optimisation of the control 

policy. PMP is a special case of the Euler-Lagrange 

equation of variational calculus, whose principle lies in 

the definition of the Hamiltonian function of the 

system. 
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In a charge sustaining HEV application, the principle is 

applied using the following steps: 

Step 1 

The Hamiltonian function or cost function to be 

minimised is defined thus as shown in Equation7.                        ̇                          ̇  

7 

The Hamiltonian function defined in Equation 7 

represents the instantaneous form of the integral 

optimisation cost function introduced in Equation 1. 

 

Step 2 

For optimality to be ensured, the control inputs        

are chosen such that the Hamiltonian condition                                              8 

is satisfied and the Hamiltonian is minimised, subject to 

the constraints listed in Table 1. 

 

Step 3 

The state and co-state equations are solved thus: 

State equation:     ̇    (   )          where    (A) is 

the current flowing through the battery and       is 

the maximum possible battery charge. 

The co-state equation:   ̇              

If the Hamiltonian function in Equation (7) is combined 

with the system state equation, we obtain Equation 9 

as detailed below. 

                     ̇                        
9 

 

When                           is substituted in Equation 

(9), the Hamiltonian function can be re-expressed thus 

as shown below: 

                     ̇                                                   

10 

Where       is the motor efficiency,     is the lower 

heating value ofthe fuel,       is the battery voltage 

and    is the co-state of the controller. 

Under the definition of equivalence factor thus:  

                  
11 

 

Where -       0, the Hamiltonian function can be 

expressed as:                       ̇                         ̇                                        

12 

 

Where  ̇                       is the equivalent fuel 

consumed by the vehicle. 

Under the assumption that the effect of the battery 

SOC on the equivalence factor is negligible[32], 

equation (12) can be expressed thus:  ̇                         ̇                                       

13 

Where: 0       ̇                            Equivalent fuel cost 

(g/s)  ̇                   : Engine fuel cost (g/s)                                      Battery fuel cost (g/s) 

 

Physically, the equivalence factor   can be explained as 

the equivalent conversion ratio between the thermal 

energy from fuel and electrical energy.  
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As could be inferred from Figure 3, a low equivalence 

factor implies that electrical energy is cheaper than 

using fuel and therefore the controller encourages 

battery use.  Conversely, a high equivalence factor 

implies that using electrical energy is expensive and 

therefore the controller reduces battery use. 

Pictorially, the equivalent fuel cost function expressed 

in Equation (13) is shown in Figure 4. The lenticular 

nature of the equivalent fuel cost function means that 

the optimal solution is unique at each time instant. 

Equation (13) is the mathematical representation of 

ECMS which will be applied in the rest of this study for 

the development of the robust real time HEV control 

strategy. 

 

Figure 3: Impact of equivalence factor on optimal 

control input 

Power Demand = 40000 W, Motor Speed = 2000 RPM 

 

Figure 4: Impact of motor power on battery, engine 

and equivalent fuel cost. Power Demand = 20000 W, 

Equivalence Factor = 6, Motor Speed = 1000 RPM 

4 DRIVING CYCLES 

 

Understanding real world driving conditions in the form 

of driving cycles is instrumental to the design of an 

online robust optimal control strategy. There are 11 

standard driving cycles (listed in Table 2) employed in 

this study as representatives of different driving 

scenarios. 

 

Table 2: Standard driving cycle characteristics[41] 

In order to emphasise the peculiarity of each selected 

driving cycle to this study, a novel two class grouping 

system is proposed as shown in Table 4. Using the 

proposed grouping system, the standard driving cycles 

used in this study are classified on the basis of 

aggressivity (quantified as the aggressivity factor (AGF)) 

and road type. The road type classification is based on 

the speed class grouping system originally proposed by 

Irene Berry [42], while the aggressivity classification is 

inferred from the AGF calculated in Table 3  

for non-modal driving cycles (NYCC, FTP-72, SC03, 

IM240, WLTC 3, LA92, ARTEMIS U130, US06 and 

HWFET driving cycles) as the product of average 

positive acceleration and average driving speed, or for 

modal driving cycles (NEDC and JAPAN 1015 driving 

cycles) as the product of average driving speed and the 

square of average positive acceleration. 

Driving cycle 

type

Total 

distance (m)

Total time 

(s)

Average 

positive 

acceleration 

(m/s
2
)

Average 

driving 

speed 

(Km/h)

NEDC 11017 1180 0.53 42.24

FTP72 11997 1369 0.43 36.60

JAPAN1015 4165 660 0.37 30.73

SC03 5766 596 0.42 40.38

NYCC 1903 598 0.47 16.63

HWFET 16503 765 0.16 77.76

IM240 3154 240 0.36 47.51

US06 12894 596 0.54 79.62

LA92 15802 1435 0.50 45.22

ARTEMIS U130 28737 1068 0.27 97.60

WLTC 3 23260 1800 0.41 46.30
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Table 3: Standard driving cycle aggressivity factors 

 

 

Table 4: Standard driving cycle classification based on 

road type and aggressivity 

Based on the proposed classification system, the NEDC 

driving cycle, for example, represents a calm urban 

driving scenario, while the LA92 and ARTERMIS U130 

driving cycles are representatives of aggressive urban 

driving scenarios. The same interpretation applies to 

the rest of the driving cycles classified above. 

 

 

 

 

 

5 ECMS SOLUTION TO ENERGY MANAGEMENT 

PROBLEM 

 

5.1 Impact of equivalence factor on system 

dynamics 

 

According to a number of studies [2, 25, 33, 35], there 

is a direct link between the equivalence factor and the 

battery state of charge usage over any driving cycle. 

The effect of this calibration is further shown in Figure 

5 over the NEDC, FTP72 and HWFET driving cycles. 

From these plots, three main observations are 

apparent. Firstly, a single but cycle-specific optimal 

equivalence factor is found to be responsible for charge 

sustenance (final battery SOC = 60%) over each driving 

cycle. Secondly, the ECMS control strategy in its 

present form is highly inflexible. Consequently, a slight 

deviation in the estimation of the optimal equivalence 

factor would yield an undesired controller performance 

which is non-charge sustaining in real time. Finally, the 

equivalence factor is found to correlate inversely with 

cumulative fuel savings and proportionately with the 

final battery state of charge. The peculiar nature of 

each equivalence factor, as shown in Table 5, means 

that prior knowledge of the driving cycle is needed for 

the ECMS to produce charge-sustaining control policies, 

thus yielding an inherently offline control strategy. 

Therefore, in order for ECMS to be employed online, 

the equivalence factor needs to be determined in an 

alternative way such that it does not rely on prior 

driving cycle information. 

 

 

 

 

 

 

 

 

Driving cycle 

type

Average 

positive 

acceleration 

(m/s
2
)

Average 

driving speed 

(Km/h)

Aggressivity 

factor (m
2
/s

3
)

NEDC 0.53 42.24 3.27

FTP72 0.43 36.60 4.36

JAPAN1015 0.37 30.73 3.16

SC03 0.42 40.38 4.76

NYCC 0.47 16.63 2.15

HWFET 0.16 77.76 3.39

IM240 0.36 47.51 4.75

US06 0.54 79.62 11.97

LA92 0.50 45.22 6.31

ARTEMIS U130 0.27 97.60 7.40

WLTC 3 0.41 46.30 5.27

Calm (AGF < 

4m
2
/s

3
)

Moderate (4 ≤ 
AGF ≤ 6m2

/s
3
)

Aggressive        

(AGF > 6m
2
/s

3
)

Neighborhood driving 

(Average driving speed < 

32Km/h)

JAPAN1015, 

NYCC

Urban driving (32Km/h < 

Average driving speed < 

72Km/h)

NEDC
FTP72, SC03, 

IM240, WLTC 3

LA92, 

ARTERMIS 

U130

Highway driving (Average 

driving speed > 72Km/h)
HWFET US06

Aggressivity Classification

Driving 

type 

based on 

road 

type
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(a) NEDC driving cycle 

 

 

(b) FTP72 driving cycle 

 

 

(c) HWFET driving cycle 

 

Figure 5: Impact of equivalence factor on cumulative 

fuel savings and final battery state of charge 

 

 

Table 5: Equivalence factor and controller result for 

NEDC, FTP72 and HWFET driving cycle under charge 

sustenance 

 

5.2 Existing equivalence factor adaptation 

strategies 

 

Several techniques aimed at appropriately estimating 

or adapting the equivalence factor towards 

simultaneously achieving fuel savings and charge 

sustenance over different driving cycles in real time 

have been proposed since the introduction of the 

ECMS strategy. The first simplistic approach was setting 

the equivalence factor equal to one at all times and for 

any driving cycle [43]. This strategy was found to yield 

undesired controller results which were either charge 

depleting or charge hoarding, depending on the driving 

cycle in question. Consequently, strategies for adapting 

the equivalence factor online were created. Among 

some relevant examples are equivalence factor 

adaptation based on driving cycle prediction using 

GPS[37], driving pattern recognition [44] and battery 

SOC feedback[45]. In the equivalence factor adaptation 

method using driving cycle prediction, future driving 

conditions over a discrete prediction horizon are 

estimated using a GPS or intelligent transportation 

system (ITS) device and are used to adapt the 

equivalence factor accordingly online. In the 

equivalence factor adaptation method using driving 

pattern recognition, driving pattern recognition 

techniques are used online over discrete prediction 

windows to obtain an estimate of the optimal 

equivalence factors (pre-computed using offline 

optimisation) in different driving conditions. In the 

equivalence factor adaptation method using battery 

SOC feedback, the equivalence factor is dynamically 

adjusted in order to contrast the SOC variation, thus 

maintaining its value around the reference SOC value 

Driving cycle 
Equivalence 

factor

Final battery 

SOC (%)

Cumulative 

fuel savings 

(%)

NEDC 8.512 60.00 13.57

FTP72 4.515 60.00 14.47

HWFET 8.050 60.00 10.76
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(60%), which is considered to be constant. In 

comparison to the other existing methods, equivalence 

factor adaptation based on SOC feedback appears to be 

the most promising, viable and cost-effective method 

of realising a charge sustaining ECMS optimal control in 

real-time, as shown in Table 6.  However, this potential 

is currently offset by its lack of flexibility (non-

adaptability to varying driving conditions), which is the 

main inspiration for this research. 

 

Table 6: Comparison of different equivalence factor 

adaptation techniques 

 

5.3 Proposed equivalence factor adaptation 

strategy 

 

In view of the highlighted research gap with regards to 

equivalent factor adaption, the use of a simple 

proportional controller was proposed as shown in 

Figure 6. This adaption strategy ensures charge 

sustainability by adapting online the equivalence 

factor, thus impacting the relative convenience of 

thermal and electric operation. When the battery SOC 

value is higher than the reference SOC value (60%), the 

proportional controller dynamically adapts the 

equivalence factor such that electrical energy is 

deemed cheap and therefore battery use is increased. 

The reverse happens when the battery SOC value falls 

below the reference SOC value. 

 

Figure 6: Equivalence factor adaptation based on a 

simple proportional controller 

Where:    is the initial value of the equivalence factor,     is the proportional controller gain and        

(Charge sustaining SOC) is 60%. 

The proposed adaptation strategy differs conceptually 

from other existing SOC feedback adaptation 

techniques in the sense that while existing methods 

propose the selection of the proportional controller 

gain    alone, thus making the controller performance 

heavily dependent on the intuitive estimate of the 

initial equivalence factor   , this method 

simultaneously optimises and selects the proportional 

controller gain and initial equivalence factor as single 

parameters which can be applied in real time over any 

driving cycle. Unlike other existing SOC feedback 

methods, this approach solves a conflicting multi-

objective optimisation control problem, thus ensuring 

that the obtained adaptation factors (   ,   ) are 

optimised for robustness, charge sustenance and fuel 

reduction. 

In order to estimate an appropriate value for the initial 

equivalence factor    and theproportional controller 

gain     for this controller, a sensitivity analysis of its 

impact on cumulative fuel savings and final battery 

state of charge was carried out over the NEDC, FTP-72 

and HWFET driving cycles as shown in Figure 7, Figure 8 

and Figure 9. 
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(a) Impact of initial equivalence factor and 

proportional controller gain on cumulative fuel 

savings 

 

 
 

(b) Impact of initial equivalence factor and 

proportional controller gain on final battery 

SOC 

 

Figure 7: Sensitivity analysis of initial equivalence factor 

and proportional controller gain over the NEDC driving 

cycle 

From these figures, the following two key observations 

were made: 

1. For all driving cycles analysed, an increase in 

proportional controller gain is found to 

correspond to an increase in controller 

robustness for SOC control, as well as a 

reduction in cumulative fuel savings (%) 

achieved. 

2. As the proportional controller gain is increased, 

a significant change in gradient of the final 

battery SOC (%) curve is observed, thus resulting 

in a robust controller performance in which a 

change in initial equivalence factor has very 

little effect on the change in the final battery 

state of charge. 

 
 

(a) Impact of initial equivalence factor and 

proportional controller gain on cumulative fuel 

savings 

 

 
 

(b) Impact of initial equivalence factor and 

proportional controller gain on final battery 

SOC 

 

 

Figure 8: Sensitivity analysis of initial equivalence factor 

and proportional controller gain over the FTP72 driving 

cycle 

For each driving cycle, there exist a set of unique initial 

equivalence factors and proportional controller gains 

which yield a charge-sustainingperformance. 

Considering the fuel saving potential posed by each set 

of cycle specific controller adaptation factors, the 

control dilemma lies in simultaneously selecting an 

appropriate single initial equivalence factor and 

proportional controller gain which is optimised for fuel 

reduction, charge sustenance and robustness. 
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In order to select the appropriate value of initial 

equivalence factor and proportional controller gain for 

use in real-time optimal control of the HEV, the 

following unique steps were taken: 

1. A sensitivity analysis was carried out, outlining the 

impact of initial equivalence factor and 

proportional controller gain on cumulative fuel 

savings and final battery state of charge over the 

NEDC, FTP-72, JAPAN 1015, NYCC, SC03, HWFET 

and IM240 driving cycle. 

 

2. For each controller gain and equivalence factor, 

average the corresponding cumulative fuel savings 

(%) and final battery SOC (%) accordingly as shown 

in Figure 10. 

 

3. For each set of average charge sustaining initial 

equivalence factor and controller gain, the 

corresponding average cumulative fuel savings (%) 

are plotted as shown in Figure 11. 

 

4. The charge-sustaining adaptation parameter set 

(initial equivalence factor and proportional 

controller gain) with the highest average 

cumulative fuel savings (%) is selected and applied 

to the ECMS controller in real time (Figure 11).  

 

5. Based on the steps listed above, an initial 

equivalence factor of 3.47 and a controller gain of 

1.725 were selected for the real-time control of the 

modelled vehicle.  

 

 

 

 

 
 

(a) Impact of initial equivalence factor and 

proportional controller gain on cumulative fuel 

savings 

 

 
 

(b) Impact of initial equivalence factor and 

proportional controller gain on final battery 

SOC 

 
Figure 9: Sensitivity analysis of initial equivalence factor 

and proportional controller gain over the HWFET 

driving cycle 
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(a) Impact of initial equivalence factor and 

proportional controller gain on cumulative fuel 

savings 

 
 

(b) Impact of initial equivalence factor and 

proportional controller gain on final battery 

SOC 

 

Figure 10: Sensitivity analysis of initial equivalence 

factor and proportional controller gain: Averaged over 

NEDC, FTP72, JAPAN1015, NYCC, SC03, HWFET and 

IM240 driving cycle 

 

Figure 11: Selection of initial equivalence factor and 

proportional controller gain for real time HEV control 

5.4 Real-time evaluation of the proposed 

proportional ECMS controller 

5.4.1 Evaluation over standard driving 

cycles 

 

In this section, the hybridisation potentials of the 

proposed “Robust Proportional ECMS Control” strategy 

(RPEC) are assessed over the US06, LA92, ARTEMIS 

U130 and WLTC 3 driving cycles in real-time on a 

vehicle simulation. In order to assess these potentials, 

the pre-estimated values of the initial equivalence 

factor (3.47) and the proportional controller gain 

(1.725) which was estimated in section 5.3 are applied. 

Over the US06 driving cycle (Figure 12a),which 

represents an aggressive highway driving scenario in 

the US (see Table 4), the proposed controller is found 

to be charge depleting by 1.57% as shown in(Figure 

12d), with a cumulative fuel savings of 8.40% as shown 

in (Figure 12c). 

Unlike the US06 driving cycle, the LA92 driving cycle 

(Figure 13a) represents an aggressive urban driving 

scenario which typically offers more braking 

opportunities. Over this driving cycle, the motor was 

found to significantly participate in the vehicle braking, 

which is believed to be the prime contributor to the 

near-charge-sustaining performance of 60.61% (Figure 

13d) achieved by the  controller.  In addition, a 

cumulative fuel savings of 10.40% was achieved over 

this driving cycle as shown in Figure 13c. 
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(a) US06 driving cycle profile 

 

 

(b) Power split between electric motor and engine 

 

 

(c) Cumulative fuel consumption profile 

 

 

(d) Battery state of charge profile 

 

Figure 12: RPEC controller simulation results for US06 

driving cycle 

 

Unlike the US06 and LA92 driving cycles, which are 

representative of an American aggressive highway and 

urban driving scenarios respectively, the ARTEMIS U130 

driving cycle (Figure 14a) has been introduced in this 

study to assess the hybridisation potentials of the 

controller over an aggressive urban driving scenario in 

Europe. Similar to the LA92 driving cycle, frequent 

electric motor vehicle braking is observed over the 

ARTEMIS U130 driving cycle. Consequently, a near-

charge-sustaining balance in energy of 59.28% (Figure 

14d) is achieved with a cumulative fuel savings of 

9.18% (Figure 14c). 

 

The WLTC 3 driving cycle (Figure 15a) represents a 

moderate urban driving scenario in Europe. Unlike all 

other considered driving cycles in this section, the 

WLTC 3 driving cycle offers the opportunity to 

investigate the potency of the controller over a cycle 

which is representative of the most common urban 

driving scenario in Europe. The WLTC 3 driving cycleis 

characterised by numerous braking opportunities, 

which makes it possible for the controller to achieve a  

cumulative fuel savings of 13.73% (Figure 15d), with a 

final battery state of charge of 63.63%. 

 

By combining the 11 driving cycles employed in this 

study (Table 4), a new driving profile that is 8647s (2.4 

hours) long, as shown in Figure 16a, was developed to 

test the efficacy of the controller under a long (> 2 

hours) and dynamically varying driving profiles such as 

a journey involving neighborhood, urban and highway 

driving at different aggressivity levels.  

 

Owing to the high frequency of braking events which 

characterises this driving profile, a near-charge-

sustaining performance of 59.82% (Figure 16d) with a 

cumulative fuel savings of 11.70% (Figure 16c) was 

achieved. 

 

 

 

 

 

 

 

8.40% fuel savings 
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(a) LA92 driving cycle profile 

 

(b) Power split between electric motor and engine 

 

(c) Cumulative fuel consumption profile 

 

(d) Battery state of charge profile 

 

 

Figure 13: RPEC controller simulation results for LA92 

driving cycle 

 

(a) ARTEMIS U130 driving cycle profile 

 

(b) Power split between electric motor and engine 

 

(c) Cumulative fuel consumption profile 

 

(d) Battery state of charge profile 

 

Figure 14: RPEC controller simulation results for 

ARTEMIS U130 driving cycle 

10.40% fuel savings 
9.18% fuel savings 



 

 

16 

 

 

(a) WLTC 3 driving cycle profile 

 

(b) Power split between electric motor and engine 

 

(c) Cumulative fuel consumption profile 

 

(d) Battery state of charge profile 

 

Figure 15: REPC controller simulation results for WLTC 

3 driving cycle 

 

(a) Combination of 11 driving cycles 

 

 

(b) Power split between electric motor and engine 

 

(c) Cumulative fuel consumption profile 

 

(d) Battery state of charge profile 

 

Figure 16: RPEC controller simulation results for 11 

combined driving cycles 

 

 

13.73% fuel savings 
11.70% fuel savings 
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5.4.2 Evaluation over real-world driving 

profiles 

 

In this section, the hybridisation potentials of the RPEC 

controller are accessed in simulation over various real-

world driving profiles, representing highway driving 

(Figure 17a), neighbourhood driving (Figure 18a) and 

urban driving (Figure 19a). The driving profiles used for 

this road test validation were obtained from a blind 

trial eco-drive study previously performed by Vagg et 

al. [46, 47] at the University of Bath, UK. 

Over the highway driving profile (Figure 17a), 12.62% 

fuel savings was achieved with a near-charge-sustaining 

battery SOC of 59.14%. Over the neighbourhood driving 

profile (Figure 18a), much higher fuel savings (18.34%) 

were achieved with a near-charge-sustaining 

performance (61.06%) similar to that of the highway 

driving profile. During the road test, a peak value of 

19.68% fuel savings was achieved over the urban 

driving profile (Figure 19a) with a near-charge-

sustaining SOC of 60.23%. 

Summarily, besides the US06 driving cycle which offers 

minimal braking events, the RPEC controller is able to 

guarantee, even on longer cycles and real-world driving 

profiles, promising fuel saving potentials, whilst 

effectively enforcing final battery state of charge 

deviations of less than 2%. It is, however, important to 

compare these results to those of similar existing SOC 

feedback ECMS controllers, with a view to highlighting 

the relative benefits. This comparison will be discussed 

in the next section. 

 

 

 

 

 
(a) Real world highway driving profile 

 
(b) Power split between electric motor and engine 

 
(c) Cumulative fuel consumption profile 

 
(d) Battery state of charge profile 

 

Figure 17: RPEC controller simulation results for real 

world highway driving profile 

 

 

12.62% fuel savings 
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(a) Real world neighbourhood driving profile 

 
(b) Power split between electric motor and engine 

 
(c) Cumulative fuel consumption profile 

 
(d) Battery state of charge profile 

 

Figure 18: RPEC controller simulation results for real 

world neighbourhood driving profile 

 

 

 

 
(a) Real world urban driving profile 

 
(b) Power split between electric motor and engine 

 
(c) Cumulative fuel consumption profile 

 
(d) Battery state of charge profile 

 

Figure 19: RPEC controller simulation results for real 

world urban driving profile 

 

 

 

18.34% fuel savings 

19.68% fuel savings 
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A summary of the fuel-saving potentials derived from 

applying the RPEC controller to different driving 

profiles are detailed in Table 7. 

 

Table 7: RPEC controller simulation results with an 

initial equivalence factor of 3.470 and a proportional 

controller gain 1.725 

 

5.5 Comparison of the proposed controller 

against existing SOC feedback ECMS 

controllers 

 

In this section, the RPEC controller is compared to 

existing SOC feedback controllers with different 

adaptation techniques over the US06, LA92 and 

ARTEMIS U130 driving cycles. Before carrying out this 

comparative analysis, it is imperative that we introduce 

the existing SOC feedback controllers in question. 

One such controller is the “Static prediction (SP) based 

on SOC” controller[38], which is mathematically 

represented as follows.  

When                    (   (    (            )        (              )     )
 ) 

 

When                    (   (    (            )        (              )     )
 ) 

14 

 

n = 2,             ,             ,           

The second controller being considered is the 

“Adaptive prediction (AP) based on SOC” 

controller[38], which is mathematically represented as 

follows. 

When                      (   (    (            )        (              )     )
 ) 

 

When                      (   (    (            )        (              )     )
 ) 

 

15 

          (Used to avoid integral build up), n = 2,            ,            ,            

 

Both AP and SP controllers employ the use of a tangent 

penalty function to regulate the battery SOC whenever 

it deviates from the reference SOC, which is 60%. In 

both controllers, whenever the battery SOC is close to 

the reference value, the penalty is negligible; however, 

the penalty function changes non-linearly as the SOC 

deviates from the reference value. The exponential 

coefficient governing the shape of the penalty function 

is n = 2. 

Converse to the SP controller, the AP controller 

introduces some adaptability into the system, such that 

the initial equivalence factor has a negligible effect on 

the system performance. This adaptability is facilitated 

using the feedback of previous equivalence factors, 

Driving cycle
Equivalence 

Factor

Proportional 

Controller 

gain

Cumulative 

Fuel Savings 

(%)

Final battery 

SOC (%)

US06 8.40 58.43

LA92 10.40 60.61

ARTEMIS U130 9.18 59.28

WLTC 3 13.73 63.63

Combination of 

11 driving 

cycles

11.70 59.82

Highway real 

world driving 

profile

12.62 59.14

Neighbourhood 

real world 

driving profile

18.34 61.06

Urban real 

world driving 

profile

19.68 60.23

3.470 1.725
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such that the centre of the tangent function is made to 

change according to trending values of the equivalence 

factor. In order to avoid an integral build-up in the 

system, the equivalence factor feedback for the “AP” 
controller is saturated at 40. 

Over all the driving profiles analysed (Figures 20 to 22), 

the SP controller performance is found to be greatly 

affected by the initial equivalence factor ((Figure 20(a), 

Figure 21(a) and Figure 22(a)), which weakens the 

robustness of the controller, thus making it the least 

effective of all compared controllers. 

In comparison to the RPEC controller, the AP controller 

is found to be inefficient over the US06 (Figure 20), 

LA92 (Figure 21) and ARTEMIS U130 (Figure 22) driving 

cycles. Over these driving cycles, both controllers 

deplete similar levels of battery energy, but the RPEC 

controller achieves higher fuel savings as shown in 

Figure 20a, Figure 21a, Figure 22a, for the US06, LA92 

and ARTEMIS U130 driving cycles respectively. 

 

 

 

 

 

 

 

 

 

 

(a) Impact of initial equivalence factor on final 

battery state of charge 

 

 
(b) Impact of initial equivalence factor on 

cumulative fuel savings 

 

Figure 20: Comparison of SP, AP and RPEC controllers 

over the US06 driving cycle 
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(a) Impact of initial equivalence factor on final 

battery state of charge 

 

 
(b) Impact of initial equivalence factor on 

cumulative fuel savings 

 

Figure 21: Comparison of SP, AP and RPEC controllers 

over the LA92 driving cycle 

 

 

 

(a) Impact of initial equivalence factor on final 

battery state of charge 

 

 

(b) Impact of initial equivalence factor on 

cumulative fuel savings 

 

Figure 22: Comparison of SP, AP and RPEC controllers 

over the ARTEMIS U130 driving cycle 

 

Based on the foregoing comparative analysis, the 

following general inferences could be drawn: 

1. The SP controller performance is greatly affected 

by the intuitive estimate of the initial equivalence 

factor, which means that the controller can only 

provide promising and charge sustaining results if 

an accurate estimate of the initial equivalence 

factor is made. This shortcoming limits the 

usefulness of the SP controller and thus its 

viability for real-time implementation. 

 

2. The AP controller introduces some adaptability 

into the control system by changing the centre of 

the tangent function in accordance to the trending 

values of the equivalence factor. By so doing, the 

AP controller is able to achieve a higher level of 
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charge sustenance when compared to the SP 

controller. That notwithstanding, the AP controller 

suffers from efficiency issues in that over the 

US06, LA92 and ARTEMIS U130 driving cycles, it is 

found to deplete similar battery energy levels as 

the RPEC controller but achieve less fuel savings. 

 

3. The RPEC controller performs consistently well 

across all cycles examined, minimising the final 

SOC error compared to the other controllers 

examined. Its robustness and simultaneous 

optimisation of adaptation factors for charge 

sustenance and fuel reduction make it a promising 

option for real time implementation in 

commercial HEVs. 

Simulation results of the RPEC controller over different 

driving scenarios are summarised in Table 8. This table 

compliments Table 7 with the addition of estimations 

for the fuel lost or gained due to non-charge 

sustenance. To make these estimations, Equation 16 is 

proposed and applied to this study.                         ((                       )   )             

16 

 

Where:- 

 

                       is Mass of fuel lost or gained 

due to  non-charge 

sustenance              is Mass of fuel savings 

achieved by the RPEC 

controller        Charge-sustaining battery 

state of charge  = 60%          Final battery state of 

charge 

Where:      for charge hoarding controllers      for charge depleting controllers 

      is used in charge depleting controllers to 

account for the charge loses and thus the fuel 

consumption penalties associated with battery 

recharge due to unproductive reactions. 

These estimations are important as they provide an 

insight into the control penalties associated with using 

the RPEC controller over different driving scenarios. 

 

Table 8: RPEC controller simulation results summary 

Fuel gained: (+), Fuel lost: (-) 

 

 

 

 

 

 

 

 

 

 

 

Driving Cycles

Cumulative 

fuel savings 

(g)

Cumulative 

fuel Savings 

(%)

Battery 

state of 

charge 

deviation 

(%)

Fuel lost or 

gained due 

to non 

charge 

sustenance 

(g)

US06 50.92 8.40 -1.57 4.41

LA92 79.81 10.40 0.61 -0.82

ARTEMIS U130 204.03 9.18 -0.72 8.33

WLTC 3 55.25 13.73 3.63 -3.56

Combination of 

11 driving 

cycles

418.36 11.70 -0.18 4.35

Highway real 

world driving 

profile

78.62 12.62 -0.86 3.83

Neighbourhood 

real world 

driving profile

45.29 18.34 1.06 -0.81

Urban real 

world driving 

profile

75.81 19.68 0.23 -0.29
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6 CONCLUSIONS AND FURTHER WORK 

 

This paper offers a detailed insight into ECMS optimal 

control. First, a theoretical framework for ECMS control 

is developed from the PMP. From this derivation, it is 

shown that, based on the assumption that the effect of 

the battery SOC on the equivalence factor is negligible; 

the equivalence factor could be considered as a 

constant parameter, thus reducing the complexity of 

the optimal control problem. Physically, the 

equivalence factor represents the equivalent 

conversion ratio between the thermal energy from fuel 

and electrical energy. Using a one-dimensional 

sensitivity analysis, a low equivalence factor was shown 

to imply that electrical energy is cheaper than fuel; 

therefore, the controller encourages battery use, while 

a high equivalence factor implies that using electrical 

energy is expensive. Therefore, the controller reduces 

battery use. 

Analysis on the impact of the equivalence factor on the 

fuel saving potentials of the modelled vehicle was 

undertaken over different driving cycles. The following 

useful inferences were drawn from this analysis: (1) A 

single but cycle-specific optimal equivalence factor is 

responsible for charge sustenance (final battery SOC = 

60%) over each driving cycle. (2) A slight deviation in 

the estimation of the optimal equivalence factor would 

yield an undesired controller performance, which is 

non-charge sustaining in real time. (3)The equivalence 

factor is found to correlate inversely with cumulative 

fuel savings and proportionately with final battery state 

of charge. 

Based on observations from the foregoing or 

aforementioned analysis, problems impeding the 

commercial implementation of ECMS optimal control 

were identified alongside some key solutions that have 

been proposed in literature. Despite the proposed 

solutions, the problem of non-robustness (non-

adaptability to varying driving conditions) for ECMS 

controllers still remained unaddressed and, as such, 

was considered the main inspiration for this study. 

In order to address the non-robustness issue currently 

associated with ECMS controllers, a proportional ECMS 

control strategy was proposed. This strategy works by 

adapting equivalence factors based on battery state of 

charge feedback. The proposed adaptation strategy 

differs conceptually from existing SOC feedback 

adaptation strategies in that the method 

simultaneously optimises and selects the adaptation 

factors (proportional controller gain and initial 

equivalence factor) as single parameters which can be 

applied in real-time over any driving cycle. Unlike other 

existing SOC feedback methods, this approach solves a 

conflicting multi-objective optimisation control 

problem, thus ensuring that the obtained adaptation 

factors are optimised for robustness, charge 

sustenance and fuel reduction. 

Using a two dimensional sensitivity analysis, the 

appropriate adaption factors for application in real-

time were selected (initial equivalence factor = 3.47 

and proportional controller gain = 1.725) and applied 

over a range of driving profiles. Hybridisation fuel 

saving potentials of approximately 8.40%, 10.40%, 

9.18% and 13.73% were observed over the US06, LA92, 

ARTEMIS U130 and WLTC 3 driving cycles respectively. 

A similar analysis undertaken was over three real-world 

driving profiles, representing: highway, neighbourhood 

and urban driving. Over these driving profiles, the 

following near-charge-sustaining fuel-saving 

performances were achieved: highway driving (12.62% 

fuel savings, 59.14% final battery state of charge), 

neighbourhood driving (18.34% fuel savings, 61.06% 

end battery state of charge), and urban driving (19.68% 

fuel savings, 60.23% final battery state of charge). 

 In comparison to existing SOC feedback ECMS 

controllers, the RPEC controller was found to perform 

well, specifically in two key areas. The first being that 

the controller appears robust and unaffected by the 

intuitive estimate of the initial equivalence factor as in 

the case of the “SP controller” and the second being 
that the  controller is highly efficient. Over the US06, 

LA92 and ARTEMIS U130 driving cycles, it was shown 

that the “AP  controller“ in comparison to the RPEC 

controller, depleted similar levels of battery energy but 

achieved less fuel savings. 

Despite the significant fuel savings predicted in this 

study, the absence of route preview information from 

the proposed control framework means that route 
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elevation changes are not accounted for during the 

equivalence factor adapation, thus limiting the 

robustness of the RPECcontroller to flat terrains only. 

Future reasearch studies should aim to incorportate 

route elevation information (in the form of “route-

optimised SOC trajectory”) into thecontrol framework. 

Although the inclusion of this route elevation 

information may or may not directly translate to 

further fuel savings, the evisaged extra robustness to 

be gained makes it a worthwhile pursuit. Experimental 

validation of the fuel savings reported in this paper will 

also form a major part of future research. 
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NOMENCLATURE 

General Nomenclature 

AGF Aggressivity Factor 

NEDC New European Driving Cycle 

FTP Federal Test Procedure 

WLTC Worldwide Harmonized Light duty 

Driving Test Cycle 

US United States 

NYCC New York City Cycle 

IM Inspection and Maintenance 

SC Supplementary Driving Cycle 

LA Los Angeles 

ARTEMIS  Assessment and Reliability of 

Transport Emission Models and 

Inventory Systems 

HWFET Highway Fuel Economy Test 

ECMS Equivalent Consumption 

Minimisation Strategy 

HEV Hybrid Electric Vehicle 

FC Fuel Consumption 

CUM Cumulative 

RPEC Robust Proportional ECMS 

Control 

ICE Internal Combustion Engine 

AP Adaptive Prediction 

SP Static Prediction 

SOC State of charge 

  

 

Vehicle Dynamics and Engine 

        Resistance force by grade (N)        Extra tractive force needed for the vehicle 

to achieve the requested vehicle speed 

(N)       Aerodynamic drag force (N)          Rolling resistance force (N)     Drive train efficiency 

FDR Final drive ratio    Engine gear ratio    Motor gear ratio      Tractive torque from internal combustion 

engine (Nm)      Engine speed (RPM)        Wheel Speed (RPM)    Radius of rolling wheels (m) 

 

Electrical Motor  

        Motor mechanical power (W)        Motor efficiency           Maximum motor tractive power (W)        Motor speed (RPM) 

 

Electrical Battery 

     Battery open circuit voltage (V)       Battery voltage (V)   Battery resistance (Ohms)        Future battery state of charge      Present battery state of charge        Minimum battery state of charge        Maximum battery state of charge   Present simulation time (s)  +1 Future simulation time (s)    Battery current (A)   Battery capacity (Ah)       Overall battery efficiency 



 

 

25 

 

     Battery discharge efficiency      Battery charge efficiency       Generator efficiency 

 

RPEC controller 

    Equivalence factor    Initial equivalence factor     Lower heating value of fuel (J/Kg)    Controller costate  ̇         Engine fuel cost (g/s)  ̇     Equivalent fuel cost (g/s)        Charge sustaining SOC     Proportional controller gain 
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APPENDICES 

Appendix 1: Vehicle modelling data 

Vehicle Type Light Commercial 

Fuel Diesel 

Engine 1.6HDi 90hp 

Transmission Gear 1 11/38 

 Gear 2 15/28 

 Gear 3 32/37 

 Gear 4 45/37 

 Gear 5 50/33 

 

Vehicle Parameters 

Wheel Radius 0.307 meters 

Drag Coefficient 0.35 

Rolling Resistance 0.001 

Vehicle Mass 1360 Kg 

Final Drive Ratio 4.2941 

Car Frontal Area 2   

Drive Train Efficiency 1 

Maximum Engine Speed 6500 RPM 

 

 

 

Battery Parameters 

Battery Cell Composition Lithium Ion Phosphate 

Battery Capacity 16 Ampere hours 

Battery Resistance 0.024 Ohms 

Minimum State of Charge 40% 

Maximum State of Charge 80% 

Battery Open Circuit 

Voltage 

60V 

 

Electric Motor Parameters 

Motor Manufacturer Perm Motor Germany 

Motor Type Brushless DC motor 

Motor Model PMS 120 

Max Motor Torque 42 Nm 

Max Motor Speed 4500 RPM 

Motor Gear Ratio 1.178 

 


