
Robust Proximity Queries: an Illustration of

Degree-driven Algorithm Design*

Giuseppe Liottaf Fra~co P. Preparata$ Roberto Ta~assia~

Abstract In the context of methodologies intended to

confer robustness to geometric algorithms, we elaborate on

the exact computation paradigm and formalize the notion

of degree of a geometric algorithm, aa a worst-case quan-

tification of the precision (number of bits) to which arith-

metic calculation have to be executed in order to guaran-

tee topological correctness. We aleo propose a formalism

for the expeditious evaluation of algorithmic degree. As an

application of this paradigm and an illustration of our gen-

eral approach, we consider the important classical problem

of proximity queries in 2 and 3 dimensions, and develop a

new technique for the efficient and robust execution of such

queries baaed on an implicit representation of Voronoi dia-

grams. Our new technique gives both low degree and fast

query time, and for 2D queries is optimal with respect to

both cost meixmres of the paradigm, asymptotic number of

operations md arithmetic degree.

1 Introduction

The increasing demand for efficient and reliable geomet-

ric software libraries in key applications such aa com-

puter graphics, geographic information systems, and

computer-aided manufacturing is stimulating a major

renovation in the field of computational geometry. The

inadequacy of the traditional simplified framework has

become apparent, and it is being reahzed that, in order

*Researchsupported in part by the NationalScience Founda-
tionunder grantCCR-9423847, by the U.S. Army ResearchOffice
under grant DAAH04–96-1-O013,and by the EC ESPRIT Long
Term ResearchProject ALCOM-lT under contract20244.

~Dipartirnento di Informatica e Sistemistica, univel%it~
di Roma “La Sapienza”, Vla ,%laria 113, Roma 00198,
ltsly. Work by this author performed when he was with
the Center for Geometric Computing at Brown University.
liottaOdis .uniromal.it

~Center for GeometricComputing, Departmentof Computer
Science, Brown University, 115 Waterman Street, Providence, RI

02912-1910, USA. francoOca .broun. edu

sCenter for Geometric Computing, Department of Computer

Science, Brown University,115 Waterman Street, Providence, RI

02912–1910, USA. rt~cs .brown. edu

I]ermission 10 moke digilalhml Lx>picstJ1’:111or part ,J~[lIIs nulcrial Iiw

personal or clmsroom usc i. ~,mtcd wilhoui ILccprovided that IIIc copies

are nol mode or dislrihu(ed Iiw ptwlil or C,W)IIICI-CIJI a<iulI1litgc. IIIC mpv-

righl notice. the Iille ol’llIc puhliwli<m md II. chic I‘ ppc,ill’. :111(1Ilollw Is

givrx ll)ol copyright is l}\ pcnnisston (J1’llw \C’\l. inc. “1’0coil} olhm} is<.

In repllhlislt 10posl on sm,crs ,w 10rdislrilxllc It) Iisls. retluircs spccilic

pem)ission onrl)or I’ee

(Compu(cll)orr[rl (“konwlr], 9~ N icc l:roncc

C’opyrighl I ‘)97 ACM ()-8971) I -X7X-!) ‘)7 ()(, ,S.{.5(1

to achieve an effective technology transfer, new frame

works and models are needed to design and analyze ge~

metric algorithms that are efficient in a practical realm.

The real-RAM model with its implicit infinite-

precision requirement, has proved unrealistic amd needs

to be replaced with a realistic finiteprecision model

where geometric computations can be carried out ei-

ther exactly or with a guaranteed error bound. This

has motivated a great deal of research on the subject of

robust computational geometry (see, e.g., [6, 7, 12, 13,

25, 27]). For an early survey of the different approaches

to robust computational geometry the reader is referred

to [16].

To a first, rough, approximation, robustness ap-

proaches are of two main types: perturbing and

nonperturbing. Perturbing approaches transform the

given problem into one that is intended not to suffer

from well-identified shortcomings; nonperturbing ap-

proaches are based on the notion of “exact” (rather

than “approximate”) computations, with the assump-

tion that (bounded-length) input data are error free.

In this category falls the exact geometric computation

paradigm independently advocated by Yap [28] and by

the Saarbrucken school [3, 4], and so does our approach.

Within this paradgm, we introduce the concept of de-

gree of a geometric algorithm, which characterizes, up

to a small additive constant, the arithmetic precision

(i.e., number of bits) needed by a large class of geomet-

ric algorithms. Namely, if the coordinates of the input

points of a degree-d algorithm within this class are &bit

integers, then the #gorithm may be required on some

instances to perform arithmetic computations with bit

precision d(b + 0(1)).

Theoretical analysis and experimental results show

that multiprecision numerical computations take up

most of the CPU time of exact geometric algorithms

(see, e.g., [17]). Thus, we believe that, in defining the

efficiency of a geometric algorithm, the degree should

be considered as important as the asymptotic time com-

plexity and should correspondingly play a major role in

the design stage. In fact, the principal thrust of this pa-

per is to present algorithm degree as a major design cri-

terion for geometric computation. Research along these

lines involves re-examining the entire rich body of com-

putational geometry as we know it today.

156

In this paper, we consider aa a test case a problem

area, geometric proximity, which plays a major role in

applications and has recently attracted considerable at-

tention because, due to its demands of high precision

for exact computation, it is particularly appropriate in

assessing effectiveness of robust approaches (see, e.g.,

[13]). In particular, we shall illustrate the role played

by the degree criterion if one wishes to comply with the

exact-computation paradigm.

To illustrate the approach, we recall that Voronoi

diagrams of 2D point sites are the search structures

which permit answering a proximity query without eval-

uating all query-point/site distances. Therefore, given

the set of sites, their Voronoi diagram is computed and

supplied as a planar subdivision to a point-location pro-

cedure. Assuming that the coordinates of all input data

(also called primitive points) are &bit integers, the CG

ordinates of the points computed by the algorithm (re-

ferred to here as derived points, e.g., the vertices of a

Voronoi diagram of points and segments) must be stored

with a representation scheme that supports rational or

algebraic numbers as data types (through multipreci-

sion integers). Specifically, the coordinates (z, ~) of a

Voronoi vertex are rational numbers given by the ratio

of two determinants (of respective orders 3 and 2) whose

entries are integers of well-defied maximum modulus.

The fundamental operation used by any point location

algorithm is the point-line discrimination, which con-

sists of determining whether the query point q is to the

left or to the right of an edge between vertices VI and

V2. For the case of the Voronoi diagram V(S), this is

equivzdent to evaluating the sign of a 3 x 3 determi-

nant whose rows are the homogeneous coordinates of

q, V1, and z.q, a computation that needs about 6b bits

of precision. This should be compared with the 0(n)-

time brute-force method that computes the (squares of

the) distances from q to all the sites of S, and executes

arithmetic computations with only 2b bits of precision

(which is optimal).

Guided by the low-degree criterion, in this paper

we present a technique — complying with the exact-

computation paradigm — which uses a new point-

location data structure for Voronoi diagrams, such that

the test operations executed in the point location pro-

cedure are dkhance comparisons, and are therefore ex-

ecuted with optimal 2b bits of precision. Hence, our

approach reconciles efficiency with robustness, and ad-

vocates an object-oriented programming style where ac-

cess to the geometry of Voronoi diagrams in point-

location queries is encapsulated in a small set of ge-

ometric test primitives. It must be pointed out that

distance comparisons have already been used nontriv-

ially for proximity search (extremal-search method [11]).

However, we shall show that the latter method fails

to achieve optimal degree because the search is based

on predicates requiring 4b bits of precision; moreover,

the high overhead of the search technique (which uses

the hierarchical polytope representation [8]) casts some

doubts on the practicality of the method.

The main results of this work are summarized in

Table 1. We show that previous methods for proxim-

ity queries exhibit a sharp tradeoff between degree and

query time. Namely, low degree is achieved by the slow

brute-force search method, while fast algorithms based

on point-location in a preprocessed Voronoi diagram or

on the extremal-search method have high degree. Our

new technique gives instead both low degree and fast

query time, and is optimaJ with respect to both cost

measures for queries in sets of 2D point sites.

For proofs and details omitted in this extended ab-

stract, the reader is referred to the full paper [20].

2 Degree of Geometric Prob-

lems

The numerical computations of a geometric algorithm

are basicaUy of two types: tests (predicates) and con-

structions. The two types of computations have clearly

distinct roles. Tests are associated with branching de-

cisions in the algorithm that determine the flow of con-

trol, whereas constructions are needed to produce the

output data of the algorithm. Approximations in the

execution of constructions axe acceptable, since approx-

imate results are perfectly tolerable, provided that the

error magnitude does not exceed the resolution required

by the application. On the other hand, approxima-

tions in the execution of tests may produce an incor-

rect branching of the algorithm. Such event may have

catastrophic consequences, giving rise to structurally in-

correct results. Te exact-computation paradigm there-

fore requires that tests be executed with total accuracy.

We shall therefore characterize geometric algorithms on

the basis of the complexity of their test computations.

Any such computation consists of evaluating the sign

of an algebraic eqwession over the input variables, con-

structed using an adequate set of operators, such has

{+, -, x,+, 2,...}. As we shall show below, the ex-

fpressions un er considerations we equivalent to multi-

variate polynomials.

We make here the reasonable assumption that in-

put data be dimerasionall~ cowistent, i.e., that if an

entity with the physical dimension of a length is repre-

sented with b bits, then one with the dimension of an

area be represented with 2b bits, and so on. Under the

hypothesis of dimensional consistency (where point co-

ordinates are &bit entries), a polynomial expressing a

test is homogeneous because all of its monomials must

have the same physical dimension. A primitive variable

is an input variable of the algorithm and has conven-

tional arithmetic degree 1. The arithmetic degree of

157

1 Query Method Degree Time

brute-force distance comparison 2* O(n)

nearest neighbor point location in explicit Voronoi diagram 6 O(log n) *

extremal-search method 4 O(log n) *

point location in implicit Voronoi diagram 2* O(log n) *

k-nearest neighbors brute-force distance comparison 2* O(n)

and point location in explicit order-k Voronoi diagram 6 O(log n + k) *

circular range search point location in implicit order-k Voranoi diagrum 2* O(log n + k) *

nearest neighbor among brute-force distance comparison 6 O(n)

points and segments point location in explicit Voronoi diagram 64 O(log n) *

point location in implicit Voronoi diagram 6 O(log n) *

brute-force distance comparison 2* O(n)
3D nearest neighbor point location in explicit 3D Voronoi diagram 8 O(logJ n)

point location in implicit 3D Voronoi diagmm 3 O(log’ n)

Table 1: Comparison of the degree and running time of algorithms for some fundamental proximity query problems.

A * denotes optimality. The technique introduced in this paper (point location in an implicit Voronoi diagram)

outperforms previous methods and is optimal for 2D queries.

a polynomial expression E is the common arithmetic

degree of its monomials. The arithmetic degree of a

monomizd is the sum of the arithmetic degrees of its

variables.

Definition 1 An algorithm has degree d if itstest com-

putations involve the evaluation of rnultivariate polyno-

mials of arithmetic degree at most d. A problem 11 has

degree d if any algorithm that solves 11 has degree at

least d.

Recently, Burnikel [2] has independently defined

the notion of precision of an algorithm, which is equiv-

alent to our notion of degree of an algorithm. Also, our

definition of degree is related to that of depth of deriva-

tion proposed by Yap [27, 28].

Motivated by a standard feature of geometric algo-

rithms, we also make the assumption that every mul-

tivariate polynomial of degree d used in tests depends

upon a set of size s (a small constant) of primitive vari-

ables. Therefore a multivariate polynomial haa O(sd)

distinct monomials with bounded integer coefficients, so

that the maximum value of the multivariate polynomial

is expressible with at most db + d logs bits. A conse-

quence of Definition 1 and of the above assumption is

the following fact, which justifies our use of the degree

of an algorithm to characterize the precision required in

test computations.

Lemma 1 If an algotithm has degree d and its input

variables are b-bit integers, then all the test computa-

tions can be carried out with d(b + O(l)) bits.

Typically the support of a geometric test is not

naturally expressed by a multivariate polynomial, but,

rather, by a pair (131, E2) of expressions involving the

four arithmetic operations, powering, and the extraction

of square roots, and the test consists of comparing the

magnitudes of El and E2. Such expressions always have

a physical dimension (a length, an area, a volume, etc.),

so that if they have the form of ratios, the degree of the

numerator exceeds that of the denominator.

Expressions such aa El and E2 can be viewed as

a binary tree, whose leaves represent input variables

and whose internal nodes are of two types: binary

nodes, which are labeled with an operation from the

set {+, –, x,+}, and unary nodes, which are labeled

either with a power or with a square root extraction

(notice that we restrict ourselves to this type of rad-

icals). If no radical appears in the trees of El and

E2, then the test is trivially equivalent to the evalua-

tion of the sign of a polynomial, since Ei is a rational

function of the form ~ (i = 1,2, Ni, Di are not both

triviaJ polynomials and Di # O) and El ~ E2 %

(-1)”[~’J+u(D’)(N1D2 - N2D1) >0, where u(E) = 1

if E < 0 and a(E) = O if E ~ O. (Note that the

above predicate implies the inductive assumption that

the signs of lower degree expressions N1 ,Nz, D1, and

D2 are known.) Suppose now that at least one of the

trees of El and E2 contains radicals. We prune the

tree so that the pruned tree contains no radicals except

at its leaves (notice that pruned subtrees may them-

selves contain ra&cals). Then Ni and Di (i = 1,2) can

be viewed as polynomials whose variables are the rad-

icals and whose coefficients are (polynomial) functions

of non-radicals. Given a polynomial E in a set of radi-

cals, for any radical R in thk set, we can express E aa

E = E“R + E’ where neither E“ nor E’ contains R.

Then E ~ O ~ E“R ~ –E’. The resulting expression
@ff2R2 _ Ef2 d

) oes not contain R. Therefore by this

device we can eliminate one radical. This shows that

by the four rational operations we can reduce the sign

test to the computation of the signs of a collection of

multivariate polynomials.

We now present a very simple, but useful, formal-

158

ism that enables us to rapidly evaluate the degree of the

multivariate polynomial which uniquely determines the

sign of the original algebraic expression.

The terms involved in the formal manipulations are

of two types, generic and specific. Generic terms have

the form & (for a formal variable a and an integer s),

representing an unspecified multivariate polynomial of

degrees over primitive variables. Specific terms have the

form pj, for some integer index j, representing a speci-

fied expression involving the operators {+, –, x, +, W.

The terms are members of a free commutative semir-

ing, i.e., addition and multiplication are associative and

commutative, addition distributes over multiplication,

and specific terms can be factored out. Beside these

conventional algebraic rules, we have a set of rewriting

rules of the form A + 1?, meaning that the sign of A

is uniquely determined by the sign of B. Note, the two

signs not always coincide: indeed the correspondence

between the signs of the sides depends upon the evalu-

ated signs of other expressions of lower degree.

We have seven rules, whose correctness can be

proved with elementary algebra. The rules are:

The preceding discussion establishes the following:

Theorem 1 Rules (1)– (7) am adequate to evaluate

the degree of a multivatiate polynomials which uniquely

determine the sign of an arbitnwy algebmic expression

involving square roots.

While the above rules represent an adequate for-

malism for obtaining an upper bound to the degree of

an algorithm, more subtle is the corresponding lower-

bound question. In other words, given a predicate P

that is essential to the solution of a given problem, what

is the inherent degree of P? Suppose that predicate P is

expressed by a polynomial P of degree d, and we must

decide whether the value of P is positive, negative, or

zero. Can we answer this question by computing a dk-

crete (ternary) function j of analogous evaluations of

irreducible polynomials PI, ..., p& of maximum degree

smaller than d? Clearly, ~ changes value only when

some Pj changes sign (exactly, when the value of Pj

passes by O). Thus, a O of P corresponds to a O of

some Pj. Moreover, M the arguments of Pj vary while

Pj remains O, so does ~ and hence P. Therefore, P

vanishes at all points for which Pj vanishes and, for a

well-known theorem of polynomial algebra (see, e.g., [1]

pp. 212–216), we conclude that Pj is a factor of P. This

is summarized as follows:

Theorem 2 The degree of the problem of evaluating a

predicate expressed by the sign of a polynomial P is the

maximum arithmetic degree of the factors of P that are

not alwags positive or alwags negative.

As an application of Theorem 2, we can prove a

lower bound on the degree of the nearest neighbor search

problem.

Theorem 3 The nearest neighbor search problem for a

point set has degree 2 in any fied dimension d ~ 2.

Observe that an optimal-degree algorithm for the

nearest neighbor search problem in a planar point set

can be easily obtained with the brute force approach,

where one computes all the distances between the query

point and all other points and report:s the point at min-

imum distance. However, such algorithm is both com-

putationally inefficient (it requires quadratic time) and

does not support repetitive-mode queries. In Section 3,

we present an optimal degree algorithm whose query

time and space are optimal.

Let q be a query point, let PI and p2 be two points,

and let rl and rz be two lines on the plane. The point-to-

points distance test determines whether q is closer to pl

or to p2.. The point-to-point-line distance test determines

whether q is closer to pl or to rl. The point-to-lines

distance test determines whether q is closer to rl or to

rz.

Lemma 2 The point-to-points distance test,, point-to-

point-line distance test, point-to-lines distance test can

be solved with degree 2, d, and 6, wspectively.

Another fundamental proximity primitive is the in-

circle test, that is testing whether the circle determined

by three distinct sites (points and segments) of the plane

contains a given query site. An incircle test is expressed

as a quadruple (al, a2, a3; a4), where each ai E {p, 1}

(i= l,..., 4) is either a point or a line on the plane

and we test whether a4 intersects the circle determined

by aI ,a2, and a3. The incircle test can be generalized to

the insphere test in any dimension d ~ 2. The insphere

test (pl, . . . ,P~+1;P~+2), where points Pi,. . . ,P~+l de-

termine a d-dmensional sphere and p~+2 is the query

point.

Lemma 3 [2] The incircle test (/1, 12,13;14) can

be solved with degree 40. The insphere test

(P1 ,..., Pd+l; pd+2) in w fied dimension d ? z can

be solved w“th degree d +2.

3 Point Sites in the Plane

In thk section, under our standard assumption that all

input parameters — such as coordinates of sites and

query points — are represented by &blt integers, we

consider the following proximity queries on a set S of

point sites in the plane:

159

nearest neighbor search: given query point q, find a site

of S whose Euclidean distance from g is less than

or equal to that of any other site;

k-nearest neighbors search: given query point q, find k

sites of S whose Euclidean distances from q are less

than or equal to that of any other site;

circular range search: given query points q and T, find

the sites of S that are inside the circle with center

g passing through r.

It is well known that such queries are efficiently

solved by performing point location in the Voronoi die

gram (possibly of higher order) V(S) of the sites [22].

The chain method [19], the bridged chain

method [10], the trapezoid method [21], the wbdivision

refinement method [18], and the persistent search tree

method [24] are; popular deterministic techniques for

point location in a planar map that combine theoret-

ical efficiency with good performance in practice (see,

e.g., [22]). The mndomized-incremental method [14] also

exists, that is specialized for point location in Voronoi

diagrams.

By a careful examination of the query algorithms

used in the point location methods presented in the lit-

erature, it is possible to clearly separate the primitive

operations that access the geometry of the map from

those that access only the topology. We say that a point

location method is native for a claas of maps if it per-

forms pc,int locations queries in a map itl of the class

by accessing the geometry of M exclusively through the

following three geometric test primitives that discrim-

inate the query point with respect to the vertices and

edges of M:

abov-below(q, v) determine whether query point q is

vertically above or below vertex v.

left-right (q, v) determine whether query point q is hori-

zontally to the left or to the right of vertex v.

Ieft-right(q, e) determine whether query point q is to the

left or to the right of edge e; this operation assumes

that edge e is not horizontal and its vertical span

includes q.

Test primitive Ieft-right(q, v) is typically used only

in degenerate cases (e.g., in the presence of horizontal

edges).

Some point location methods work on modified ver-

sions of the original subdivision by means of auxiliary

geometric objects introduced in the preprocessing (e.g.,

triangulation or regularization edges). We say that a

point location method is ordinay for a class of maps if

it performs point locations queries in a map M of the

class by accessing the geometry of M through the three

geometric test primitives described above for the native

methods and through left-right (q, e) tests such that e is

a fictitious edge connecting two vertices of M.

More specifically, we have:

Lemma 4 The trapezoid method and the persistent

search tree method are native for geneml maps. The

chain method and the bridged chain method are ordinary

for general maps and native for monotone maps. The

subdivision refinement method is ordinary for general

maps. The mndomized-incremental method is ordinary

for Voronoi diagrams.

Hence, all the known planar point location meth-

ods described in the literature are ordhmry for Voronoi

diagrams.

Let S be a set of n point sites in the plane, where

each site is a primitive point with &bit integer coordi-

nates. The Voronoi diagram V(S) of S is said to be

ezplicit if the coordinates of the vertices of V(S) are

computed and stored with exact arithmetic, i.e., as ra-

tional numbers (pairs of integers).

Lemma 5 The Ieft-right(q, e) test primitive in an ez-

plicit Voronoi diagram oj point sites in the plane has

degree 6.

An algorithm for proximity queries on a set S of

point sites in the plane is said to be conventional if it

computes the explicit Voronoi diagram V(S) of S and

then performs point location queries on V(S) with an

ordinary method. Note that the class of conventional

proximity query algorithms includes all the efficient al-

gorithms presented in the literature. A conventional

proximity query algorithm needs to perform test prim-

itive Ieft-right(q, e). Thus, by Lemma 5 we have:

Theorem 4 Conventional algorithms for the following

prom”mit~ query problems on a set of point sites in the

plane have degree at least 6: (i) nearest neighbor quey;

(ii) k-nearest neighbor que~; and (iii) circular range

quey.

We observe that a degr~6 algorithm implies that

a k-bit arithmetic unit can handle with native precision

queries for points in a grid of size at most 2k16 x 2kle.

For example, if k = 32, the points that can be treated

with single-precision arithmetic belong to a grid of size

at most 64 x 64.

The extremal-seazh method [11], also designed for

proximity queries, reduces the nearest neighbor search

problem for a set S of 2D point sites to an extremal

search problem.

Theorem 5 The eztremal-search method for the near-

est neighbor query problem on a set of point sites in the

plane has degree at least 4.

Let S be a set of n point sites in the plane, and

recall our assumption that each site or query point is a

primitive point with bbit integer coordinates. We say

160

that a number s is a semi-integer if it is a rational num-

ber of the type s = m/2 for some integer m. The im-

plicit Voronoi diagram V*(S) of S is a representation of

the Voronoi diagram V(S) of S that consists of a topo-

logical component and of a geometric component. The

topological component of V*(S) is the planar embed-

ding of V(S), represented by a suitable data structure

(e.g., doubly-connected edge lists [22] or the data struc-

ture of [15]). The geometric component of V* (S) stores

the following geometric information for each vertex and

edge of the embedding:

● For each vertex w of V(S), V*(S) stores semi-
integers x*(u) and y“ (v) that approximate the x-

and ~-coordinates ~(v) of v, We provide the def-
inition of y“ (v) below. The definition of z“ (v) is

analogous.

(v(v) O< ~(v) < 2b – 1, y(v) integer

Ieft-right(g, v) can be perfornaed in 0(1) time with de-

gree 1, and test primitive Ieft-right(q, e) in O(1) time

with degree 2.

In order to execute a native point location algorithm in

an implicit Voronoi diagram, we only need to redefine

the implementation of the three test primitives. By hav-

ing encapsulated the geometry in the test primitives, no

further modifications are needed. Hence, by Lemma 6

and Theorem 3 we obtain:

Lemma 7 For ang native method on a class of maps

that includes Voronoi diagrams, a point location query

in an implicit Voronoi diagmm has optimal degree 2 and

has the same asymptotic time complexity as a point lo-

cation query in the corresponding explicit Voronoi dia-

gram.

In order to compute the implicit Voronoi diagram

V*(S), we begin by constructing the Delaunay triangu-

{

lg(u)] + ~ Os ~(v) ~ 2b – 1, y(v) not integer lation ofs, denoted DT(S), by means of the O(n log n)-
?J*(V)= 2b–~ g(v) > 2b -1

(0 “ y(u) <0

Note that semi-integers Z*(v) and ~“(v) can be

stored with (b+ I)-bits.

● For each non-horizontal edge e of V(S), V*(S)

stores the pair of sites t(e) and r(e) such that e

is a portion of the perpendicular bisector of l(e)

and ~(e), and t(e) is to the left of r(e).

Equipped with the above information, the three

test primitives for point location can be performed in

the implicit Voronoi diagram V*(S) aa follows:

above- below(q, v) compare the y-coordinate of q with

y*(v);

Ieft-right(q, v) compare the z-coordinate of q with z“ (v);

left-right (q,e) compare the Euclidean distances of point

q from sites l(e) and r(e).

Since the query point q is by assumption a primi-

tive point whose coordinates are bbit integers, we have

that y(g) s ~(v) if and only if ~(q) < y“(v), where test-

ing the latter inequality has degree 1. Similar consid-

erations apply to testing z(q) ~ Z(V). This proves the

correctness of our implementation of above-below(g, v)

and Ieft-right(q, v).

The correctness of the above implementation of

test left-right (q, e) follows directly from the definition of

Voronoi edges. Thus, in an implicit Voronoi diagram,

test left-right (q, e) can be implemented with a point-to-

points distance test that has degree 2 (Lemma 2).

Hence, we obtain the following lemma:

Lemma 6 In an implicit Voranoi diagram of point

sites in the plane test primitives above-below(q, v) and

time algorithm of [15], which has degree 4 because its

most expensive operation in terms of the degree is the

incircle test (see Lemma 3). The topological structure

of V(S) and the sites l!(e) and r(e) for each edge e of

V(S) are immediately derived from D!T(S) by duality.

Next, we compute the approximations z* (v) and y*(v)

for each vertex v of V(S) by means of integer division.

Let a, b, and c be the three sites of S that define ver-

tex v. Adopting the same notation as in the proof of

Lemma 5, the y-coordinate y(v) of v is given by the

ratio y(v) = ~, where Y1 is a variable of arithmetic

degree 3 and WI is a variable of arithmetic degree 2, and

similarly for z(v). Hence, the computation of x* (v) and

~“(v) involves integer represented by at most 3(b+O(l))

bits. We summarize the above analysis as follows.

Lemma 8 The implicit Voronoi diagmm of n point

sites in the plane can be computed in O(n log n) time,

O(n) space, and with degree 4.

Theorem 6 Let S be a set of n point sites in the plane.

There exists an O(n) -space data structure for S, based

on the implicit Voronoi diagmm V*(S), that can be com-

puted in O(n log n) time with degree 5, and supports

nearest neighbor quen”es in O(log n) time with optimal

degree 2.

We can define implicit higher order Voronoi dia-

grams for point sites in the plane, and extend the above

results to k-nearest neighbors and circular range search

queries. We have

Theorem 7 Let S be a set of n point sites in the plane

and k an integer with 1 ~ k ~ n – 1. There ezists

an O(k(n – k)) -space data structure for S, based on

the implicit order-k Voronoi diagmm V:(S), that can

be computed in O(k(n – k) filog n) time with degree 5

and supports k-nearest neighbors queries in O(log n + k)

time with optimal degree 2.

161

Theorem 8 Let S be a set of n point sites in the plane.

There exists an 0(n3) -space data structure for S, based

on implicit order-k Voronoi diagrams, that can be com-

puted in 0(n3) time with degree 5 and supports circular

range search queries in O(log n log log n + k) time with

optimal degree 2.

4 Point Sites in 3D Space

In this section, we consider the following proximity

query on a set S of point sites in three-dimensional (3D)

space:

nearest neighbor search: given query point q, find a site

of S whose Euclidean distance from q is less than

or equal to that of any other site;

We recall our assumption that the sites and query

points are primitive points represented by bbit integers.

As for the two-dimensional case, such query is ef-

ficiently answered by performing point location in the

3D Voronoi diagram of S.

There are only two known efficient spatial point

location methods for cell-complexes that are applica-

ble to 3D Voronoi diagrams: the separating surfaces

method [5, 26], which extends the chain-method [19],

and the persistent planar locution method [23], which

extends the persistent search tree method [24]. Let

N be the number of facets of a cell-complex C. The

query time is O(log2 IV) for both methods. The space

used is O(N) for the separating surfaces method and

O(IV logz iV) for the persistent planar location method.

Both methods are restricted to convex cell-complexes.

The separating surfaces method is further restricted to

acyclic convex cell-complexes, where the dominance re-

lation among cells in the z-direction is acyclic.

We can separate the primitive operations that ac-

cess the geometry of the cell-complex from those that

access only the topology. We say that a point location

method is native for a class of 3D cell-complexes if it

performs point locations queries in a cell complex C

of the class by accessing the geometry of C exclusively

through the following three geometric test primitives

that discriminate the query point with respect to the

vertices and edges of C’:

above- below(q, v) compare the z-coordinate of the

query point q with the z-coordinate of vertex v.

Ieft-right(q, v) compare the z-coordinate of the query

point q with the x-coordinate of vertex v.

front-rear(q, v) compare the y-coordinate of the query

point q with the y-coordinate of vertex v.

Ieft-right(qxy, e=v) compare the zy-projection q=~ of the

query point q with the s~-projection of edge e=v.

This operation assumes that ezv is not parallel to

the x-axis and its y-span includes qzu.

above-below(q, f) determine whether query point q is

above or below a facet f; this operation assumes

that facet ~ is not parallel to the z-axis and that

the xg-projection of f contains the xy-projection

of q.

Test primitives above-below(q, v) and Ieft-right(q, v)

are used only in degenerate cases (e.g. in the presence

of facets parallel to the z-axis and in cases where e~v is

horizontal).

Lemma 9 The $eparating surfaces method is native for

acyclic convex cell-complexes. The persistent planar lo-

cation method is native for convex cell-complexes.

Hence, all the known spatial point location meth-

ods described in the literature are native for 3D Voronoi

diagrams.

Let S be a set of n point sites in 3D, where each site

is a primitive point with bbit integer coordinates. The

3D Voronoi diagram V(S) of S is said to be ezpiicit if the

coordinates of the vertices of V(S) are computed and

stored with exact arithmetic, i.e., as rational numbers

(pairs of integers).

Lemma 10 The Ieft-right(q=v, e=v) test primitive in an

ezplicit Voronoi diagram of point sites in 3D space has

degree &

An algorithm for nearest neighbor queries on a set

S of point sites in 3D space is said to be conventional if

it computes the explicit 3D Voronoi diagram V(S) of S

and then performs point location queries on V(S) with

a native method. Recall that the class of conventional

nearest neighbor query algorithms includes the two effi-

cient algorithms presented in the literature. A conven-

tional proximity query algorithm needs to perform test

primitive Ieft-right(qzti, e.ti). Thus, by Lemma 10, we

have:

Theorem 9 Conventional algorithms for the nearest

neighbor query problem on a set of point sites in 3D

space have degree at least 8.

The definition of the implicit 3D Voronoi dia-

gram V*(S) of a set of S of point sites in 3D space

is a straightforward extension of the definition for

tw~dimensional Voronoi diagrams given in Section 3.

Namely V*(S) stores the topological structure of the

3D Voronoi diagram V(S) of S (e.g., the data structure

of [9]) and the following geometric information for each

vertex and facet:

b

●

For each vertex v of V(S), V*(S) stores the semi-

integer (b+ I)-bit approximations z“ (v), y*(v) and

z*(v) of the z-, w-, and z-coordinates of v.

For each facet f of V(S) that is not paraJlel to any

of three Cartesian planes, V*(S) stores the pair of

sites l(f) and r(f) such that f is a portion of the

162

perpendicular bisector oft’(f) and r(~), and l(f) is

below r(~).

The tests above- below(q, v), left-right (q, v),

front-rear(q, v) can be implemented comparing the x-,

y- and z-coordinate of query point q with x(v);, y(v)”,

and z(v) * respectively. With the same reasoning as for

the two-dimensional case (see Section 3), it is easy to

see that such implementations are correct. Test primi-

tive above-below(q, ~) is implemented by comparing the

Euclidean distances of point g from the two sites t(e)

and r(e) of which j is the perpendicular bisector, with

a point-to-points distance test. The implementation is

correct by the definition of Voronoi facet. Thus, by

Lemma 2, we have.

Lemma 11 In an implicit Voronoi diagram of 3D point

sites test primitives above-below(q, v), left-right (q, v),

front-rear(g, v) can be performed in 0(1) time tvith de-

gree 1, and test primitive above-below(q, ~) can be per-

formed in O(1) time and with degree 2.

Finally, test left-right (qzV, ezv) is implemented by

determining the sign of the equation of the line that

contains edge ezv when computed at point qzv.

Lemma 12 Test primitive Ieft-right(q=U,ezv) in an im-

plicit Voronoi diagram of 3D point sites can be per-

formed in O(1) time and with degree 3.

In order to execute a native point location algo-

rithm in an impiicit 3D Voronoi diagram, we only need

to redefine the implementation of the five test primi-

tives. By having encapsulated the geometry in the test

primitives, no further modifications are needed. Hence,

by Lemmas 11-12 we obtain:

Lemma 13 For ang native method on a class of cell-

complmes that includes 3D Voronot diagrams, a point

location quey in an implicit 3D Voronoi diagram has

degree 3 and has the same asymptotic time complexity

as a point location query in an ezplicit 3D Voranoi dia-

gram.

The Voronoi dia~am of n point sites in 3D space is

an acyclic convex cell complex with iV = 0(n2) facets.

Hence, using the separating surfaces method on the im-

plicit 3D Voronoi diagram yields the following result:

Theorem 10 Let S be a set of n point sites in 3D

space. There exists an 0(n2) -space data structure for

S that can be computed in 0(n2) time with degree 7 and

supports nearest neighbor queries in 0(log2 n) time with

degree 3.

Although the algorithm for nearest neighbor

queries proposed in this section has nonoptimal de-

gree 3, it is a practical approach for the important ap-

plication scenario where the primitive points are pixels

on a computer screen. On a typical screen with about

210 x 210 pixels, our nearest neighbor query can be ex-

ecuted with the standard integer arithmetic of a 32-bit

processor.

5 Point and Segment Sites in

the Plane

In this section, we consider the following proximity

query on a set S of point and segment sites in the plane:

nearest neighbor search: given query point q, find a site

of S whose Euclidean distance from q is less than

or equal to that of any other site.

As for the other queries studied in the previous

sections, such query is efficiently solved by performing

point location in the Voronoi diagram of the set of point

and segment sites [22]. The Voronoi diagram V(S) of a

set S of point and segment sites is a map whose edges

are either straight-line segments or arcs of parabolas.

Hence, in general V(S) is neither convex nor monotone.

In order to perform point location in V(S), we refine

V(S) into a map with monotone edges as follows. If

edge e of V(S) is an arc of parabola whose point p of

maximum (or minimum) ~-coordinate is not a vertex,

we split e into two edges by inserting a fictitious ver-

tex at point p. We call the resulting map the eztended

Voronoi diagram V’(S) of S. The persistent search tree

method and the trapezoid method can be used as native

methods on the extended Voronoi diagram, where the

test primitives are the same as those defined in Section 3

for point sites. If we want to use the chain method or

the bridged chain method, we need to do a further re-

finement that transforms the map into a monotone map

by adding vertical fictitious edges emanating from the

fictitious vertices previously inserted along the parabolic

edges.

Lemma 14 The trapezoid method and the persistent

search tree method are native, and the chain method

and the bm”dgedchain method are ordinay for extended

Voronoi diagrams of point and segment sites.

Let S be a set of n points and segment sites. The

extended Voronoi diagram V’(S) of S is said to be ez-

plicit if the coordinates of the vertices of V’(S) are com-

puted and stored with exact arithmetic, i.e., as algebraic

numbers [3, 28]. In the following lemma, we analyze the

degree of test primitive Ieft-right(q, e) for a straight-line

edge e of an explicit extended Voronoi diagram.

Lemma 15 The Ieft-right(q, e) test primitive for a

straight-line edge e in an ezplicit extended Voronoi di-

agram of point and segment sites in the plane has de-

gree 64.

An algorithm for proximity queries on a set S of

point and segment sites in the plane is said to be con-

ventional if it computes the explicit extended Voronoi

diagram V’(S) of S and then performs point location

163

queries on V’(S) with a native method. Note that

the class of conventional proximity query algorithms

includes all the efficient algorithms presented in the

literature. A conventional proximity query algorithm

needs to perform test primitive Ieft-right(q, e). Thus, by

Lemma 15 we conclude:

Theorem 11 Conventional algorithms for the nearest

neighbor query problem on a set of point and segment

sites in the plane have degree at least 64.

Our analysis shows that performing point location

in an explicit Voronoi diagram of points and segments

is not practically feasible due to the high degree.

The definition of the implicit Voronoi dlagrarn

V*(S) of a set of S of point and segment sites is a

straightforward extension of the definition for Voronoi

diagrams of point sites given in Section 3. Namely

V*(S) stores the topological structure of the extended

Voronoi diagram V’(S) of S (e.g., the data structure

of [9]) and the following geometric information for each

vertex and edge:

● For each vertex v of V’(S), V*(S) stores the semi-

integer (b+ I)-bit approximations x*(v) and V*(v)

of the Z- and ~-coordinates of v.

s For each non-horizontal edge e of V’(S), V*(S)

stores the pair of sites l(e) and r(e) such that e

is a portion of the bisector of .?(e) and r(e), and

l(e) is to the left of r(e).

In the implicit Voronoi diagram V*(S) of S, test

left-right(q, e) is implemented by comparing the dis-

tances of query point q from sites l(e) and r(e) with

one of the following tests, depending on the type (point

or line) of sites t’(e) ad r(e): point-to-lines distance

test, point-to-point-line distance test, or point-to-points

distance test. Thus, by Lemma 2, we have.

Lemma 16 For any native method on a class of maps

that includes extended Vomnoi diagmms of point and

segment sites in the plane, a point location que~ in an

implicit Voronoi diagmm has degree 6 and has the same

asymptotic time complexity as a point location que~ in

an ezpiicit Vomnoi diagmm.

Theorem 12 Let S be a set of n point and segment

sites in the plane. There exists an O(n) -space data

structure for S that can be computed in O(n log n) ex-

pected time with degree 40 and supports nearest neighbor

queries in O(log n) time with degree 6.

6 Simplified Implicit Voronoi

Diagrams

In this section, we describe a modification of implicit

Voronoi diagrams of point sites that allows us to reduce

the degree of the preprocessing task from 5 to 4 when the

sites are in the plane (see Theorems 6—8), and from 7

to 5 when the sites are in three-dimensional space (see

Theorem 10). This modification also has a positive im-

pact on the space requirement of the data structure and

on the running time of point location queries. Let V(S)

be the Voronoi diagram of a set S of point sites in the

plane. We recall our standard assumption that all in-

put parameters — such as coordinates of sites and query

points — are represented as bbit integers. An island of

V(S) is a connected component of the map obtained

from V(S) by removing all the vertices with integer y-

coordinate and all the edges containing a point with

integer ~-coordinate. Note that for any two vertices VI

and V2 of an island, U“(vl) = y*(v2) = m+ ~ for some in-

teger m, where g“ (v) is the semi-integer approximation

defined in Section 3. The simplified implicit Voronoi

diagmm VO(S) of S is a representation of the Voronoi

diagram V(S) of S that consists of a topological com-

ponent and of a geometric component. The topological

component of VO(S) is the planar embedding obtained

from V(S) by contracting each island of V(S) into an

a2ias vertex. The geometric component of V“ (S) stores

the following geometric information for each vertex and

edge of the embedding:

●

●

●

For each vertex v that is also a vertex of V(S),

V“ (S) stores the (b+ I)-bit semi-integers approxi-

mations Z*(v) and y“ (v).

For each alias vertex a, which is associated with

an island of V(S), V“ (S) stores semi-integer y“ (a)

such that g“ (a) = y*(v) for each vertex v of the

island.

For each non-horizontal edge e that is also an edge

of V(S), V“(S) stores the pair of sites l(e) and

r(e) such that e is a portion of the perpendicular

bisector of t!(e) and r(e), and .?(e) is to the left of

r(e).

The space requirement of the simplified implicit

Voronoi diagram is less than or equal to that of the im-

plicit Voronoi diagram, since each island is represented

by a single alias vertex storing only its semi-integer y-

approximation. We can show examples where the sim-

plified implicit Voronoi diagram of n point sites haa

O(n) fewer vertices and edges than the corresponding

implicit Voronoi diagram.

Lemma 17 For anp native method on a class of maps

that includes monotone maps, a point locntion query in

a simplified implicit Voronoi diagram has optimal de-

gree 2 and executes a number of operations less than

or equal to a point location quey in the corresponding

ezplicit Voronoi diagmm.

Lemma 18 The simplified implicit Voronoi diagmm of

n point sites in the plane can be computed in O(n log n)

time, O(n) space, and with degree 4.

164

The main advantage of the simplified implicit

Voronoi diagram with respect to the degree cost mea-

sure is that the additional test primitive needed in

the preprocessing that consists of comparing the V-

coordlnates of two Voronoi vertices (see the proof of

Theorem 6) is now reduced to the comparison of two

(b+ I)-bit semi-integers, and thus haa degree 1. Hence,

the preprocessing for point location using a native

method for monotone maps has degree 1.

Theorem 13 Let S be a set of n point sites in the

plane. There exists an O(n) -space data strwcture for S,

based on the simplified implicit Vomnoi diagram V“(S),

that can be computed in O(n log n) time with degree 4

and supports nearest neighbor gueries in O(log n) time

with optimal degree 2.

Using a similar approach, we can define simplified

implicit order-k Voronoi diagrams for point sites in the

plane and simplified implicit Voronoi diagrams for point

sites in threedmensional space. This reduces the de-

gree of the preprocessing from 5 to 4 in Theorems 7

and 8, and from 7 to 5 in Theorem 10.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Bother. Introduction to higher algebm. Macmillan,

1907.

C. Burnikel. Ezact Computation of Vorunoi Diagrams

and Line Segment Intersections. Ph.D thesis, Univer-

sitat des Saarlandm, Mar. 1996.

C. Burnikel, J. Konnemann, K. Mehlhorn, S. Niiher,

S. Schirra, and C. Uhrig. Exact geometric computation

in LEDA. In Proc. 1lth Annu. ACM Sympos. Comput.

Geom., pages C18-C19, 1995.

C. Bnrnikel, K. Mehlhorn, and S. Schirra. On degen-

eracy in geometric comput ationa. In Proc. 5th ACM-

SIAM Sympos. Discrete Algorithms, pages 16-23, 1994.

B. Chazelle. How to search in history. Inform. Control,

64:77-99, 1985.

K. L. Clsrkson. Safe and effective determinant evalua-

tion. In Proc. 33nf Annu. IEEE Sympos. Found. Com-

put. Sci., pages 387-395, 1992.

D. P. Dobkin. Computational geometry and computer

graphics. f%oc. IEEE, 80(9):1400-1411, Sept. 1992.

D. P. Dobkin and D. G. Kukpatrick. Fast detection of

polyhedral intersection. Thwret. Comput. Sci., 27:241-

253, 1983.

D. P. Dobkln and M. J. Leszlo. Primitives for the ma-

nipulation of three-dimensional subdlvisiona. Aigotith-
mica, 4:3–32, 1989.

H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Opti-

mal point location in a monotone subdivision. SIAM

J. Comput., 15:317-340, 1986.

H. Edelsbrunner and H. A. Maurer. Findkg extreme

points in three dimensions and solving the post-office

problem in the plane. Inform Process. Lett., 21:39-47,
1985.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Fortune. Stable maintenance of point set triangu-

lations in two dimensions. In Proc. 30th Annu. IEEE

Sympos. Found. Comput. Sci., pages 494-505, 1989.

S. Fortune and C. J. Van Wyk. Efficient exact arith-

metic for computational geometry. In Proc. 9th Annu.

ACM Sympos. Comput. Geom., pagea 163-172, 1993.

L. J. Guibas, D. E. Knuth, and M. Sharir. Random-

ized incremental construction of Delaunay and Voronoi

diagrams. Ahgorithmica, 7:381-413, 1992.

L. J. Guibas and J. Stolfi. Primitives for the manip-

ulation of g,eneral subdivisions and the computation

of Voronoi diagrams. ACM !Mms. Gmph., 4:74-123,

1985.

C. M. Hoffmann. The problems of accuracy and ro-

bustness in geometric computation. IEEE Computer,
22(3):31-41, Mar. 1989.

M. Karasick, D. Lieber, and L. R. Nackman. Effi-

cient Dekaunay triangulations using rational arithmetic.

ACM Trans. Gmph., 10:71-91, 1991.

D. G. Kirkpatrick. Optimal search in planar subdivi-

sions. SIAM J. Comput., 12:28-35, 1983.

D. T. Lee and F. P. Preparata. Location of a point

in a planar subdivtilon and its applications. SIAM J.

Comput., 6:594-606, 1977.

G. Liotta, F. P. Preparata, and R. Tam=-

sia. Robust proximity queries: an illustration of

degree-driven algorithm design. SIAM J. Com-
put. (to appear). Also available as Technical

Report CS-96-16, Center for Geometric Comput-

ing, Comput. Sci. Dept., Brown Univ., Providence,

Rl, 1996. URL: http: //www.cs.brown. edn/cgc/cgc-

papers/cgc-papers. html.

F. P. Preparata. A new approach to planar point loca-

tion. SIAM J. Comput., 10:473–482, 1981.

F. P. Preparata and M. I. Shames. Computational Ge-

ometry: An Introduction. Springer-Verlag, New York,

NY, 1985.

F. P. Preparata and R. Tamassia. Efficient point loca-

tion in a convex spatial cell-complex. SIAM J. Com-

put., 21:267-280, 1992.

N. Sarnak and R. E. Tarjan. Planar point location using

persistent search treea. Commun. ACM, 29:669-679,
1986.

K. Sugihara and M. Iri. Construction of the Voronoi

diagram for ‘one million’ generators in single-precision

arithmetic. Proc. IEEE, 80(9):1471-1484, Sept. 1992.

R. Tarmwsia and J. S. Vitter. Optimal cooperative

search in fractional cascaded data structures. Algorith-

mic, 15(2), 1996.

C. K. Yap. Symbolic treatment of geometric degenera-

ties. J. Symbolic Comput., 10:349-370, 1990.

C. K. Yap. Toward exact geometric computation. Com-
putational Geometry: Thwry and Applications (to ap-

pear).

165

