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Abstract: Reliable and efficient reconstruction of pure quantum states under the processing of noisy
measurement data is a vital tool in fundamental and applied quantum information sciences owing
to communication, sensing, and computing. Specifically, the purity of such reconstructed quantum
systems is crucial in surpassing the classical shot-noise limit and achieving the Heisenberg limit,
regarding the achievable precision in quantum sensing. However, the noisy reconstruction of such
resourceful sensing probes limits the quantum advantage in precise quantum sensing. For this, we
formulate a pure quantum state reconstruction method through eigenvalue decomposition. We
show that the proposed method is robust against the depolarizing noise; it remains unaffected
under high strength white noise and achieves quantum state reconstruction accuracy similar to the
noiseless case.

Keywords: quantum state tomography; depolarizing noise; quantum sensing; Heisenberg limit

1. Introduction

High-dimensional pure entangled states are capitalized in applications, such as quan-
tum communication, for higher information quantum capacity [1], provide security by
enhancing the robustness against eavesdropping [2], the efficient distillation of resource
states for implementing quantum computing algorithms [3], and optimal probe preparation
for quantum sensing to ensure quadratic enhancements in precision scaling [4].

Quantum sensing is the science of making highly sensitive measurements of physical
parameters under quantum entanglement [5]. Quantum sensor probes utilize the high
intrinsic sensitivity of quantum systems towards minute perturbations while sensing any
physical quantity. Moreover, pure entangled sensing probes benchmark classical sensors
in terms of precision. However, the accurate reconstruction of such probes is extremely
challenging due to the curse of inherent noise in the preparation process [6].

Experimentally, there have been numerous proposals on the preparation of high-
dimensional probes on the physical architectures, such as superconducting circuits, color-
center spins nuclear magnetic resonance, nitrogen vacancy center, Rydberg atoms, and
trapped ions [1,7–10]. Here, we study the preparation of qudit probes with the highest
possible accuracy under the depolarizing channel noise. This reconstruction problem of an
unknown quantum state over finite ensembles N is known as quantum state tomography
(QST). It utilizes statistical methodology to reconstruct the unknown quantum state over
a finite number of registered data obtained from a set of measurement setups optimally
chosen in advance. To fully reconstruct the mixed state, the set of measurement experiment
setups should be informationally complete.

Maximum likelihood quantum state estimation (MLE) is a popular scheme used in
quantum state tomography and is considered the standard. Sometimes, MLE yields a
rank-deficient quantum state, which is a major drawback of this technique [11,12]. Bayesian
mean estimation (BME) is proposed to tackle the rank-deficient problem imposed by the
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MLE [13–16]. Both MLE and BME become resource-intensive with the exponential growth
of the d-dimensional qudit systems in the Hilbert space [17–19]. The computational cost of
post-processing takes more time than the experiment itself. The linear regression estimation
(LRE) technique exponentially reduces the computational cost of the post-processing after
the measurement with a small amount of “accuracy sacrifice” [20,21]. The estimate through
LRE may have negative eigenvalues and result in an invalid physical state due to the
randomness of the measurement result. The technique is presented in [22] to revert the
invalid density matrix to the physically valid quantum state. An adaptive pure state
learning technique is presented in [23]. They have achieved very high accuracy for the
higher-dimensional case. However, the algorithm achieves this feat by employing the
changing basis at each iteration. Here, we provide a robust method using only a fixed
measurement basis with high accuracy.

Reconstruction of the mixed quantum state requires d2 measurement settings. It can
further be decreased if the given unknown quantum state is pure [24]. The pure quantum
state can only be realized with O(d) measurement settings [25]. Recently, pure quantum
state tomography has been demonstrated through three- and five-basis measurement
settings [26,27]. The performance of the five-basis measurement settings is better than the
three-basis measurement settings, as a function of the total number of unknown quantum
state copies. In [28], the accuracy of estimation through the five-basis measurements further
increases by modifying the reconstruction procedure. All of the described fixed-base
algorithms are more prone to white noise. In a practical scenario, there is often white noise,
which is a depolarizing noise in quantum systems. For the past few years, research has
been directed towards the reconstruction of quantum state under depolarizing noise [28,29].
The authors in [28] devised an error-corrected modified five-basis (ECMFB) protocol in
such a way that it could remove the white noise introduced during the tomography
measurement process.

In this work, we will address the problem of accurate probe state reconstruction
encountered in precise quantum sensing. Our solution revolves around the quantum
state tomography accompanied by the eigenvalue decomposition to counter inherent
depolarizing noise in the sensing probe preparation process. We analyze the quantum
state reconstruction accuracy under the noisy data and prove that the pure quantum state
extraction through our proposed technique is unaffected by the depolarizing noise. We
also compare our proposal with ECMFB and reconstruct an optimal sensing probe, i.e., Bell
state, under noise as a toy example.

2. Methods

A pure quantum state is defined by a unit norm vector and denoted as ket |ψ〉. The
general representation of quantum state is density matrix, which is a mixture of pure
state [30,31]

ρ = ∑
i

pi |ψi〉 〈ψi| , (1)

where ∑i pi = 1. The experimental noisy view of the d-dimensional density matrix can be
represented as

ρ =
1
d ∑

i
miσi, (2)

where {σi}d2

i=1 is an orthonormal Hermitian operator and mi = tr(ρσi) is the expecta-
tion value of σi on the state ρ. These orthonormal Hermitian operator bases should be
informationally complete. The generalized Gell-Mann operators are one kind of this,
with σ1 = I. GGM operators are the generalized Pauli operators for higher-dimensional
quantum systems [32]. These operators Λ(m,n) are (i) Hermitian Λ(m,n) = Λ(m,n)†, (ii) trace-
less tr

(
Λ(m,n)

)
= 0, ∀(m, n) 6= (0, 0), and (iii) obey the trace orthonormality relation

tr
(

Λ(u,v)Λ(m,n)
)
= δ(u,v),(m,n), where δ(u,v),(m,n)′ is the product of two Kronecker’s delta
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δx,y functions. On a d-dimensional Hilbert space, a total of d2− 1 GGM matrices are defined
as follows [32].

1. d(d−1)
2 symmetric GGM

Λ(j,k)
s = |j〉 〈k|+ |k〉 〈j| , 1 ≤ j < k ≤ d,

2. d(d−1)
2 antisymmetric GGM

Λ(j,k)
a = −ι̇ |j〉 〈k|+ ι̇ |k〉 〈j| , 1 ≤ j < k ≤ d,

3. (d− 1) diagonal GGM

Λ(l,l) =

√
2

l(l + 1)

(
l

∑
j=1
|j〉 〈j| − l |l + 1〉 〈l + 1|

)
, 1 ≤ l ≤ d− 1.

The probability of obtaining the outcome on a jth measurement basis is given by

pj = 〈j|ρ|j〉 , (3)

where {|j〉}with j = 1, 2, · · · , d is the orthonormal bases of any GGM operator. In this paper,
we will first calculate the expectation value of Bloch vectors for qudit with a generalized
Gell-Mann basis. We reconstruct the density matrix using these expectation values. With
the knowledge of an unknown rank-one pure state, we perform the spectral decomposition
of the density matrix and select the eigenvector corresponding to the highest eigenvalue.
This eigenvector is the desired unknown pure quantum state.

To reconstruct the quantum state ρ, we measure in GGM operators σi = Λ(m,n) and
calculate all probabilities pj corresponding to the orthonormal basis of the operator. The
expectation value of σi operator in ρ is

mi = tr(ρσi)

= tr

(
ρ ∑

j
µj |j〉 〈j|

)
= ∑

j
µj 〈j|ρ|j〉

= ∑
j

µj pj, (4)

where σi = ∑j µj |j〉 〈j| is the eigen-decomposition of an operator σi. These expected
values mi are used for quantum state tomography using the Equation (2). The resulting
mixed state is in the form of a density matrix ρ̂. To extract the pure state, we perform
the spectral decomposition on the estimated density matrix and select the eigenvector
|ψ̂〉 corresponding to the highest eigenvalue. We find that the pure state tomography
using this method shows distinguished results in the presence of depolarizing noise. The
quantum state under depolarizing noise remains the same with probability (1− λ) and
with λ probability, the quantum state transforms into a maximally mixed quantum state

N (ρ) = (1− λ)ρ +
λ

d
I, (5)

where 0 ≤ λ ≤ 1. In the following Theorem, we will show the robustness of the state
tomography algorithm under depolarizing noise.
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Theorem 1. Using the eigenvector extraction from the standard state tomography algorithm, the
estimated pure state passing through the depolarizing channel is robust under the noise strength
0 ≤ λ < 1.

Proof. Suppose we have the pure quantum state ρ = |ψ〉 〈ψ|. The depolarizing noise acting
on the quantum state transforms it into a mixed state

N (ρ) = (1− λ) |ψ〉 〈ψ|+ λ

d
I. (6)

First, we show that |ψ〉 is an eigenvector of N (ρ)

N (ρ) |ψ〉 =
(
(1− λ) |ψ〉 〈ψ|+ λ

d
I
)
|ψ〉

= (1− λ) |ψ〉+ λ

d
|ψ〉

=

(
1− λ +

λ

d

)
|ψ〉 , (7)

which shows that
(

1− λ + λ
d

)
and |ψ〉 are an eigenvalue and eigenvector ofN (ρ) , respectively.

Next, we will show that the |ψ〉 is the eigenvector that belongs to the highest eigen-
value. By measuring the quantum state in an arbitrary unit vector |φ〉, we have

〈φ|N (ρ)|φ〉 = (1− λ)| 〈φ|ψ〉 |2 + λ

d
. (8)

From the above equation, we can see that the eigenvector corresponding to the highest
eigenvalue only obtained when |φ〉 = |ψ〉, and the corresponding eigenvalue is (1− λ) + λ

d ,
which completes our proof.

We construct the estimated density matrix of the pure state under depolarizing
noise with prior information of rank one of the unknown quantum state. The estima-
tion through (2) under the depolarizing noise results in a mixed quantum state of N (ρ̂).
If we select the highest eigenvector of N (ρ̂), it yields the actual estimated pure state |ψ̂〉
as shown in Theorem 1. The Theorem suggests that our technique is robust against the
depolarizing noise. We can further increase the performance of our algorithm. In any pure
state, the tomography algorithm accuracy can be increased by combining the probability
amplitude |ck| calculated by measuring in the computational basis with the estimate of
complex phases eι̇φk using the solution of the QST pure state.

3. Results and Discussion

To compare the performance of our method, we used infidelity as a figure of merit.
Infidelity is a distance measure between two arbitrary quantum states and is given as

1−F (ρ, σ) = 1−
(

tr
(√√

ρσ
√

ρ

))2
. (9)

We generate a 102 pure quantum state randomly from the Haar measure. We plot
the mean infidelity of these generated states obtained through our method and with the
ECMFB method proposed in [28] against the dimension. The number of copies varies
from 104 to 108 as we move from top to bottom. We can conclude from Figure 1 that our
method is robust against the high depolarizing noise, and the performance is still higher
than ECMFB.

To observe the accuracy with variable noise strength, we plot the mean infidelity of
103 randomly generated states according to the Haar measure for the proposed scheme and
ECMFB as a function of noise strength λ with N = 107, where N is the total number of
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copies.. From Figure 2, we can see that, as the noise strength increases, our method remains
robust against the noise. For higher-dimensional systems, the standard algorithm we are
using utilizes d2 measurement settings. In contrast, the algorithm in [28] only employs
five bases for any dimensional system. Therefore, its accuracy is higher than our proposed
scheme with low noise for high-dimensional systems. Although we have applied our
method only to the standard state tomography algorithm, it can also be applied to any QST
technique yielding the density matrix. We can use an algorithm with fewer measurement
settings to obtain higher results for the qudits systems.

3 4 5 6 7 8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Proposed (λ = 0.6)

ECMFB (λ = 0.6)

Proposed (λ = 0.8)

ECMFB (λ = 0.8)

d

M
ea
n
In
fi
d
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y

Figure 1. The mean infidelity of 102 randomly generated pure quantum states according to the Haar
measure with our method and ECMFB against d. The number of copies increases 104 to 108 as we
move from the top to the bottom. The connection between two points represents the same number of
copies with the same noise. The performance of our method is high in all dimensional cases.

0 0.2 0.4 0.6 0.8 1
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10−5
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10−2
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100
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M
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Proposed (d = 8)
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Proposed (d = 4)

ECMFB (d = 4)

Figure 2. The mean infidelity of 103 randomly generated pure quantum states according to the Haar
measure of our algorithm and ECMFB against the λ with N = 107. We can observe that our method
shows more resilience towards the high noise strength.
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We have also plotted the interleaving position of the mean infidelity of 103 randomly
generated quantum states according to Haar measure between two algorithms. Figure 3
demonstrates that our algorithm has a more robust region as compared to the ECMFB for
d = 4, 5, · · · , 10.

4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

d

λ

ECMFB region

Proposed scheme region

Figure 3. The interleaving position for 103 was randomly generated from the Haar measure of the
ECMFB and our algorithm with N = 106. Our algorithm shows a high region for operating the QST
problem under the depolarizing noise.

To highlight the impact of our proposal, we employ Bell states, which are maximally
entangled states in the two-qubit quantum systems. The maximum entanglement bench-
marks Bell state-based quantum sensing schemes over classical sensing schemes wherein
precision is limited by classical shot noise limit [33]. Therefore, reliable reconstruction of
Bell state-based quantum sensing probes is a prerequisite in providing quadratic enhance-
ments in achievable precision under noisy physical dynamics. To exemplify this, consider
the following Bell state

|ψ〉 = 1√
2
(|HH〉+ |VV〉). (10)

We investigate the entanglement (quantified by concurrence) of the state (10) un-
dergoing various noisy dynamics, namely, amplitude damping, phase damping, and
depolarizing, as shown in Figure 4 [34]. It can be seen that entanglement vanishes for
depolarizing noise strength λ > 0.44. However, the Bell state is relatively robust against am-
plitude damping and phase damping noise. This sudden death of Bell state’s entanglement
under depolarizing noise makes it unfeasible as quantum sensing probes since quantum
advantage diminishes with entanglement sudden death. This signifies the dominance of
the depolarizing noise against other types of decoherence with regard to optimal quantum
sensing. Our algorithm, in particular, targets the reconstruction of quantum states in the
presence of relatively dominant depolarizing noise. To visualize this, we perform the
quantum state tomography of the given Bell state under the depolarizing noise strength
of λ = 0.8 and N = 106 copies. In Figure 5, we plot the real and imaginary part of the
reconstructed density matrix of the Bell state through our algorithm. Figure 5 shows that
even with the noise strength being λ = 0.8, we can accurately reconstruct the Bell state
through our algorithm.
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Figure 4. Entanglement (quantified by concurrence [34]) of the state (10) as a function of noise
strength parameter λ.
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(b) Imaginary part of the actual ρ
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(c) Real part of the estimated ρ̂
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(d) Imaginary part of the estimated ρ̂

Figure 5. (a,b) represent real and imaginary parts of the actual Bell state. (c,d) represent the recon-
structed Bell state under the depolarizing noise λ = 0.8 with 106 the number of copies.
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4. Conclusions

In this paper, we devised a scheme that provides higher quantum state reconstruction
accuracy in the presence of a strong depolarizing noise. We also compared our robust
scheme with the standard state-of-the-art ECMFB. We showed through numerical simula-
tions that the proposed algorithm outperforms the existing algorithm under depolarizing
noise. We can perform our scheme experimentally on a cloud quantum computer. In our
QST problem, the measurement on the orthonormal basis is the only experimental part. On
cloud superconducting IBM quantum computing, we have to provide an orthonormal basis
that compiles the gates according to the given unitary, and makes an orthonormal unitary,
to measure on an orthonormal set. In the future, we can employ alternate efficient state
tomography algorithms that utilize fewer measurement settings to accurately reconstruct
noise-robust sensing probes for optimal quantum sensing.
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