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We propose and analyze a new approach for quantum state transfer between remote spin qubits.
Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved
via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust
to coupling strength disorder and does not require manipulation or control over individual spins.
In principle, it can be used to attain perfect state transfer over arbitrarily long range via purely
Hamiltonian evolution and may be particularly applicable in a solid-state quantum information
processor. As an example, we demonstrate that it can be used to attain strong coherent coupling
between Nitrogen-Vacancy centers separated by micrometer distances at room temperature. Real-
istic imperfections and decoherence effects are analyzed.

PACS numbers: 03.67.Lx, 03.67.Hk, 05.50.+q, 75.10.Dg

In addition to diverse applications ranging from quan-
tum key distribution to quantum teleportation [1, 2], reli-
able quantum state transfer between distant qubits forms
an essential ingredient of any scalable quantum informa-
tion processor [3]. However, most direct qubit interac-
tions are short-range and the corresponding interaction
strength decays rapidly with physical separation. For
this reason, most of the feasible approaches that have
been proposed for quantum computation rely upon the
use of quantum channels which serve to connect remote
qubits; such channels include: electrons in semiconduc-
tors [4], optical photons [5–8], and the physical transport
of trapped ions [9]. Coupled quantum spin chains have
also been extensively studied [10–24]. A key advantage
of such spin chain quantum channels is the ability to
manipulate, transfer, and process quantum information
utilizing the same fundamental hardware [25]; indeed,
both quantum memory and quantum state transfer can
be achieved in coupled spin chain arrays [26], eliminat-
ing the requirement for an external interface between the
quantum channel and the quantum register. Prior work
on spin chain quantum channels has focused on three
distinct regimes, in which the spin chain is either initial-
ized [10–13, 24], engineered [15, 27, 29] or dynamically
controlled [19, 28, 30–32].

An important application of spin-chain mediated co-
herent coupling is in the context of realizing a room tem-
perature quantum information processor based upon lo-
calized spins in the solid-state [33]. In this case, it is
difficult to envision mechanical qubit transport, while
other coupling mechanisms are often not available or im-
pose additional prohibitive requirements such as cryo-
genic cooling [8]. At the same time, long spin chains
are generally difficult to polarize, impossible to control
with single-spin resolution, and suffer from imperfect

spin-positioning [21, 22]; such imperfections can cause
both on-site and coupling disorder, resulting in localiza-
tion [34]. For these reasons, a detailed understanding
of quantum coherence and state transfer in random spin
chains with a limited degree of external control is of both
fundamental and practical importance.

In this Letter, we propose and analyze a novel method
for quantum state transfer (QST) in an unpolarized, in-
finite temperature spin chain. In contrast to prior work,
the method requires neither external modulation of the
Hamiltonian evolution nor spin chain engineering and ini-
tialization. Furthermore, it is robust to specific, practi-
cally important types of disorder. The key idea of our ap-
proach is illustrated in Fig. 1(a). The two spin qubits at
the ends of the spin chain can be initialized and fully con-
trolled, while the coupling between these remote qubits is
mediated by a set of intermediate spins, which can not be
initialized, individually controlled, or optically detected.
We assume that the qubit-chain coupling g, which can be
variably adjusted, and the intrachain coupling κ, which is
fixed, are characterized by short-range XX interactions.
The essence of the state transfer is the long-range co-
herent interaction between the spin qubits, mediated by
a specific collective eigenmode of the intermediate spin
chain. This mode is best understood via Jordan-Wigner
(JW) fermionization, which allows for the states of an
XX spin chain to be mapped into the states of a set of
non-interacting spinless fermions. In this representation,
the state transfer is achieved by free fermion tunneling,
as shown in Fig. 1(b). In what follows, we show that the
initial state of the intermediate chain does not affect the
tunneling rate associated with free fermion state transfer
(FFST), allowing for the implementation of a SWAP op-
eration between the end qubits after a period of unitary
evolution.
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To be specific, we consider an XX Hamiltonian govern-
ing two distant qubits connected by a quantum channel
consisting of a spin-1/2 chain

H = H0 +H ′ (1)

with H0 =
∑N−1
i=1 κ(S+

i S
−
i+1 + S−i S

+
i+1) and H ′ =

g(S+
0 S
−
1 +S+

N+1S
−
N + h.c.), as shown in Fig. 1(a). Here,

S± = Sx ± iSy, where ~S = ~σ/2 and ~σ are Pauli spin
operators (~ = 1). We consider the limit g � κ, and
work perturbatively in H ′. Upon introducing fermi oper-

ators ci = eiπ
∑i−1

0 S+
j S
−
j S−i , H0 is transformed to H0 =∑N−1

i=1 κ(c†i ci+1 + cic
†
i+1), wherein conservation of total

spin z-projection becomes conservation of fermion num-
ber [35]. The subsequent diagonalization of this tight-
binding Hamiltonian occurs through an orthogonal trans-
formation f†k = 1

A

∑N
j=1 sin jkπ

N+1c
†
j with k = 1, · · · , N

and A = (N+1
2 )1/2, yielding H0 =

∑N
k=1Ekf

†
kfk, where

Ek = 2κ cos kπ
N+1 [35]. The perturbation Hamiltonian is

likewise transformed to

H ′ =

N∑
k=1

tk(c†0fk + (−1)k−1c†N+1fk + h.c.), (2)

where tk = g
A sin kπ

N+1 . We begin by restricting our dis-
cussion to odd N , where there exists a single zero energy
fermionic mode in the intermediate chain corresponding
to k = z ≡ (N + 1)/2. Thus, the two end spins are res-
onantly coupled to the zero energy fermion by H ′, and
under the assumption that the tunneling rate tz ∼ g/A is
much smaller than the fermion detuning, |Ez − Ez±1| ∼
κ/N , off-resonant coupling to other fermionic modes can
be neglected. Upon absorbing a phase factor of (−1)z−1

into c†N+1, evolution is governed by the effective Hamil-

tonian, Heff = tz(c
†
0fz+c†N+1fz+ h.c.), which describes

resonant fermionic tunneling, as shown in Fig. 1(b).
Unitary evolution under Heff for a time τ = π√

2tz
re-

sults in Ueff = e−iτHeff = (−1)f
†
z fz (1− (c†0 +c†N+1)(c0 +

cN+1)). Upon projection to the subspace spanned by

{(1, c†0, c
†
N+1, c

†
0c
†
N+1)|00〉0,N+1}, the effective evolution

can be expressed as

Ufermieff = (−1)n0+nN+1+nz (−1)n0nN+1SWAP0,N+1, (3)

where nθ = f†θfθ is the fermion number operator. Hence,
as desired, time evolution under Heff swaps the quan-
tum state of the two end fermions. However, in addition
to the SWAP gate and single fermion rotations, the end
fermions are entangled through a controlled phase gate
CP0,N+1 = (−1)n0nN+1 , which arises from fermionic an-
ticommutation relations [19, 20, 36]. Before discussing
this entanglement, let us first consider the analogous pre-
scription in the spin basis.

We consider a generic initial state Φi = (α| ↓〉 + β| ↑
〉)0 ⊗ (α′| ↓〉 + β′| ↑〉)N+1 ⊗ ΨM,nz

where Ψ represents

g
κ

…
g

0 N+1

(a)

N1

…

0 N+1

1 N2 3

k=z

z-1

z-2

z+1

z+2

a' b'κ κ κ

(b) (c)

FIG. 1: (color online). (a) Distant spin qubits coupled by
an unpolarized spin-chain quantum channel with g, the cou-
pling between qubits (yellow, green) and the spin chain and
κ, the coupling between intra-chain elements. The spin chain
can be re-expressed in terms of free fermions via the Jordan-
Wigner transformation, wherein the hopping strength is char-
acterized by κ. Boxed spins, labeled a′ and b′, represent ad-
ditional spin qubits that can correspond to the memory of a
quantum register or ancillary qubits associated with quantum
information encoding. (b) By ensuring that the end spins are
resonant with a single fermion mode (k = z), unpolarized
spin-chain state transfer becomes analogous to fermionic tun-
neling. Maintaining g � κ/

√
N ensures that off-resonant

coupling to other fermionic modes can be neglected and en-
ables state transfer independent of the intermediate spin-
chain state. (c) Graph-like state generated by FFST, between
the qubits and the intermediate spin chain [20]. Each line rep-
resents a controlled-phase gate.

the intermediate spin chain state, characterized as the
co-eigenstate of commuting operators M =

∑N
j=1 S

+
j S
−
j

and nz. After fermionization, evolution and inversion
back to the spin basis, the final spin chain state becomes

Φf = (

N∏
j=1

CP0,jCPN+1,j)CP0,N+1SWAP0,N+1Φi (4)

up to single qubit rotations. In this basis, the Wigner-
strings become controlled-phase gates and generate a
graph-like entangled state between the two end spins and
the intermediate spins, as shown in Fig. 1(c) [20].

Despite this entanglement, the use of a simple two-
qubit encoding can achieve coherent quantum state
transfer [37]. The quantum information is encoded in
two spins, a and a′, with logical basis | ↓〉 = | ↓〉a| ↓〉a′ ,
| ↑〉 = | ↑〉a| ↑〉a′ . After encoding, one first performs
FFST between spins a and b via the unpolarized spin
chain, and then, repeats the operation between spins a′

and b′, as shown in Fig. 1(a). Finally, the quantum in-
formation is decoded by applying a CNOT gate between
spins b and b′, after which, the information has been co-
herently mapped to spin b. Thus, we have demonstrated
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the ability to perform QST between spatially separated
spin qubits. Furthermore, as detailed in the subsequent
section on experimental realizations utilizing Nitrogen-
Vacancy registers, we offer an alternative solution which
achieves remote coupling of spatially separated quantum
registers through a dual-transfer protocol.

To confirm perfect quantum state transfer, we perform
numerics, as shown in Fig. 2. Specifically, we calculate
the average fidelity, F = 1

2 + 1
12

∑
i=1,2,3 Tr

[
σiE(σi)

]
, of

two-qubit encoded state transfer, where E represents the
quantum channel consisting of encoding, state trans-
fer and decoding [38]. This average fidelity can be ex-
pressed in terms of elements of the matrix e−iKτ , where
K is the N×N coupling matrix of the full Hamilto-
nian found in Eq. (1), H =

∑
i,j Ki,jS

+
i S
−
j [39]; cru-

cially, this allows for simulations of channel fidelity in
extremely long spin chains, since diagonlization of the
full Hilbert space is no longer necessary. In finite chains
of fixed length, the infidelity, ε = 1 − F , varies as a
function of g/κ, as shown in Fig. 2(a). This infidelity
results from the leakage of quantum information into the
off-resonant modes of the intermediate spin chain, and
can be analytically expressed, in the limit g � κ, as

ε ≈
∑
k 6=z

5
3

(
tk
Ek

)2

[1 + (−1)k+z cos(Ekτ)], where z =
N+1

2 [39]. In this limit, the analytic expression is in ex-
act agreement with the numerics, and is upper-bounded

by the theoretical estimate,
∑
k 6=z

10
3

(
tk
Ek

)2

, as shown in

Fig. 2(a).

Utilizing the analytic upper bound for a given chain
length N , a given intrachain coupling κ, and a given
tolerable infidelity ε0, we can compute the maximum al-
lowed g and hence the minimum state transfer time τ . By
contrast to direct dipole-dipole interactions, which would
depict a cubic scaling of τ with N , the time required
for FFST scales linearly with chain length, as shown in
Fig. 2(b) [40]. Intuitively, this results from the fact that
the condition on tz allowing for off-resonant coupling to
be neglected is tz � κ/N , implying that τ ∼ 1/tz ∼ N/κ.

Extensions.–While we have chosen to focus on the case
of odd N length intermediate chains, the extension to
even N is directly analogous. In even N chains, since
the fermion eigenspectrum is symmetric about E = 0,
no fermionic eigenmode is initially resonant with the end
spin qubits. However, by introducing a controllable de-
tuning to the end spins, H∆ = ∆(Sz0 +SzN+1), it is possi-
ble to choose an N-dependent ∆ such that the end spins
are resonant with any single fermion eigenmode in both
even and odd N cases [26]. In particular, for ∆ = Ek,
resonant tunneling will occur at the rate tk, allowing for
control over the speed of FFST.

We now generalize our analysis and consider optimiz-
ing the FFST protocol in the context of realistic imper-
fections including disorder and decoherence. On-site and
coupling disorder cause localization, asymmetry of the

(a)

10
1

10
2

10
2

10
4

1E-4 1E-3 0.01 0.1

1E-8

1E-6

1E-4

0.01
(b)

FIG. 2: (color online). (a) Numerical simulation of the infi-
delity of QST for N = 7 as a function of g/κ depicting fluctu-
ations in the infidelity. The numerical infidelity is bounded by
the theoretical estimate (bold line). (b) For a chosen tolerable
infidelity ε0 = 10−3, the minimum time τ (in units of 1/κ),
required for state transfer scales linearly with chain length.

eigenmodes, and changes in the statistics of the eigenen-
ergies [21, 22, 34]. In the thermodynamic limit in 1D,
localization occurs for any amount of disorder; thus, it
will be necessary to utilize eigenmodes whose localization
length is sufficiently large relative to the chain length,
thereby rendering such modes effectively extended and
viable for QST. Crucially, in the case of particle-hole
(PH) symmetric disorder (e.g. coupling-strength disor-
der), there exists an extended critical state at E = 0
with a diverging localization length; this ensures the ex-
istence of an extended eigenmode with a known eigenen-
ergy, suggesting that FFST is intrinsically robust against
coupling-strength disorder [34]. In the case of on-site dis-
order, random modulation of the on-site potential may
be able to restore PH symmetry [41]; in cases where this
is insufficient, it is possible to characterize the energy
spectrum and coupling strengths of the intermediate spin
chain solely through tomography of a single end spin [42].
This characterization will help allow for the identification
of a suitable, extended eigenmode.

However, the existence of an extended mode is not suf-
ficient to ensure state transfer as disorder also enhances
off-resonant tunneling rates and causes the eigenmode
wavefunction amplitude to become asymmetric at the
two ends of the chain. Despite such imperfections, by
individually tuning the qubit-chain couplings, gL (left)
and gR (right), it is possible to compensate for eigen-
mode asymmetry; furthermore, sufficiently decreasing
the magnitude of the qubit-chain coupling ensures that
off-resonant tunneling can safely be neglected, even in
the presence of disorder.

In addition to disorder, decoherence of the spin qubits
and the intermediate spin chain places a stringent lower
bound on the values of gL and gR, since τ ∼

√
N/g

[26]. Thus, an interplay of disorder and decoherence will
ultimately limit the experimental realization of FFST;
further numerical exploration of such an interplay will
provide insight into the relevant constraints [26, 39].

Experimental Realization.–Both the necessity and real-
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ization of FFST can be evinced by considering Nitrogen-
Vacancy (NV) registers in diamond, which have ex-
tremely long room-temperature coherence times [26]. In
particular, the imperfect conversion of NV centers from
single Nitrogen impurities results in substantial spatial
separation between individual registers. However, the
unconverted spin-1/2 Nitrogen impurities form a natu-
ral spin chain connecting remote registers. At ambient
temperatures, the Nitrogen impurity spin chain, which is
optically unaddressable, would be unpolarized and hence,
the proposed scheme would be essential to enable distant
NV register coupling.

Thus, we envision an array of two-qubit NV registers
connected by a quantum channel consisting of spin-1/2
implanted Nitrogen impurities [26]. Recent experiments
have demonstrated the ability to fully manipulate the
two-qubit NV register corresponding to the NV nuclear
spin, which serves as the memory qubit, and the NV
electronic spin, which is used to initialize, readout, and
mediate coupling to the intermediate spin chain [43–46].
The effective Hamiltonian described in Eq. (1) can be
achieved in such a mixed spin system via dynamic de-
coupling [26], and the qubit-chain coupling g can be fully
tuned by utilizing the structure of the NV center ground-
state manifold [26]. To apply arbitrary two qubit gates
between the nuclear memory of distant NV registers: 1)
SWAP the state of the nuclear and electronic spin of the
first register 2) apply FFST between the electronic spins
of the two registers 3) apply a CP-gate between the elec-
tronic and nuclear spin of the second register 4) repeat (2)
and (1) to return the nuclear memory of the first register
and disentangle from the intermediary chain. Together
with single qubit rotations, such an implementation of
FFST achieves a universal set of gates and hence compu-
tation in an array of NV registers connected by Nitrogen
impurity spin chains.

In summary, we have proposed a robust method to
coherently couple spatially separated quantum registers
by means of an unpolarized spin chain. The proposed
method is examined in the context of NV diamond cen-
ters, where its direct application can potentially allow for
the realization of a scalable room-temperature quantum
information processor [26]. While we have focused on
the specific case of an XX chain, the conceptual frame-
work can be used in a wide range of systems to achieve
QST through effective eigenmode tunneling. For exam-
ple, QST in an unpolarized chain can also be achieved
in the transverse field Ising model, where in contrast to
the XX chain, the JW transformation yields a fermionic
Hamiltonian which no longer conserves fermion num-
ber [39]. In fact, all Hamiltonians that are quadratic
in bose and fermi operators can be exactly diagonalized
and thus provide a natural starting point to further ex-
plore eigenmode-mediated QST. Finally, the proposed
approach may also provide insight into entanglement gen-
eration in a many-body system and the dynamics of the

disorder-driven localization transition.
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