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Abstract

Quasistatic and implicit time integration schemes are typically employed to alleviate the stringent time step re-

strictions imposed by their explicit counterparts. However, both quasistatic and implicit methods are subject to

hidden time step restrictions associated with both the prevention of element inversion and the effects of discon-

tinuous contact forces. Furthermore, although fast iterative solvers typically require a symmetric positive definite

global stiffness matrix, a number of factors can lead to indefiniteness such as large jumps in boundary conditions,

heavy compression, etc. We present a novel quasistatic algorithm that alleviates geometric and material indefi-

niteness allowing one to use fast conjugate gradient solvers during Newton-Raphson iteration. Additionally, we

robustly compute smooth elastic forces in the presence of highly deformed, inverted elements alleviating artificial

time step restrictions typically required to prevent such states. Finally, we propose a novel strategy for treating

both collision and self-collision in this context.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling – Physically based modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism – Animation

1. Introduction

Fast and robust simulations of elastic solids are becoming in-

creasingly important in computer graphics applications due

largely to the prominence of virtual characters. Feature films

such as Van Helsing, Spiderman, The Lord of the Rings and

countless others benefit from the use of humanoid characters

in scenes that would be difficult and expensive if not impos-

sible to create with live actors, see e.g. [KMGB04, ST04].

Typical models are composed of an underlying skeleton

whose motion is prescribed kinematically (from motion cap-

ture or traditional animation) and a mechanism for transmit-

ting the skeletal motion to skin deformation. Physics based

simulations of musculature and fleshy tissues are becoming

increasingly popular for producing these deformations, es-

pecially when virtual characters undergo contact and colli-

sion with the surrounding environment. Moreover, faithfully

depicting the artist’s conception of the character requires

reasonably high resolution tetrahedral meshes placing addi-

tional demands for efficiency on the simulation algorithm.

Since explicit time integration schemes can often have strin-

gent time step restrictions, various authors have investigated

† email: jteran@stanford.edu
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the use of semi-implicit (e.g. [BMF03]), fully implicit (e.g.

[TF88b, BW98]) and quasistatic (e.g. [HFS∗01, MMDJ01])

time integration schemes. Quasistatic schemes ignore iner-

tial effects and thus are not suitable for simulating less con-

strained phenomena such as ballistic motion. However, in

applications where inertial effects are relatively small com-

pared to the deformation caused by contact, collision, and

time varying boundary conditions, quasistatic solvers can of-

ten provide a speedup of one to two orders of magnitude over

explicit schemes. For example, quasistatic simulations are

well suited for flesh deformation where the flesh is rigidly

attached to bones and heavily influenced by contact, colli-

sion and self-collision.

Although implicit and quasistatic schemes remove the

time step restriction associated with wave propagation, the

Newton-Raphson method used to solve the resulting nonlin-

ear equations may produce inverted elements during itera-

tion when large time steps are used, bringing the algorithm

to a halt. For example, large displacement boundary condi-

tions tend to invert elements unless steps are taken to dis-

tribute the effects to surrounding elements, and the typical

approach is to impose an artificial time step restriction even

in the quasistatic case. This has been discussed in both the

computer graphics (e.g. [HFS∗01]) and the computational

physics (e.g. [GW03]) literature. Even in the case where the
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Figure 1: The particles of a tetrahedron mesh are randomly

scattered across a tenfold magnification of its bounding box

and the object is subsequently evolved to steady state using

our robust quasistatic solver. From top to bottom and left to

right the Newton iteration counts are 0, 1, 2, 10, 40, and 80.

The hands and feet are specified as boundary conditions.

final mesh will be inversion free, artificially small time steps

are required to ensure that every intermediate state consid-

ered during Newton-Raphson iteration is also inversion free

restricting the speed at which one can converge to the de-

sired solution. Recently, researchers have aimed at handling

inversion using altitude springs [MBTF03], volume preser-

vation terms [THMG04], rotated linear models [MG04], etc.

However, these methods change or limit the underlying par-

tial differential equation, whereas [ITF04] allows for general

nonlinear constitutive models with forces that are smooth

enough to be used in conjunction with iterative methods.

Thus, we adopt the approach of [ITF04] and extend it to the

quasistatic regime removing the artificial time step restric-

tion required by other schemes making our solution method

extremely efficient.

In each Newton-Raphson iteration, the nonlinear system of

equations is reduced to a linear system that must be solved

to advance to the next iteration. This linear system is guar-

anteed to be symmetric and positive definite in the vicin-

ity of equilibrium states, enabling the use of fast conjugate

gradient solvers. Unfortunately, the use of large time steps

produces substantial divergence from a steady state, lead-

ing to a symmetric linear system that is often indefinite.

State of the art finite element packages such as NIKE3D still

use direct solvers such as that proposed in [TWS80], even

though such methods are much slower and require consid-

erably more memory than iterative methods. [GW03] first

try a fast iterative solver switching to a slower direct method

when it fails. [HFS∗01] discussed these issues in the context

of quasistatic simulation pointing out the erratic behavior of

conjugate gradient methods and a preference against direct

methods. By adding an artificial “viscosity” to their simu-

lations, they were able to obtain reasonable results with a

GMRES iterative scheme. In the context of implicit time in-

tegration, [CK02] pointed out that extra damping forces such

as those applied in [BW98, VT00] can help to overcome in-

definiteness, but not guarantee it. Furthermore, they point

out that this damping degrades the realism of the simulation.

Instead, they take a closer look at the problem in the case

of springs identifying compression as a source of indefinite-

ness and proposing a technique to guarantee definiteness in

the special case of cloth simulation with springs. A key con-

tribution of our paper is a new and general method for guar-

anteeing positive definiteness, thus allowing for the use of

fast conjugate gradient solvers under all circumstances (in-

cluding inversion) for arbitrary constitutive models in the

finite element framework. Our method modifies the search

path followed towards equilibrium without altering the set

of equilibrium solutions or the governing equations.

2. Previous Work

[TPBF87, TF88b, TF88a] pioneered deformable models

in computer graphics including early work on plasticity

and fracture. Finite element simulations have been used

to model a hand grasping a ball [GMTT89], for vir-

tual surgery [PDA01], fracture [OH99, MMDJ01, OBH02,

MBF04], etc. Other work includes the adaptive frameworks

of [DDCB01, GKS02, CGC∗02b], the rotation based ap-

proaches in [MDM∗02, MG04, CK05] (see also [TW88]),

the bending models in [BMF03,GHDS03], the precomputed

data driven models of [JF03], and the point based methods

in [MKN∗04].

The construction of muscles and/or flesh deformation is im-

portant for computer graphics characters, and anatomy based

modeling techniques of varying resolutions have been ap-

plied. [WV97,SPCM97] used anatomically based models of

muscles, tendons and fatty tissue to deform an outer skin

layer. [NTHF02] fit deformable B-spline solids to anatomic

data in order to create volumetric, anisotropic representa-

tions of muscles and their internal structures. [AHS03] used

a variety of techniques to model a human hand. More biome-

chanically accurate techniques for muscle simulation were

proposed in [CZ92, HFS∗01, TBNF03], and a number of re-

searchers are working to simulate data from the NIH visible

human dataset, e.g. [ZCK98, HFS∗01, DCKY02, TBNF03].

Instead of creating an explicit model for muscle and fatty

tissue, one can place an articulated skeleton inside the char-

acter skin and formulate correspondences between each ver-

tex on the skin mesh and the various joints in the skeleton.

This is typically called enveloping or skinning and can suf-

fer from a number or artifacts especially near joints such as
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elbows and shoulders. A number of techniques have been

proposed to overcome these difficulties, see for example

[LCF00, SRC01, WP02, MG03]. [ACP02] used these tech-

niques in conjunction with range scan data, and [KM04]

used them to model a human hand. [KJP02] proposed a sim-

ilar method that used principal component analysis and a li-

brary of deformations precomputed with nonlinear static fi-

nite element analysis. Although these techniques are fast and

do not require one to build an underlying muscle model for

each character, they can lead to lower quality results than

full finite element simulations. A physically based approach

was taken in [JP02] to add ballistic motion to character skins

in otherwise kinematically constructed motions. [CGC∗02a]

approaches this problem by embedding the character in a

coarse finite element mesh which deforms rigidly with the

bones, but obeys a linear finite element model locally to each

bone.

3. Quasistatic Formulation

Using Newton’s second law of motion we can describe the

evolution of a deformable body using the equations ~xt =~v
and~vt = M−1~f(t,~x,~v) where~x,~v and~f denote the positions,

velocities and aggregate forces of all the nodes of the tetra-

hedral mesh. (We use x as the vector valued position of a

single node.) M is the mass matrix, which is diagonal in our

lumped mass formulation. The nodal forces can be decom-

posed into internal and external forces,~f =~fint +~fext , the

latter being supplied as time varying input to the simulation.

We apply a quasistatic assumption that both the accelerations

and velocities are zero to obtain~f(t,~x,~0) =~0 which states

that the externally supplied time varying input must be bal-

anced by the internal resistance of the material. In particular,

we use a nonlinear finite element method to solve for the in-

ternal forces, and thus we must invert a nonlinear equation

to find the time varying positions~x(t) at any time t. This is

accomplished with a Newton-Raphson iterative solver, and

each step towards the steady state solution begins with the

linearization of the nodal forces about the current solution

estimate~xk, i.e.~f(~xk +∆~xk)≈~f(~xk)+ (∂~f/∂~x)
∣

∣

∣

~xk

∆~xk where

∆~xk =~xk+1 −~xk. Since we desire force equilibrium with
~f(~xk+1) =~f(~xk +∆~xk) =~0, we solve the linear system

−
∂~f

∂~x

∣

∣

∣

∣

∣

~xk

∆~xk =~f(~xk) (1)

to find the next iterate~xk+1.

Although the quasistatic assumption does not apply to free

falling, unconstrained, lightly damped objects whose rich-

ness of deformation is largely enhanced by the effects of in-

ertia, it is a viable modeling strategy for a range of applica-

tions in which boundary conditions and external forces pre-

dominantly determine the material state (e.g. skeletal mus-

cles under a variety of conditions).

4. Strain Energy

For a hyperelastic material, the nodal forces can be defined

via the energy as ~f = −∂Ψ/∂~x, and thus we can rewrite

equation (1) as

∂ 2Ψ
∂~x2

∣

∣

∣

∣

~xk

∆~xk = −
∂Ψ
∂~x

∣

∣

∣

∣

~xk

. (2)

That is, the global stiffness matrix −∂~f/∂~x is always sym-

metric, as a result of the hyperelastic energy having continu-

ous second derivatives with respect to the spatial configura-

tion. Furthermore, a steady state corresponds to a local min-

imum of the hyperelastic energy indicating that the energy

Hessian, ∂ 2Ψ/∂~x2, (or equivalently the global stiffness ma-

trix) is positive definite in the vicinity of an isolated steady

state. Moreover, systems that possess steady states along a

continuous manifold in configuration space, such as under-

constrained bodies with rigid degrees of freedom (e.g. a sin-

gle spring with only one fixed endpoint that is otherwise free

to rotate), still exhibit semi-definite stiffness matrices at their

steady state. Thus, such systems can be reduced to the fully

constrained case by factoring out the manifold of the config-

uration space that does not affect the hyperelastic energy.

Symmetry of the coefficient matrix in the linear system (2)

allows for the use of symmetric solvers, and direct meth-

ods are commonly used. However, the fact that the stiffness

matrix is positive definite close to the steady state suggests

that symmetric positive definite solvers such as the conju-

gate gradient method might be applicable. This would al-

leviate the drawbacks of direct methods including the need

to explicitly form the stiffness matrix, the memory demands

incurred by matrix fill during the direct solve, and the exces-

sive computational expense of direct solvers as opposed to

iterative methods.

Our method modifies the coefficient matrix in equation (2)

into a positive definite symmetric matrix and proceeds to

compute the next iterate ∆~xk using this modified system.

We emphasize that this modification only alters individual

steps towards a minimum of the strain energy and not those

minima themselves. These modifications are localized to re-

gions of the simulation mesh that contribute to this indefi-

niteness. This practice of modifying the Hessian of the opti-

mization functional is common in the optimization literature

(see e.g. [GMW81]) and is usually referred to as a modified

Newton method.

5. Finite Element Forces

We follow the notation of [TBNF03], and their geometric

interpretation of the finite element method. Consider a time

dependent map φ from the undeformed material coordinates

X to world coordinates x. The stress at a point X in the ma-

terial depends on the deformation gradient F(X) = ∂x/∂X

of this mapping. We use constant strain tetrahedral elements

where F is a constant 3× 3 matrix in each tetrahedron. We
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Figure 2: Illustration of large deformation in conjunction

with collision. The hands and feet are set as boundary con-

ditions for the first row, but only the feet are fixed for the

middle and bottom rows.

define edge vectors for each tetrahedron in both material co-

ordinates, dm1
= X1 −X0, dm2

= X2 −X0, dm3
= X3 −X0,

and world coordinates, ds1
= x1 − x0, ds2

= x2 − x0, ds3
=

x3 − x0, and construct 3× 3 matrices Dm and Ds using the

edge vectors as columns. Then F = DsD
−1
m , and D−1

m is con-

stant and can be precomputed and stored for efficiency.

For hyperelastic materials, stress is defined as the derivative

of a strain energy typically constructed from various strain

invariants, and we use the first Piola-Kirchhoff stress which

is the gradient of the strain energy with respect to the de-

formation gradient, P = ∂Ψ/∂F. P maps area weighted nor-

mals in material space to forces in world space. The force

on a node i due to a single tetrahedron incident to it is

gi = −P(A1N1 +A2N2 +A3N3)/3, where the A jN j are the

area weighted normals of the faces of the tetrahedron inci-

dent to node i. Since these do not change during the simula-

tion, we can precompute a vector bi such that gi = Pbi. For

efficiency, we compute g0 =−(g1 +g2 +g3) and compactly

express the other three gi as G = PBm where G = (g1,g2,g3)
and Bm = (b1,b2,b3) = −V D−T

m with V the volume of the

tetrahedron in material space.

As noted in [ITF04], the first Piola-Kirchhoff stress is in-

variant under rotations of either material or world space for

isotropic materials. Furthermore, the deformation gradient

can be transformed into a diagonal matrix, F̂, with an appli-

cation of a material and a world space rotation, F = UF̂VT .

This decomposition is obtained from the standard singular

value decomposition of F along with the subsequent removal

of any reflections in the orthogonal U and V. This requires

the negation of the smallest singular value of F̂ for inverted

tetrahedra. Combining the rotational invariance of the first

Piola-Kirchoff stress with the diagonalization of the defor-

mation gradient yields

P(F) = UP(UT FV)VT = UP(F̂)VT (3)

where P(F̂) is also diagonal for isotropic materials. This fac-

torization is particularly convenient, because it allows for a

simple extension of the constitutive model to inverted ele-

ments in a smooth manner. That is, one only needs to modify

the diagonal P(F̂) to be valid for a single negative entry in

the diagonal F̂. For more details, see [ITF04].

6. Element Stiffness Matrix

The global stiffness matrix in equation (1) is constructed

from the additive contributions of the element stiffness ma-

trices, −∂ f/∂x, which are based on contributions from in-

dividual tetrahedra. As a result of this additive decomposi-

tion, definiteness of the element stiffness matrices is a suffi-

cient condition for definiteness of the global stiffness matrix.

Motivated by this fact, we manipulate the element stiffness

matrix to ensure global definiteness. In section 8 we show

that this elemental manipulation amounts to the solution of a

single 3×3 symmetric eigenproblem and a few simple alge-

braic operations. In contrast, dealing with the global stiffness

matrix directly can be prohibitively expensive, especially if

eigenanalysis or Cholesky factorization of that matrix is re-

quired, as in most standard approaches to treating locally

indefinite optimization problems [GMW81].

In order to establish the positive definiteness of the element

stiffness matrix, we must ensure that δxT (−∂ f/∂x)δx =
−δxT δ f > 0 for any increment δx. Using the formulas from

the last section and some tensor manipulations yields

δxT δ f =
3

∑
i=1

δxT
i δgi −δxT

0

3

∑
i=1

δgi =
3

∑
i=1

(δxi −δx0)
T δgi

= δDs : δG = tr[δDT
s δG] = −V tr[δDT

s δPD−T
m ]

= −V tr[D−T
m δDT

s δP] = −V tr[δFT δP] = −V (δF : δP) .

Since the material element volume V is always a positive

constant, the positive definiteness condition reduces to δF :

δP > 0 or δF : (∂P/∂F) : δF > 0. Therefore, the positive

definiteness of the element stiffness matrix is equivalent to

the positive definiteness of the fourth order tensor ∂P/∂F.

This result is in direct analogy with the energy based formu-

lation of the Newton-Raphson iteration system (2), since by

definition P = ∂Ψ/∂F and thus ∂P/∂F = ∂ 2Ψ/∂F2.

7. Diagonalization

Testing and enforcing positive definiteness of the fourth or-

der tensor ∂P/∂F directly can be rather unwieldy. Instead,
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Figure 3: Simulation of quasistatic flesh deformation driven by a kinematic skeleton.

we start as in [ITF04] by rotating both stresses and defor-

mations into diagonal space (transforming our configuration

using the rotation matrices that diagonalize the current F and

P). In order to do this, first note that δP = (∂P(F)/∂F)|F :

δF where we explicitly stress the dependency of P on F with

P(F). We can manipulate this equality into

δP =
∂UP(UT FV)VT

∂ (UT FV)

∣

∣

∣

∣

F

: δ (UT FV)

= U

{

∂P(F)

∂F

∣

∣

∣

∣

UT FV

: UT δFV

}

VT

= U

{

∂P

∂F

∣

∣

∣

∣

F̂

: UT δFV

}

VT (4)

where the first equality comes from equation (3) and re-

placing δF with a rotated version, the second comes from

a change of variables and the fact that U and V are chosen

independent of F, and the third comes from choosing U and

V to be the rotation matrices that diagonalize the initial value

of F, i.e. where we evaluate ∂P/∂F to linearize for iteration.

Also in the last equality, we drop the explicit dependence of

P on F.

Equation (4) provides all the information we need for solv-

ing the Newton-Raphson iteration system using a conjugate

gradient solver, since the nodal force differentials can read-

ily be computed from the stress differentials as δG = δPBm.

Furthermore we have

δP : δF = U

{

∂P

∂F

∣

∣

∣

∣

F̂

: UT δFV

}

VT : δF

= UT δFV :
∂P

∂F

∣

∣

∣

∣

F̂

: UT δFV

illustrating that the condition for definiteness, δP : δF > 0,

derived in section 6 is equivalent to positive definiteness of

(∂P/∂F)|F̂. We might expect that applying the rotations that

diagonalize the current deformation F to δP and δF would

induce a simple structure for the tensor (∂P/∂F)|F̂. In fact

this tensor turns out to have a block diagonal structure in the

case of isotropic materials.

8. Enforcing Positive Definiteness

In order to reveal the block diagonal structure of (∂P/∂F)|F̂,

we rewrite the 3 × 3 × 3 × 3 fourth order tensor as a

9 × 9 matrix. To do this, we consider the rearrange-

ment of a 3 × 3 matrix S into the 9 × 1 vector

(s11,s22,s33,s12,s21,s13,s31,s23,s32). We can then represent

(∂P/∂F)|F̂ as the 9×9 matrix that maps the vector equiva-

lent of δF to the vector equivalent of δP. For isotropic mate-

rials this matrix is block diagonal with diagonal components

A, B12, B13 and B23 where

A =





α11 +β11 + γ11 γ12 γ13

γ12 α22 +β22 + γ22 γ23

γ13 γ23 α33 +β33 + γ33



 , Bi j =

[

αi j βi j

βi j αi j

]

Here,

αi j = 2ΨI +4(σ2
i +σ2

j )ΨII

βi j = 4σiσ jΨII −
2IIIΨIII

σiσ j

γi j =
(

2σi 4σ3
i

2III
σi

) ∂ 2Ψ
∂ (I, II, III)2









2σ j

4σ3
j

2III
σ j









+
4IIIΨIII

σiσ j
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where Ψ = Ψ(I, II, III) is the strain energy written in terms

of the invariants I = tr C, II = C : C and III = detC with

C = FT F and subscripts representing partial derivatives.

Also, σ1, σ2 and σ3 are the diagonal components that con-

stitute F̂.

Positive definiteness of (∂P/∂F)|F̂ is equivalent to positive

definiteness of each of the blocks A, B12, B13 and B23. For

A a simple 3 × 3 diagonalization is required, followed by

the clamping of all negative eigenvalues to zero. For the 2×
2 matrices B12, B13 and B23 no eigenanalysis is necessary

since the negative eigenvalue, if present, can be clamped to

zero analytically.

Our algorithm computes the stress differential δP as outlined

in equation (4). First we compute the rotated deformation

differential UT δFV, and then convert this 3×3 second order

tensor into a 9×1 vector and multiply it by the 9×9 matrix

for (∂P/∂F)|F̂ to carry out the contraction. Of course, we

use the clamped positive definite version of (∂P/∂F)|F̂. The

result is then converted from a 9× 1 vector back to a 3× 3

second order tensor, before being premultiplied by U and

postmultiplied by VT .

Since we clamp eigenvalues to zero, the element stiffness

matrices are only positive semi-definite, not positive defi-

nite, which raises the issue of whether the resulting global

stiffness matrix could be semi-definite or ill-conditioned it-

self. In practice, the additive contributions of neighboring

elements and boundary conditions always lead to a positive

definite global stiffness matrix, even for configurations as

extreme as shown in Figure 1. (Note that one could clamp to

a small positive value as well.) The effect of boundary condi-

tions on the definiteness of the stiffness matrix is analogous

to that observed in the matrix resulting from the discretiza-

tion of the Poisson equation. When all Neumann bound-

ary conditions are specified, the resulting matrix is posi-

tive semi-definite. In this case a special version of Conju-

gate Gradients is still applicable, since an analytic descrip-

tion of the null space is available and, similarly, the global

stiffness matrix of an elastic object has a null space corre-

sponding to global translation and linearized rotation. Speci-

fication of one or more Dirichlet boundary conditions makes

the Poisson matrix strictly positive definite, with positional

constraints having the same effect on the definiteness of the

global stiffness matrix for elasticity.

9. Inverted Elements

Typically, realistic constitutive models have infinite strain

energy as the volume of an element approaches zero, and this

discourages element inversion when the equations of motion

are integrated with a small enough time step to resolve the

stiff material response. Nevertheless, each Newton-Raphson

iteration of a quasistatic solver begins with a linearization of

the elastic forces after which only a finite amount of energy

is required to invert the element. In order to efficiently solve

Figure 4: Illustration of self-collision handling.

the equations without artificial limits on the allowable time

step, we adopt the approach of [ITF04] smoothly extend-

ing the definition of forces past a maximum compression

threshold. Constant, linear, or smoother extrapolations can

be used for this purpose. In our work constant extrapolation

proved to be both simple and sufficient. To implement con-

stant extrapolation we threshold the diagonal values of F̂ and

compute both forces and force differentials using the thresh-

olded deformation gradient. The resulting force differentials

are then treated for indefiniteness.

10. Collisions

For volumetric collisions one could use the method in

[BFA02] applied to the triangulated boundary surface of the

tetrahedron mesh as was done in [ITF04]. There is also the

self-collision untangling strategy of [BWK03]. But we pre-

fer a penalty based formulation that can more readily be in-

corporated into the quasistatic formulation. We use a penalty

force for collision of our objects with themselves, other de-

formable tetrahedral bodies and rigid bodies. As a conse-

quence of using penalty forces, the steady state may ex-

hibit slight interpenetration of the colliding surfaces, an ef-

fect that is rather subtle and acceptable for our line of ap-

plications. The penetration depth can also be adjusted by

changing the stiffness of the penalty forces. A penetrat-

ing node receives a force in the form of the gradient of a

penetration potential defined as Ψp(x) = kφ 2(x)/2 where

φ is the signed distance to the surface of the object for

x interior to the body and zero otherwise. Then the force

is fp = −kφ(x)∇ φ(x), and the force differential is δ fp =
−k(∇ φ(x)∇ φ T (x)+φ(x) ∂ 2φ/∂x2

∣

∣

x
)δx. These forces can

corrupt the definiteness of the linearized forces used with

Newton-Raphson iteration. The potential for indefiniteness

arises from isocontours of the signed distance function with

curvatures of differing sign, see e.g. [AS96]. These curva-

tures are the eigenvalues of ∂ 2φ/∂x2, and we assure defi-

niteness by projecting this matrix to its positive definite com-

ponent in the case of rigid body collisions. For deformable
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object collisions, we omit the last term altogether. As before,

this modification does not change the equilibrium states,

only the convergence path towards one of these states.

We take a level set approach (see e.g. [OF02]) to computing

penetration depth as did [FL01, MAC04], but instead of up-

dating the level set function as the object deforms we utilize

a static level set in material space as in [HFS∗01]. However,

many key aspects of our algorithm are significantly differ-

ent than that proposed in [HFS∗01]. For each rigid and de-

formable object in the scene, we first precompute a signed

distance function on a uniform Cartesian or octree grid as

in [GBF03]. This representation is computed in object space

for rigid bodies and material space for deformable bodies

and is not updated as the simulation progresses. Collecting

the depth, normal and curvature information is straightfor-

ward for rigid bodies, but we propose a novel approach for

deformable tetrahedral bodies.

To compute point collisions against deforming tetrahedral

bodies, we maintain a bounding box hierarchy for the tetra-

hedra in each body. Then for each point, we use this hierar-

chy to find any tetrahedra that our candidate point may lie

inside (inverted tetrahedra are ignored as they represent neg-

ative space). For each tetrahedron, we compute the barycen-

tric coordinates of our candidate point to determine if the

point is either inside or very close to the tetrahedron in ques-

tion. We do not require robustness here as this computation

is not used to determine whether a point is inside an object,

but instead the barycentric coordinates are used to transform

the point from world space to material space, i.e. the point

is placed in material space keeping its same barycentric co-

ordinates but using the nodal positions of the material space

tetrahedron.

Then the material space position of the point is used to

query the material space level set to see if the point is in-

side the object, and if so the local unit normal and level set

value are used to estimate the closest point on the surface as

xc = x−φN (where φ is negative inside the object). If φ 6= 0

at xc this equation can be iterated on to find an xc as close to

the zero level set as is desired. Before the simulation begins,

we also precompute a static bounding box hierarchy for the

triangles on the surface of the object, and this is used to find

the triangle closest to xc as well as the barycentric coordi-

nates of the point on this triangle closest to xc. Before pro-

ceeding, we check to make sure that the local level set value

at this point on the triangle, xt , is larger than that at the orig-

inal point x, to ensure that xt is actually farther outside the

object than x. This keeps us from incorrectly pulling points

back towards the object (nonphysical stickiness), because of

rasterization errors with the level set function that cause it to

have a slightly different approximation to the object surface

than as given by surface triangle mesh. Finally, the barycen-

tric coordinates of xt are used to find the corresponding point

in world space, xs, on the surface of the deforming object.

In this fashion, we do not use the level set in material space

Figure 5: Quasistatic simulation of the upper torso muscu-

lature.

to push points out of the object, which is important because

this is unlikely to give us the proper directions for deformed

objects. Instead, we merely use the level set to find a point

that is truly on the surface of the object. Then the distance

from xs to x and the vector pointing between them are used

to compute φ(x) and ∇ φ(x) for the penalty forces and dif-

ferentials.

11. Examples

We demonstrate the applicability of our quasistatic algo-

rithm in a number of complex scenarios. To illustrate the

robustness of the extension of the elastic response to de-

generate and inverted elements, we solve for elastic equi-

librium with an armadillo mesh whose vertices are initially

randomly distributed on a cube ten times the size of the

armadillo mesh itself and whose hands and feet are con-

strained. Figure 1 shows a number of iterates in the solu-

tion process towards equilibrium. Figure 4 demonstrates our

algorithm for deformable collision detection and response.

In the simulation, the hands are held fixed while the feet

twist on the ground plane causing the legs to self-collide. To

demonstrate rigid body collisions, we deform the armadillo

mesh with rigid cylinders as seen in figure 2. The interac-

tions with the cylinders demonstrate the time coherency of

the strain energy local minima achieved by using the pre-

vious equilibrium state as an initial guess for the Newton-

Raphson solver.

Inertia effects are neglected when simulating quasistatic

elasticity, and deformation is primarily driven by external

time dependent forces due to contact, collision and bound-

ary conditions. As a result, quasistatic simulations are par-

ticularly well suited for flesh deformation where the flesh is

rigidly attached to bones and heavily influenced by contact,

collision and self-collision. We demonstrate the applicability

of our approach with several simulations of flesh and mus-

cles in the upper torso, derived from the visible human data

set as in [TSSB∗05].
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In figure 3, we attach the deformable flesh directly to the un-

derlying skeleton. The flesh naturally deforms from the in-

fluence of the skeleton as well as from self collision, provid-

ing realistic deformation and wrinkling of the outer skin. The

flesh mesh consists of 600 thousand tetrahedral elements and

was simulated with a neo-Hookean constitutive model ex-

tended to the inverted regime as in [ITF04]. Figure 5 shows

skeletal muscle in the upper limb simulated with the mus-

cle constitutive model outlined in [ITF04] and [TBNF03].

Although our quasistatic formulation was only presented for

isotropic materials, it is readily extended to the case of sim-

ple transverse isotropy, since the strain energy is a sum of an

isotropic and a transversely isotropic component with each

term being a function of their respective associated invari-

ants. This property leads to a stiffness matrix which is a sum

of an isotropic term (which can be processed in the standard

fashion) and a simple anisotropic term whose eigenstructure

is easy to manipulate. The resulting simulations are enriched

by muscle activations that are computed from the skeletal

motion as in [TSSB∗05] to produce realistic contractile mo-

tion. Finally, figure 6 shows a layered approach where we

use the simulated motion of the skeletal muscles as kine-

matic boundary conditions for a second flesh only simula-

tion to create more realistic muscle based skin deformation.

During the second simulation, flesh nodes are constrained to

follow the muscle motion if they are within a tolerance of

the musculoskeletal surface.

The originally scattered armadillo geometry of figure 1 con-

sists of 380K tetrahedra and converged to steady state in

80 Newton-Raphson iterations requiring 2-3 seconds each,

under a neo-Hookean constitutive model (collision handling

disabled). For the same 380K element armadillo mesh in fig-

ure 2 the computational cost was approximately 90 seconds

per frame. The flesh mesh of figure 6 consisted of 600K

tetrahedra and was simulated at 2 minutes per frame. All

simulations were performed on a 3 GHz pentium 4 worksta-

tion. We stress that these are rather large simulation meshes,

and meshes on the order of 10 thousand elements can be

typically simulated at rates of 5–10 frames per second (com-

putational cost scales nonlinearly). This is with tight bounds

on the tolerance, where additional Newton-Raphson itera-

tions lead to no visible changes. Additionaly, the authors

of [SNF05] use our method for a highly constrained face

simulation application and report running times that translate

to approximately 30 seconds per frame for a 370K tetrahe-

dron mesh with full self and rigid body collision handling, as

opposed to 50 minutes per frame, on average, for a fully dy-

namic simulation. Moreover, their use of quasistatic (as op-

posed to dynamic) simulation allows them to construct a full

system Jacobian enabling the solution of an inverse problem

to find muscle activations based on surface deformation.

12. Conclusions

We presented a framework for efficient and robust quasista-

tic simulation of nonlinear elastic materials using a modified

Newton-Raphson algorithm that can robustly iterate through

configurations that give rise to mesh inversion and buck-

ling instabilities. Fast conjugate gradient solvers can be used,

since we enforce positive definiteness of the modified linear

equilibrium equations at each iteration. This simulation tech-

nique is ideal for constrained objects influenced by the mo-

tion of their specified boundary conditions. In particular, it

is useful for simulating deformable flesh and skin for virtual

characters whose motion is driven by an underlying kine-

matic skeleton.

13. Acknowledgements

Research supported in part by an ONR YIP award and

a PECASE award (ONR N00014-01-1-0620), a Packard

Foundation Fellowship, a Sloan Research Fellowship,

ONR N00014-03-1-0071, ONR N00014-02-1-0720, ARO

DAAD19-03-1-0331, NSF IIS-0326388, NSF ITR-0205671

and NIH U54-GM072970. E.S. was supported in part by a

Stanford Graduate Fellowship, and G.I. was supported in

part by a National Science Foundation Graduate Research

Fellowship. We would like to thank Mike Houston, Christos

Kozyrakis, Mark Horowitz, Bill Dally and Vijay Pande for

computing resources.

References

[ACP02] ALLEN B., CURLESS B., POPOVIC Z.: Articu-

lated body deformation from range scan data. In Proc. of

ACM SIGGRAPH 2002 (2002), pp. 612–619.

[AHS03] ALBRECHT I., HABER J., SEIDEL H. P.:

Construction and animation of anatomically based hu-

man hand models. In Proc. of the 2003 ACM SIG-

GRAPH/Eurographics Symp. on Comput. Anim. (2003),

pp. 98–109.

[AS96] AMBROSIO L., SONER H. M.: Level set approach

to mean curvature flow in arbitrary codimension. J. of

Differential Geometry 43 (1996), 693–737.

[BFA02] BRIDSON R., FEDKIW R., ANDERSON J.: Ro-

bust treatment of collisions, contact and friction for cloth

animation. ACM Trans. Graph. (SIGGRAPH Proc.) 21

(2002), 594–603.

[BMF03] BRIDSON R., MARINO S., FEDKIW R.: Simu-

lation of clothing with folds and wrinkles. In Proc. of the

2003 ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim. (2003), pp. 28–36.

[BW98] BARAFF D., WITKIN A.: Large steps in cloth

simulation. In Proc. SIGGRAPH 98 (1998), pp. 1–12.

[BWK03] BARAFF D., WITKIN A., KASS M.: Untan-

gling cloth. ACM Trans. Graph. (SIGGRAPH Proc.) 22

(2003), 862–870.

c© The Eurographics Association 2005.



Teran et al. / Robust Quasistatic Finite Elements and Flesh Simulation

[CGC∗02a] CAPELL S., GREEN S., CURLESS B.,
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Figure 6: Illustration of a layered approach where the results of a quasistatic muscle simulation are subsequently used to drive

a quasistatic simulation of the outer flesh.
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