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2 Department of Radiation Oncology, University Hospital Heidelberg, Germany8

3 Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany9

4 Department of Medical Physics in Radiation Oncology, German Cancer Research10

Center (DKFZ), Heidelberg, Germany11

5 RaySearch Laboratories, Stockholm, Sweden12

6 Department of Mechanical and Industrial Engineering, University of Toronto,13

Canada14

7 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New15

York, NY, USA16

8 Department of Radiation Oncology, Massachusetts General Hospital and Harvard17

Medical School, Boston, MA, USA18

9 Institute of Cancer Sciences, University of Manchester, Manchester, UK19

10 Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA20

11 Department of Management Sciences, University of Waterloo, Canada21

12 Department of Industrial Engineering & Managment Sciences and Department of22

Radiation Oncology, Northwestern University, Evanston, IL, USA23

13 Department of Radiation Oncology, University of Virginia, Charlottesville, VA,24

USA25

14 Department of Radiation Oncology, The Netherlands Cancer Institute,26

Amsterdam, NL27

15 Department of Radiation Oncology, University of Maryland School of Medicine,28

Baltimore, MD, USA29

E-mail: jan.unkelbach@usz.ch30

Abstract. Motion and uncertainty in radiotherapy is traditionally handled via31

margins. The clinical target volume (CTV) is expanded to a larger planning target32

volume (PTV), which is irradiated to the prescribed dose. However, the PTV33

concept has several limitations, especially in proton therapy. Therefore, robust and34

probabilistic optimization methods have been developed that directly incorporate35

motion and uncertainty into treatment plan optimization for intensity modulated36

radiotherapy (IMRT) and intensity modulated proton therapy (IMPT). Thereby, the37

explicit definition of a PTV becomes obsolete and treatment plan optimization is38

directly based on the CTV. Initial work focused on random and systematic setup errors39

in IMRT. Later, inter-fraction prostate motion and intra-fraction lung motion became40

a research focus. Over the past 10 years, IMPT has emerged as a new application for41

robust planning methods. In proton therapy, range or setup errors may lead to dose42

degradation and misalignment of dose contributions from different beams a problem43
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that cannot generally be addressed by margins. Therefore, IMPT has led to the first44

implementations of robust planning methods in commercial planning systems, making45

these methods available for clinical use. This paper first summarizes the limitations46

of the PTV concept. Subsequently, robust optimization methods are introduced and47

their applications in IMRT and IMPT planning are reviewed.48

1. Introduction49

Radiotherapy aims at delivering curative doses of radiation to tumors while minimiz-50

ing the risk of side effects in healthy tissues. In that regard, radiotherapy treatment51

planning and delivery faces many uncertainties. Target volume definition, the first step52

in the treatment planning chain, is associated with substantial uncertainty. Definition53

of the gross tumor volume (GTV) has limitation not only due to finite resolution of54

medical images, but also because current imaging modalities only visualize surrogates55

for the presence of tumor and not tumor cells per se. Delineation of the clinical target56

volume (CTV) faces even larger uncertainty because currently available imaging modal-57

ities cannot visualize microscopic disease. Subsequently, there is uncertainty in dose58

prescription and normal tissue tolerances. For an individual patient, the dose that is59

needed to control the tumor is uncertain. Current research aims to predict an individual60

patient’s response to radiation based on biomarkers in order to personalize prescription61

doses or normal tissue constraints, however, such approaches are not yet widely estab-62

lished. In summary, the ideal dose distribution that radiotherapy planning should be63

aiming at is uncertain in the first place.64

65

In addition, there is uncertainty in the dose distribution delivered to the patient, i.e.66

potential discrepancies between the dose distribution shown in the treatment planning67

system and the actually delivered dose. The most prominent reasons for that are setup68

errors, changes of the patient geometry over the course of treatment, and uncertainty in69

dose calculation. Changes in the patient geometry include, for example, inter-fraction70

motion of the prostate as well as intra-fraction motion in the lung or liver due to respira-71

tion. Dose calculation errors arise in part from the use of approximate pencil beam dose72

calculation algorithms, which are used for computational efficiency at the cost of lower73

accuracy compared to methods that are directly based on modeling the physical inter-74

actions of radiation in tissue. In proton therapy, range uncertainty can be considered a75

specific form of dose calculation uncertainty. The Hounsfield numbers of the planning76

CT are in unideal input for proton dose calculation algorithms due to uncertainty in the77

conversion of Hounsfield numbers to proton stopping power. In addition, pencil beam78

dose calculation algorithms may inaccurately model the degradation of the Bragg peak79

in heterogeneous media.80

81

This paper will deal with uncertainties in the delivered dose distribution. Treatment82

planning should aim at creating plans that are robust against uncertainty. Robustness of83
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a treatment plan refers to two properties: first, the CTV should receive the prescribed84

dose despite errors that may occur; and second, normal tissue constraints should be85

satisfied despite potential errors in planning or delivery. Setup and motion-related un-86

certainty is traditionally handled via safety margins, i.e. by expanding the irradiated87

region around the tumor. In IMRT planning, margins are added around the CTV in88

order to obtain the planning target volume (PTV). Treatment planning aims to have the89

PTV receive the prescription dose. It is then assumed that, as long as the CTV moves90

only within the boundaries of the PTV, the prescribed dose is delivered to the CTV.91

The required margin depends on the magnitude of the error and general margin recipes92

have been developed [1, 2, 3]. Typically, the priority in treatment planning is to make93

sure that the CTV receives the prescribed dose despite uncertainty. In specific cases,94

especially when the OAR is serial, respecting maximum dose constraints to normal tis-95

sues is prioritized over CTV coverage. An example is stereotactic body radiotherapy96

for spinal metastases, where sparing of the spinal cord is more important than target97

coverage. In this case, the spinal cord is expanded by a margin to create a planning risk98

volume (PRV). Treatment planning creates a plan that does not exceed the maximum99

dose to the spinal cord in all of the PRV.100

101

The PTV concept has several limitations. To address these limitations, robust102

planning methods have been developed that directly incorporate uncertainty into103

treatment plan optimization for IMRT and IMPT. Thereby, the definition of a PTV104

or PRV becomes obsolete and treatment planning is based on the CTV directly. In105

September 2015, the authors and other researchers met at Massachusetts General106

Hospital in Boston to discuss the state-of-the-art in robust treatment planning. The107

goals of this joint review are:108

1. We first summarize the limitations of the PTV concept to provide the motivation109

for robust planning (section 2).110

2. We formally introduce the main concepts used in robust planning, namely stochastic111

programming and minimax optimization (section 3).112

3. We review the main applications of robust planning. In particular, random and113

systematic setup errors and inter-fraction organ motion in IMRT (section 4),114

systematic range and setup errors in IMPT (section 5), and respiratory motion115

(section 6).116

We provide a comprehensive review of robust planning approaches found in the117

literature. Different approaches are formulated using a unified notation. Thereby, their118

relation and differences can be understood. This paper serves as both a review of the119

literature as well as a tutorial style introduction to the concepts and main applications120

of robust optimization in radiotherapy.121
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2. Limitations of the PTV concept122

While margins and PTVs are used throughout in clinical practice, there are several123

limitations of the PTV concept, which motivate the development of robust planning. In124

some situations, the PTV concept has fundamental limitations and does not guarantee125

target coverage irrespective of the size of the margin; in other situations a large enough126

PTV may ensure coverage of the CTV, but may not yield the optimal tradeoff between127

target coverage and OAR sparing.128

1. Breakdown of the static dose cloud approximation: The PTV concept129

as typically applied in IMRT planning relies on the so-called static dose cloud130

approximation, i.e. the assumption that the dose distribution in treatment room131

coordinates is unaffected by changes in the patient’s anatomy. That is, it is assumed132

that the CTV receives the prescribed dose as long as it stays within the PTV. This133

fundamental assumption is not generally fulfilled and is violated, in particular, in134

IMPT (section 5).135

2. Build-in margins for non-conformal plans: Whether or not the CTV receives136

the prescribed dose depends on the dose distribution rather than geometric margin137

concepts. In reality, dose distributions are neither perfectly conformal to the PTV138

nor equally conformal on all sides of the CTV. Non-conformity results in an inherent139

dosimetric margin [4]. In those regions where the prescription isodose line extends140

beyond the CTV anyway, less or no margin needs to be added to account for141

setup uncertainty. In addition to conformity, the required margin also depends on142

the steepness of the dose fall-off near the target. A naturally shallow fall-off may143

require a smaller margin than a steep fall-off. The optimal margin may therefore144

be unisotropic.145

3. Optimally balancing tumor coverage and normal tissue sparing: TCP and146

NTCP models are increasingly used for treatment plan evaluation, and may play147

a larger role in treatment plan optimization in the future. However, using a PTV148

dose distribution as input to a TCP model has conceptual flaws. Furthermore,149

underdosing the edge of the PTV may give low predicted TCP values, even though150

the underdosage may only occur for specific setup errors in the corresponding151

direction, while in most cases the CTV is covered. Optimally balancing TCP and152

NTCP requires proper handling of geometric uncertainties.153

4. Dose painting: In the context of dose painting based on functional imaging, the154

use of margins for different prescription dose levels becomes cumbersome.155

5. Edge enhancement or horns: The PTV approach, as well as the internal target156

volume (ITV) approach for respiratory motion aim to deliver the prescribed dose to157

all regions were the tumor may be. Thereby, the same dose is delivered to regions158

that are always occupied by tumor and regions where the tumor is rarely. In159

the presence of motion, and when the total tumor dose is achieved by accumulating160

dose contributions from multiple geometric instances, the approach is suboptimal in161
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terms of normal tissue sparing. The normal tissue dose can be reduced by delivering162

less dose to regions where the tumor is rarely. In order to not compromise target163

coverage, this has to be compensated for by delivering higher doses to regions mostly164

occupied by the tumor. Such dose distributions, which show dose hot spots inside165

or at the edge of the target when delivered to a static geometry, have been referred166

to as edge enhanced or horns (sections 4.2, 6).167

3. Robust planning concepts168

3.1. Conventional treatment plan optimization169

IMRT and IMPT treatment planning is generally formulated as a mathematical170

optimization problem. Treatment plan quality is mathematically defined via an171

objective function f . A good treatment plan corresponds to a low objective function172

value. The best treatment plan is found by minimizing the objective function with173

respect to beamlet intensities using mathematical optimization algorithms. The174

objective function f(d; q) is a function of the dose distribution d, and additionally175

depends on parameters q such as prescription doses and tolerances for normal tissues.176

Formally, the fluence map optimization problem for IMRT and IMPT can be written as177

minimize
x

f(d; q) (1)178

subject to d = Dx (2)179

x ≥ 0 (3)180

The dose distribution d = Dx is a linear function of the incident fluence x. D denotes181

the dose-influence matrix whose elements Dij store the dose contribution of beamlet j182

to voxel i for unit fluence.183

3.2. Types of uncertainty184

In this setting, three types of uncertainty can be distinguished.185

1. Uncertainty in the dose-influence matrix D. This means that the same treatment186

plan, as defined via its incident fluence x, may lead to different dose distributions187

in the patient. Uncertainty in D models geometric uncertainty such as setup errors,188

organ motion, and range errors.189

2. Uncertainty in the realized fluence x. This would mean that the treatment machine190

does not accurately deliver the fluence specified by the treatment plan. This191

uncertainty is typically considered small compared to uncertainty in the dose-192

influence matrix since the accuracy of fluence delivery can be verified during193

machine QA. The work by Bertsimas et al [5] applies robust optimization to194

uncertainty in the realized fluence.195

3. Uncertainty in q. This can be interpreted as uncertainty in the mathematical196

definition of what a good dose distribution is. q could, for example, represent197
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uncertain parameters in a TCP or NTCP model, uncertainty in target delineation,198

or uncertainty in dose prescription. This is generally considered a large source of199

uncertainty, however, convincing applications of robust optimization in that context200

are limited.201

Robust optimization applied to geometric uncertainty, i.e. uncertainty in the dose-202

influence matrix D has been studied most widely and is the focus of this review.203

For simplicity of notation we assume that geometric uncertainty is modeled through204

discrete error scenarios indexed by k. Each error scenario corresponds to a different205

dose-influence matrix Dk, which yield distinct dose distributions206

dk = Dkx (4)207

Hence, rather than assuming that a fixed dose-influence matrix D relates a fluence map208

x to a predictable dose distribution d, the dose distribution that will finally be delivered209

to the patient is unknown and may be given by any distribution dk. How the scenario210

dose distributions dk are calculated depends on the uncertainty under consideration and211

is further described in sections (4-6).212

3.3. Formal approaches to robust planning213

The next question is how the set of scenario dose distributions dk can be incorporated214

into treatment planning. Each dose distribution dk corresponds to an objective function215

value fk = f(dk), which serves as a measure of treatment plan quality for error scenario216

k. Intuitively speaking, a treatment plan that is both good and robust yields a dose217

distribution dk, which is good for all or the majority of error scenarios that may occur.218

There are different paradigms to translate this notion into mathematical terms. Broadly,219

these approaches can be categorized as follows:220

1. The stochastic programming approach optimizes the expected plan quality.221

2. The minimax approach optimizes plan quality for the worst error considered.222

The stochastic programming approach and the minimax approach can be seen as223

extreme cases. In reality, one may be interested in controlling plan quality in between224

worst-case and average. Therefore, a third category of intermediate approaches should225

be considered. In this section, we formally define the different approaches; applications226

to specific uncertainties in IMRT and IMPT are discussed in sections (4-6).227

3.3.1. Stochastic programming: In the stochastic programming, each error scenario is228

associated with an importance weight pk. The approach then minimizes the expected229

value of the objective function:230

minimize
x

∑

k

pkf(d
k(x)) (5)231

The scenario weights pk are often interpreted as the probability that error scenario k232

occurs. Hence, the stochastic programming approach minimizes the objective function233
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evaluated for all error scenarios, while more weight can be given to scenarios that are234

likely to occur and lower weight to extreme scenarios that are unlikely. In this review,235

we will refer to the parameters pk as probabilities, however, it is worth noting that236

the application of equation 5 does not depend on such a probabilistic interpretation.237

The parameters pk can simply be interpreted as weighting factors that indicate how238

important it is to achieve good plan quality for error scenario k. The stochastic239

programming approach is sometimes referred to as probabilistic planning, however, the240

term probabilistic is more broadly used also for other approaches that assign probability241

distributions to error scenarios. Stochastic programming has been widely applied in242

both IMRT [6, 7, 8, 9, 10] and IMPT [11, 12].243

3.3.2. Minimax optimization The minimax approach aims at obtaining the treatment244

plan that is as good as possible for the worst error scenario that is considered:245

minimize
x

max
k

[

f(dk(x))
]

(6)246

Here, the maximum of the objective function over the error scenarios k is taken, which247

is minimized with respect to the incident fluence. In this case, no importance weights248

pk are defined and the treatment plan only depends on the set of error scenarios. The249

approach is also referred to as worst-case approach. Minimax optimization has mostly250

been investigated in IMPT planning [13].251

3.3.3. Minimax stochastic programming: The probabilistic approach and the minimax252

approach are related in the sense that a specific set of scenario weights pk in the253

probabilistic approach yields the solution to the minimax formulation, namely such254

scenario weights that assign high pk to the most unfavorable scenarios. The two methods255

can be interpreted as special cases of the minimax stochastic programming problem [14],256

which is defined as257

minimize
x

max
p∈P

∑

pkf(d
k(x)), (7)258

where,259

P = {p : 0 ≤ pk ≤ ρ,
∑

k

pk = 1} (8)260

is the uncertainty set for the scenario probabilities pk. In words, this problem optimizes261

the expected value of the objective function for the most unfavorable probability262

distribution pk over its uncertainty set. The parameter ρ controls the uncertainty level.263

For ρ = 1 every probability distribution is allowed, and consequently the minimax264

stochastic programming problem (9) is equivalent to the worst-case optimization in265

equation (6). For the choice ρ = 1/K, where K is the number of scenarios, we obtain266

the probabilistic approach (5) where equal importance pk = 1/K is assigned to all267

error scenarios. By selecting 1/K ≤ ρ ≤ 1 one can gradually transition between the268

stochastic programming and worst-case formulation. This approach is also referred as269

distributionally robust approach.270
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For the parameter choice ρ = 1/(αK) where 1/K ≤ α ≤ 1, minimax stochastic271

programming (9) is equivalent to what is referred to as conditional value at risk (CVaR)272

optimization with parameter α [14, 15, 16]. In CVaR optimization, the average of the273

fraction α of the worst scenarios is minimized. For example, for α = 0.1 one would274

optimize the average plan quality for the worst 10% of scenarios, neglecting the 90% of275

more favorable scenarios.276

←
∑

k pkf
k
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(a) Stochastic programming

←
∑
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k ← maxk f

k

P
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b
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it
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f

(b) Minimax optimization

fmin

P
ro
b
ab

il
it
y

f

(c) Minimax stochastic optimization

fmin fmax

P
ro
b
ab

il
it
y

f

(d) Maximizing chances of correct treatment

Figure 1. Schematic illustration of different robust planning approaches. Uncertainty

and a large number of error scenarios lead to a probability distribution over the

objective function value, which serves as a plan quality indicator. The figures sketch

the probability distribution (on the vertical axis) over objective function values (on

the horizontal axis). Red dotted lines indicate an improved distribution, compared to

black distributions, that the respected method is striving for. See Section 3.3.4 for

discussion of (a-c) and Section 3.4.2 for discussion of (d).

3.3.4. Graphical illustration Let us interpret the scenario weights pk as probabilities277

for the error scenario k to occur. If a large number of scenarios is considered, this results278

in a probability distribution over dose distributions dk and consequently a probability279
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distribution over objective function values fk = f(dk). Figure 1 schematically illustrates280

the above approaches. Figure 1a assumes the stochastic programming approach for an281

objective function f ≥ 0 such as an NTCP function or the quadratic objective function to282

achieve a homogeneous target dose. The stochastic programming approach (equation 5)283

minimizes the mean of the distribution of objective function values, but not necessarily284

the tail towards large values. The treatment plan may allow for large objective function285

values for individual error scenarios, possibly corresponding large errors that are unlikely286

to occur. In contrast, the minimax approach (equation 6) only optimizes the maximum287

value of the distribution as illustrated in figure 1b. This usually requires that the set288

of error scenarios is truncated towards large errors. In addition, the minimax approach289

does not per se aim at improving the average objective value. The CVaR approach290

(figure 1c) represents an intermediate approach. It can be interpreted as a relaxation of291

the minimax method: unfavorable scenarios are emphasized without focusing purely on292

the worst case. Thereby, a small number of scenarios can have higher objective values293

for the benefit of better plan quality for most other scenarios.294

3.4. Variations of these approaches295

3.4.1. Robust constraints: Above, approaches for incorporating uncertainty in the296

objective function were considered. In addition, a treatment plan optimization problem297

may have constraints on the dose distribution. The most obvious approach for298

robustifying constraints is to enforce that the constraint is fulfilled for all error scenarios.299

This has mostly been investigated in proton therapy with a relatively small number of300

error scenarios, but also in the context of breathing motion [17] (see section 6.2).301

3.4.2. Maximizing the probability of target coverage and OAR sparing: The302

probabilistic interpretation in figure 1 gives rise to variations of the approaches described303

above. One may want to achieve that a DVH criterion for target coverage is fulfilled for304

the majority of patients, for example, that in 95% of the scenarios, 95% of the target305

volume receices the prescribed dose. Similar to that, one may want to maximize the306

probability that a planning criterion is fulfilled. This is schematically illustrated in307

figure 1d. Here, it is assumed that f represents a dosimetric plan quality indicator such308

as an EUD or a DVH criterion. In this case, the goal is to minimize the cumulative309

probability that the value of f falls outside of the desired range, i.e. the probability that310

fk > fmax, the probability that fk < fmin, or both. For example, if f is the EUD in311

an OAR, one may want to minimize the cumulative probability that the EUD is larger312

than the maximum allowed EUD fmax. Hence the objective function to be minimized313

becomes314

minimize
x

∑

k

pkH(f(dk(x))− fmax) (9)315

where H denotes the heaviside step function, i.e. H(f(dk(x))− fmax) = 1 if f(dk(x)) >316

fmax and zero otherwise. Such approaches were investigated for interfraction motion in317
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IMRT by Sobotta et al [18] and Gordon et al [19].318

3.4.3. Variations of the minimax approach There are several variations of the minimax319

approach in equation (6). In most practical situations, the objective function f(d) =320

∑

s wsfs(d) is a sum of objectives fs for individual structures s weighted with importance321

factors ws. In this case, it is possible to consider the maximum over scenarios for every322

structure-based objective individually rather than the maximum over the composite323

objective function:324

minimize
x

∑

s

ws max
k

[

fs(d
k(x))

]

(10)325

This has been referred to as the objective-wise worst case, in contrast to the minimax326

approach in equation (6) which has been called the composite worst case. The327

objective-wise worst case approach has advantages in multi-criteria optimization and328

was investigated in that context [20]. Often, the objective function fs(d) =
∑

i∈Is
fi(di)329

can further be written as a sum of contributions fi from individual voxels i contained330

in structure s. In this case one can consider the maximum over the scenarios for each331

voxel separately, which leads to the voxel-wise worst case method:332

minimize
x

∑

s

ws

∑

i∈Is

max
k

[

fi(d
k
i (x))

]

(11)333

This method can be interpreted as optimization of the worst-case dose distribution. To334

see this, one can consider the piece-wise quadratic objective function for overdosing of335

an OAR:336

f(d) =
∑

i

(di − dmax)2
+

(12)337

The contribution of a voxel i is determined by the maximum dose the voxel may receive338

for any scenario, i.e.339

max
k

[

(

dki − dmax
)2

+

]

=
(

max
k

[dki ]− dmax
)2

+

(13)340

Hence, in this case, treatment plan optimization corresponds to evaluating the objective341

function for the worst-case dose distribution, which is defined, voxel-by-voxel, as the342

maximum dose delivered for any scenario. Similarly, a piece-wise quadratic objective343

for target underdosage can be considered, in which case the worst-case dose distribution344

corresponds to the minimum dose in each voxel. This approach was predominantly345

applied in robust IMPT planning [21, 22, 23].346

3.4.4. Other approaches Chu et al. [24] presented another robust planning approach,347

whose starting point is that the dose and its uncertainty can be characterized by the348

expected dose and its variance. The probability that a voxel i in the CTV receives a349

dose higher than a prescribed minimum dose dmin depends on both the expected dose350

(which must be high enough) and the variance (which must be small enough). Assuming351
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∑

k pk = 1, the mean and variance of the dose in voxel i can be estimated based on the352

scenarios as353

E(di) =
∑

k

pkd
k
i (14)354

V(di) =
∑

k

pk(d
k
i )

2 − (E(di))
2 (15)355

where the expected dose is a linear function of the fluence x and the variance is a356

convex quadratic function of x. To ensure target coverage under uncertainty with high357

probability, Chu et al. propose a constraint on every voxel in the CTV such that the358

expected dose minus a multiple of the standard deviation exceeds the prescribed dose,359

i.e.360

E(di)− δ
√

V(di) ≥ dmin (16)361

Under the assumption that the dose in voxel i follows a Gaussian distribution (which362

is approximately the case for random errors but generally not for systematic errors)363

the parameter δ can be calculated based on the cumulative distribution function of364

the Gaussian and the accepted probability of underdosing. For example, limiting the365

probability of underdosing to 5% requires δ = 1.64. The constraint (16) can be written366

as367

dmin − E(di)
√

V(di)
≤ δ (17)368

which represents a second order cone constraint, which from an optimization perspective369

is almost as computationally efficient as a purely linear constraint. A similar constraint370

can be constructed for voxels in OARs and a maximum dose threshold dmax.371

372

Xie [25] presented a method that considers the expeced value and the variance of373

a general plan quality indicator rather than the dose in a voxel. Assume that fs is a374

plan quality indicator associated with a structure s which has a desired value f pres
s . Xie375

suggests to minimize376

(E(fs)− f pres
s )2 + V(fs) (18)377

where E(fs) and V(fs) are expected value and variance of the plan quality indicator,378

which are estimated from the scenarios analogously to equations (14) and (15). In379

the special case that fs is the dose in a single voxel, this method is equivalent to the380

stochastic programming approach using the quadratic objective function as discussed381

in section 4.2. The method is suggested within a prioritized optimization framework to382

trade-off plan robustness against other plan quality measures.383

3.5. General considerations and choice of method:384

Among the different methods described above, no general statement can be made which385

method is superior. Research on handling interfraction motion in IMRT has largely386
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focused on the stochastic programming approach and other methods with probabilistic387

interpretation described in section 3.4.2. In the context of range and setup errors in388

IMPT, both stochastic programming as well as different versions of the worst-case389

method have been studied extensively. Any robust planning to handle specific types390

of uncertainty has to address several problems:391

1. Modeling of the uncertainty. First, the uncertainty to be accounted for is to be392

modeled mathematically. This is straightforward for some types of errors, e.g.393

setup errors, which can be modeled as a rigid shift of the patient with respect to394

the isocenter. However, in other situations, e.g. breathing motion with variations395

in the breathing pattern, it is not immediately clear how to model the uncertainty.396

2. Choosing an adequate method, i.e. formulating the robust optimization problem397

in a meaningful and computationally tractable way.398

3. Developing ways to solve the optimization problem efficiently. This includes ways399

to calculate or approximate the dose distribution dk for a given error scenario.400

The above issues are interrelated. For example, whether a probabilistic or minimax401

approach is taken typically impacts what model of the uncertainty is suited. The worst402

case approach typically requires that the underlying error is truncated. For example, a403

treatment planner would set the maximum setup error to be accounted for. In the prob-404

abilistic approach instead, a setup error can be modeled via a Gaussian distribution,405

containing large errors with low weights pk. Also, the need to devise efficient optimiza-406

tion algorithms influences the formulation of the problem as well as the model of the407

uncertainty.408

409

4. Setup errors and inter-fraction organ motion in IMRT410

In this section we review applications of robust planning for handling of setup errors411

and inter-fraction organ motion in IMRT. In this context, it is customary to separate412

the errors into a systematic component which is constant over all treatment fractions,413

and a random component which varies daily. A systematic error is typically introduced414

during treatment planning; an example is an extreme position of the prostate in the415

planning CT, which differs from the mean position of the prostate. The random error is416

related to daily patient anatomy and setup variations during fractionated treatments.417

418

In section 4.1 we briefly discuss modeling of setup errors and inter-fraction motion.419

In section 4.2 we illustrate the stochastic programming approach applied to a stylized420

phantom, which provides insight into the qualitative features of this approach with421

respect to the handling of systematic and random errors. In the remaining part, we422

review the application to handling inter-fraction prostate motion, which has been the423

focus of most research. In section 4.7 we discuss computational aspects to facilitate424

robust planning at acceptable calculation times.425
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4.1. Modeling inter-fraction motion uncertainty426

A setup error is usually understood as a rigid shift of the patient with respect to the427

isocenter. Most works in IMRT model setup errors using Gaussian distributions in428

3 dimensions. Inter-fraction motion, for example of the prostate, is generally more429

complex to model. However, to first approximation, inter-fraction motion is often430

modeled as a setup error. This is appropriate if inter-fraction motion is mostly a rigid431

translation of the tumor inside the patient. This model can be improved by adding432

rotations. However, such an approach does not model deformations of the tumor and433

the surrounding anatomy. The most widely used approach for more accurate modeling434

of inter-fraction motion is principal component analysis (PCA) [26]. PCA identifies the435

dominant modes of deformable motion of the target and the surrounding anatomy. It436

yields a parmeterized model of the motion in which a plausible anatomical scenario is437

given by the mean position plus a linear combination of a set of eigenmodes multiplied438

by a scaling coefficient. In the case of prostate, this includes modeling expansion of439

rectum and bladder together with the resulting translation and rotation of the prostate440

in the sagittal plane. PCA modeling has a wide range of applications, including441

prostate dosimetric evaluation [27] and optimization [28] based on virtual treatment442

course simulation, coverage probability estimation [29], adaptive radiotherapy [30], and443

deformation modeling for lung [31]. Specifically for the deformable interfraction motion444

of prostate cancers, there have been several PCA models developed so far. Some models445

statistically model the surface deformations of two to three ROIs only [32, 33, 34]. Some446

other models model the entire 3D pelvic anatomy and therefore they are of more value447

to image guided adaptive radiotherapy applications. These models are either patient-448

specific or population based [35]. In general, the patient-specific models require an initial449

image data collection period to fully characterize the patient-specific motions. At the450

early phase of treatment where the patient data are very limited, the population-based451

model is more advantageous. However, the potential risk is that a population model452

may not benefit every patient if any unusual deformation is involved.453

4.2. Qualitative features of the stochastic programming approach454

The concept of stochastic programming can be illustrated by considering the quadratic455

objective function as an example:456

f(d) =
∑

i

(di − dpres)2 (19)457

where dpres is the prescribed homogeneous target dose and the sum runs over the voxels458

i in the target. Following the stochastic programming approach, the expected value of459

the quadratic objective function can be written as460

∑

k

pkf(d
k) =

∑

k

pk
∑

i

(

dki − dpres
)2

(20)461

=
∑

i

(E(di)− dpres)2 (21)462
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+
∑

i

(

∑

k

pk
(

dki − E(di)
)2

)

(22)463

where E(di) is the expected dose in voxel i as in equation (14). This has an intuitive464

interpretation. The first term (21) is the quadratic difference between the expected dose465

and the prescribed dose. Hence, minimizing this term will ensure that the dose will, on466

average, be close to the prescribed dose. The second term (22) represents the variance467

of the dose in each voxel. Minimizing this term will ensure that the dose dki realized in468

a scenario k is close to the expected dose.469

470

We now illustrate the result of stochastic programming using the quadratic objec-471

tive function for a systematic Gaussian setup error in a one-dimensional phantom. The472

error scenarios correspond to shifts of the tumor up to ±10 mm. The probabilities pk473

are chosen from a Gaussian distribution with 3 mm standard deviation. For this illus-474

trative example, a simplified dose-influence matrix is assumed in which each beamlet475

j corresponds to a Gaussian beam profile with 3 mm standard deviation to model the476

penumbra. Setup errors are modeled as a shift of the voxel grid relative to the beamlet477

grid. Treatment plan optimization minimizes the expected value of the quadratic ob-478

jective function, where the prescribed dose dpres is set to 1 for the tumor and zero for479

the adjacent normal tissue.480

481

Figure 2. Illustration of stochastic programming for handling random setup errors

in a one-dimensional phantom. The three panels correspond to a different number of

fractions assumed for plan optimization: 1 fraction (left), 30 fractions (middle), and

infinitely many fractions (right). We consider a 60 mm wide target volume in lateral

direction, 36 beamlets spaced 2 mm apart corresponding to Gaussian beam profiles

with 3 mm standard deviation, and a Gaussian setup uncertainty with 3 mm standard

deviation. The nominal dose profile is shown in blue, the expected value of the dose is

shown in red, and the standard deviation of the dose considering 30 fractions is shown

in green. For comparison, the graphs for 1 and ∞ fractions also includes the standard

deviation for the respective fractionation scheme used for optimization in orange.

A treatment plan which only considers a systematic error (which is equivalent to482

only considering random errors for one fraction) yields a dose distribution which is com-483

parable to a PTV type treatment plan using conventional optimization (figure 2 left).484
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The incorporation of uncertainty into the optimization process induces an automatic485

expansion of the nominal dose (blue) around the CTV so that the expected dose (red)486

yields adequate coverage under uncertainty. Sir et al [36] investigated in more detail487

for systematic setup errors how the shape of the dose fall-off at the edge of the target488

volume depends on the type of objective function.489

490

Next, we consider the case of random setup errors in a fractionated treatment with491

T fractions. An error scenario k now corresponds to a set of T setup errors {k1, . . . kT}.492

The total dose in scenario k is given by493

dki =
1

T

T
∑

t=1

dkti (23)494

The probability of an error scenario is given by the product of Gaussian probabilities495

for each fraction. In this case, the goal is to deliver a cumulative dose close to the496

prescription after the entire course of T fractions, whereas the dose in an individual497

fraction is allowed to vary. This leads to qualitatively different treatment plans as il-498

lustrated in figure 2 (middle). The nominal dose, i.e. the dose distribution delivered to499

a static geometry features horns as described in section 2. The treatment plan reduces500

the dose delivered to regions where both tumor and normal tissue can be located. As501

a consequence, the edge of the tumor may be underdosed in some fractions when the502

setup errors are large. However, the horns deliver doses higher than the prescription503

dose in some fractions, which compensates for fractions in which parts of the tumor is504

underdosed.505

506

The height of the horns depends on the number of fractions. For a large number of507

fractions, the horns are more pronounced as more averaging will occur over the course508

of treatment. In the case that only a single fraction is delivered, a random error is509

equivalent to a systematic error in which no averaging occurs. In this case the horns510

disappear (figure 2 left). Mathematically, the number of fractions changes the relative511

weighting of the two terms in the objective function (21). The expected value of the512

dose is independent of the number of fractions while the variance decreases with the513

number of fractions as 1/T [37].514

515

For the hypothetical case that infinitely many fractions are delivered, the expected516

value of the dose distribution is realized. Hence, the uncertainty in the dose distribu-517

tion vanishes. The dose distribution under the influence of random errors is given by518

a convolution of the nominal dose distribution with the probability density function of519

the random error. Treatment planning can be performed analogously to conventional520

treatment planning except that the objective function is evaluated for the expected dose521

rather than the nominal dose. However, this approach emphasizes the horns (figure 2522

right), which leads to dose uncertainty if the plan is delivered in a finite number of523

fractions. Mathematically, this solution can be interpreted as a deconvolution of a step524
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function (the desired ideal dose fall-off at the edge of the target volume) with the Gaus-525

sian probability distribution.526

527

Figure 2 illustrates two main characteristics of the probabilistic approach when528

applied to setup errors. First, the approach allows for automated extension of the529

irradiated region around the target volume without explicitly defing a PTV. Second,530

random errors lead to qualitatively different plans featuring horns. These properties531

of the probabilistic approach have been demonstrated by several authors for stylized532

phantoms. Unkelbach et al [37, 38] considered a 2-dimensional rotation therapy model533

in conjunction with the expected value of the quadratic objective function. Earlier,534

Lind et al [39] and Löf et al [40] considered 1-dimensional phantoms together with535

TCP based objective functions. Recently, Witte et al [41] studied an asymmetric 2-536

dimensional model in which an OAR is located on one side of the tumor. The authors537

investigate the shape of the dose distribution that optimally balances tumor coverage538

and OAR sparing in the context of TCP as well as traditional objective functions. The539

authors also observed that, in the case that the residual random errors are small and are540

incorporated along with systematic errors, the tendency to generate horns is reduced.541

4.3. Stochastic programming applied to inter-fraction prostate motion542

The stochastic programming approach has been demonstrated for realistic patient543

geometries. The majority of these works considered the handling of inter-fraction motion544

of the prostate in IMRT [6, 42, 7, 9] but also head & neck cancer was considered as545

application [10, 43].546

4.3.1. Handling of random errors: The paper by Unkelbach et al [6] and Maleike et al547

[42] apply stochastic programming with a quadratic objective function, which is demon-548

strated for a 1-dimensional phantom in section 4.2, to inter-fractional prostate motion.549

The analysis focuses on the handling of random errors. Qualitatively, the same effects550

can be observed as in figure 2. This includes the presence of horns for standard frac-551

tionated treatments in the static dose distribution that would be delivered to a static552

geometry, especially at the boundary of prostate and rectum. The works by Birkner et553

al [44] and McShan et al [45] investigate the handling of random errors by performing554

treatment plan optimization based on the expected value of the dose, which represents555

an approximation of the quadratic programming approach as described in section 4.2.556

557

In principle, horns represent a mechanism to achieve steeper dose gradients558

at the edge of the target compared to conventional PTV based treatment plans.559

However, today the clinical desirability of dose horns is questionable: averaging out560

the inhomogeneities in the static dose distribution relies on the random errror being561

actually present during fractionated treatment. This may be in conflict with common562

thinking in practice, where the goal is to robustify a treatment plan against potential563
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random errors while simultaneously using all available means to avoid random errors.564

In addition, the work in [6] used relatively large random errors that are unrealistic in565

the era of image guidance. By most researchers, the concept of horns to sharpen the566

dose gradient at the edge of the target in the presence of random errors is therefore not567

considered a promising approach.568

4.3.2. Stochastic programming using physical dose objectives: Stochastic programming569

was more extensively evaluated and compared to PTV based planning by Bohoslavsky570

et al [9] for prostate cancer and by Fontanarosa et al [10] for head & neck cancer.571

Bohoslavsky et al [9] developed an implementation of stochastic programming for572

interfraction motion as a plugin to a research version of the Pinnacle treatment planning573

system. The works optimize the expected value of objective functions typically used in574

clinical treatment planning, quadratic penalty functions and EUD objectives. A main575

finding of these works is that, using these tradiational objective functions, stochastic576

programming for handling systematic errors yields treatment plans that are qualitatively577

similar to PTV based plans. This is consistent with other publications demonstrating578

stochastic programming for systematic errors using quadratic penalty functions [6].579

However, when OARs are located close to the CTV, stochastic programming may be580

used to redistribute dose away from OARs to less critical normal tissues, such that the581

dose to the OAR is lowered while the CTV remains covered under the majority of error582

scenarios.583

In the context of dose painting by numbers, Witte et al [16] describe a modification584

of the stochastic programming approach towards conditional value at risk optimization.585

Instead of calculating the weighted average of the objective function over all scenarios,586

the summation occurs only over a subset of the scenarios. At each iteration of a gradient587

based optimization method, the scenarios are ranked according to their objective value.588

The summation is performed only over the better 90% of scenarios while neglecting589

the 10% of scenarios with the highest objective values. The method was applied to a590

quadratic penalty function with the goal of delivering at least the prescription dose to591

the CTV in 90% of the scenarios. In that sense, the method has similarities to the592

method by Gordon et al [19] described in section 4.5.593

4.3.3. Optimizing expected TCP and NTCP: Stochastic programming using typical594

dose based objective functions, such as quadratic penalty functions, can automate595

the expansion of the irradiated region around the CTV. However, this does still not596

necessarily determine the optimal trade-off between target coverage and normal tissue597

sparing. In principle, stochastic programming is very natural in the context of TCP598

and NTCP based objective functions. A TCP model yields a value of tumor control599

probability for a given dose distribution. Taking the expectation over an uncertain dose600

distribution dk,601

TCP =
∑

pkTCP(d
k) (24)602
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can be interpreted as the overall probability of tumor control taking into account ge-603

ometrical uncertainty. Formally, this corresponds to marginalization over uncertain604

parameters in a probability distribution. Thereby, probabilistic planning could, at least605

in theory, find the optimal trade-off between target coverage and OAR sparing. The606

probabilistic approach applied to inter-fraction motion of the prostate using TCP based607

objective functions has been investigated by Witte et al [7]. One difficulty in evaluating608

the benefit of this approach is that using TCP based objectives usually results in treat-609

ment plans that are different from those used in clinical practice - due to the choice of610

the objective function rather than the way uncertainty is handled.611

612

4.4. Maximizing the probability of adequate treatment613

A variant of the concept outlined in section 3.4.2 was implemented in [18, 46]. In brief,614

the optimization problem was formulated as follows: minimize the cumulative probabil-615

ity that a dosimetric plan quality indicator for the target is worse than a given limit,616

while keeping the cumulative probability below a guaranteed maximum that dosimet-617

ric plan quality indicators for organs at risk are above a given limit. In other words,618

for each plan quality indicator, the objective or constraint is specified via a minimum619

or maximum limit and a maximum cumulative probability that this limit is exceeded.620

Conventional constraints on static plan quality indicators could be added.621

622

Naturally, the crux of such a problem formulation lies in the estimation of the tails623

of the probability distributions of each plan quality indicator, which are usually sampled624

sparsely and are hence cost functions with a caveat. Sobotta et al suggest to approximate625

the cumulative probabilities of the tails by Chebyshev’s inequalty, which reduces the626

problem to computing the mean and variance of the quality indicators’ probability627

distributions. Still, for the treatment of inter-fractional uncertainties not satisfying the628

static dose cloud approximation, the computational burden of sampling the uncertainty629

space to estimate mean and variance can nevertheless become overwhelming. Sobotta630

et al further suggested to replace the direct evaluation of the plan quality indicators by631

a substitute patient model and demonstrated the utility of a Gaussian Process for this632

[47]. Other methods of machine learning may be suitable alternatives.633

4.5. Probabilistic optimization of DVH objectives634

A related approach to optimize plan quality for the majority of patients has been sug-635

gested by Gordon et al [19]. The work is motivated by the widespread use of DVH cri-636

teria for treatment plan evaluation, for example, that 95% of the target volume should637

receive the prescribed dose. An intuitive extension of this criteria in the context of638

setup uncertainty is to request that a DVH criterion is fulfilled for a given percentile639

of scenarios. This leads to the concept of percentile dose volume histograms (pDVH).640

In this approach, dv,q denotes the dose that is exceeded in the percentage volume v in641



Robust radiotherapy planning 19

q percent of the scenarios. For example, a treatment planning goal can be to obtain a642

plan that delivers the prescription dose to 95% of the target in 90% of the patients, i.e.643

we would like d95,90 to exceed the prescription dose.644

645

A heuristic to obtain such a treatment plan has been suggested by Gordon et al646

[19]. At every iteration during treatment plan optimization, the current treatment plan647

is evaluated by sampling a large number of systematic setup errors and evaluating the648

dose distribution within the static dose cloud approximation. Based on that, dv,q is649

determined. Subsequently, an objective function is introduced that aims to increase650

dv,q to the prescription dose. To that end, a rim structure surrounding the CTV651

is introduced. This rim structures is analogous to a PTV, however, in contrast to652

traditional planning, the method does not aim to deliver the prescribed dose to all of653

the PTV but only to the degree necessary to achieve the desired dv,q. In traditional654

planning, quadratic penalty functions are used as a heuristic to satisfy DVH objectives.655

Assume that the goal is to deliver dpres to v% of the PTV. Further assume that the656

current plan does not fulfill this and that only a lower dose dv < dpres is exceeded in657

v% of the PTV. Then, a quadratic penalty is introduced for all voxels in the PTV that658

receive a dose between dv and dpres:659

f(d) =
∑

i∈S

(di − dpres)2
+

(25)660

where S = {i ∈ PTV |dv < di < dpres}. Hence, the quadratic penalty is applied to those661

voxels that are underdosed the least. This method can be modified to percentile DVH662

objectives by changing the set of voxels to S = {i ∈ CTV + rim |dv,q < di < dpres}.663

Here, the CTV+rim contains the voxels that play a role in achieving CTV coverage.664

Intuitively, it is clear that voxels close to the CTV are more important to ensure CTV665

coverage under the influence of errors, compared to voxels further away from the CTV666

edge. This can be incorporated by introducing voxel-dependent penalty factors in equa-667

tion (25) such that voxels close to the CTV are weighted more than voxels further away.668

669

With the same goal in mind [48] presented an extension to the work of [19] where670

they transferred the DVH-based coverage objectives into coverage constraints. Thereby671

they suggest a robust planning process that implements probabilistic constraints to avoid672

probabilistic criteria being traded in against competing objectives during optimization.673

674

4.6. Optimization based on probability of tumor and organ presence675

Baum et al [49] suggested a practical and computationally efficient method for handling676

systematic errors due to setup or inter-fraction organ motion. The method can be677

derived from the stochastic programming approach (equation 5) by a shift of perspective678

[50]. Robust planning methods as introduced in section 3 evaluate the dose in the679

patient’s own coordinate system, where the dose becomes a random variable. Instead,680
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the approach by Baum et al considers the dose distribution in the treatment room681

coordinate system, which is constant within the validity of the static dose cloud682

assumption (section 4.7.1). Setup errors and inter-fraction motion can be modeled683

as a change in the segmentation of the planning CT into CTV and OARs, i.e. an error684

changes the set of voxels that belong to the CTV or an OAR. For each voxel i, the sum685

of all scenario probabilities pk for a scenario k where i is occupied by a given structure686

corresponds to the probability that the voxel belongs to that structure, which Baum687

et al defined to be the coverage probability qi. For any voxel-separable objective, these688

probabilities can be used as voxel-specific weighting factors in the objective function.689

For example, a quadratic penalty function for the CTV becomes690

f(d) =
∑

i

qi (di − dpres)2 . (26)691

This short derivation shows that the method essentially optimizes the mean objective692

function, averaged over all considered systematic errors. Optimization of this objective693

aims at delivering the prescribed dose to all voxels that may be occupied by the CTV694

or organ. However, if the probability is low, these voxels are weighted less. Hence,695

treatment plan optimization will preferentially lower the dose to voxels of the CTV if696

in conflict with other normal tissue objectives. The method has the advantage of being697

computationally efficient, adding a mere weight to every voxel of a classic static PTV698

or PRV patient model. Under certain conditions, namely validity of the static dose699

cloud approximation and voxel-separable objectives, this approach is mathematically700

equivalent to the stochastic programming approach for handling systematic errors.701

This has been shown for the quadratic objective function in [50]. While equation702

(26) describes the concept for achieving coverage of the CTV, the method is equally703

applicable to OAR objectives. In this case, qi is the probability of voxel i being occupied704

by a certain OAR.705

4.7. Computational considerations706

4.7.1. Static dose cloud approximation: Application of robust planning techniques707

requires the evaluation of the dose distribution dk for all scenarios under consideration.708

It would be possible to invoke the dose calculation algorithm several times and709

calculate a dose-influence matrix Dk for each error scenario. This would however be710

computationally and memory-wise expensive. Therefore, the dose distribution for an711

error scenario k is often approximated based on the nominal dose distribution. In photon712

therapy, approximate dose calculation of a voxel is based on the assumption that the713

effect of setup errors or inter-fraction motion can be approximated as a shift of the voxel714

relative to the nominal dose distribution. Let D(r) denote the nominal dose distribution715

as a function of the position r in 3-dimensional space, so that di = D(ri) is the dose at716

voxel i whose center is located at position ri. For an error scenario k, corresponding to717

setup error ∆rk, the dose in voxel i is approximated as dki = D(ri−∆rk). The underlying718

assumption is that a setup error or a change of the patient geometry leaves the dose719
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distribution D in space unaffected, which has also been called the static dose cloud720

approximation. This is usually an acceptable approximation in photon therapy [51].721

For proton therapy, this approximation breaks down and improvements are discussed in722

section 5.5.723

4.7.2. Dose blurring for handling random errors: Many works approximate the effect724

of random errors via a convolution of the static dose cloud D with the probability725

distribution of a setup error, which is also referred to as dose blurring. In other726

words, this means that dose distribution resulting from random errors in T fractions727

as in equation (23) is replaced by the expected value of the dose and thereby becomes728

deterministic. This is valid for a treatment with infinitely many fractions and can be729

an acceptable approximation for standard fractionated treatments. However, it breaks730

down when the number of fractions is small. A related but different approximation731

strategy does not perform its random error blurring on the 3D dose distribution,732

but rather on the 2D fluence, projecting the errors in the patient’s coordinate frame733

onto the planes perpendicular to each beam direction [52]. This fluence convolution734

approach may better handle those situations in which heterogeneous densities or air-735

tissue interfaces render the static dose cloud approximation invalid. While dose blurring736

is a good strategy for treatment plan evaluation, it should be noted that treatment plan737

optimization based on blurred dose distributions leads to the horns discussed in section738

4.2, which may not be desired. Moore et al [53] demonstrated optimization incorporating739

fluence-convolution and found reduced OAR doses compared with margin-based plans.740

4.7.3. Computational burden of robustness evaluation: Several approaches use741

sampling techniques to estimate the probability distribution over objective function742

values at each iteration [19, 18]. When dose distributions for errors are approximated743

by the static dose cloud approximation, it is interesting to note that the computation744

time needed to evaluate the probability distribution over objective function values is745

substantially less than one may intuitively expect. This is because the computation time746

is dominated by calculating the nominal dose distribution from the beamlet intensities.747

Using a typical beamlet size of 5 mm, an IMRT or VMAT plan may contain in the748

order of 10’000 beamlets. Hence, calculating the nominal dose to a single voxel requires749

10’000 multiplications and additions. However, the nominal dose distribution needs to750

be calculated only once at each iteration during treatment plan optimization. Even751

if 10’000 dose distributions for errors are sampled subsequently, the computation time752

remains at the same order of magnitude [9].753

5. Systematic range and setup errors in IMPT754

Proton therapy has to deal with all the uncertainties encountered in photon therapy.755

However, there are two main additional challenges in proton therapy:756
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1. Range uncertainty. The finite range of protons is the main advantage of protons757

over photons, however, the exact position of the Bragg peak inside the patient is758

uncertain. To a large extent, range uncertainty arises from the problem that the759

planning CT image is an imperfect input for proton dose calculation. Imaging760

artifacts may corrupt the calculation of radiological depth, and the conversion of761

Hounsfield numbers to relative proton stopping power is not exact. In addition,762

pencil beam dose calculation algorithms widely used to reduce computation time763

compromise dose calculation accuracy in heterogeneous tissue compared to Monte764

Carlo algorithms.765

2. The impact of setup errors and organ motion on the dose distribution tends to be766

more detrimental in proton therapy compared to photon therapy. This is in parts767

because changes in the geometry may lead to misalignment of tissue heterogeneities768

in the beam entrance path and thereby cause changes in the range or degradation769

of the Bragg peak. Therefore, setup errors do not simply lead to a shift of the dose770

distribution in the patient but may severely degrade the dose distribution.771

Practitioners have always been aware of range uncertainties and proton-specific772

strategies to uncertainty handling were developed. These methods are more diverse773

and go beyond the PTV concept used in photon therapy. This includes the choice of774

beam directions that avoid areas of large tissue heterogeneities in the entrance path775

and avoid placing the distal field edge in front of an OAR. For the passive scattering776

technique, range uncertainty was addressed by increasing range and modulation of777

a spread-out bragg peak; setup uncertainty is addressed by widening the aperture;778

and compensator smearing is applied to account for misalignment of heterogeneities779

in the beam entrance path. Additional methods include the use of multiple patch field780

combinations to mitigate potential dose errors at the patch line. Interestingly, treatment781

planning and plan evaluation for passively scattered proton therapy was usually not782

based on a PTV concept. It has been suggested early on to evaluate treatment plans783

using multiple errors scenarios rather than evaluating PTV coverage [54]. In contrast784

to passively scattered proton therapy, treatment planning for pencil beam scanning785

proton therapy is nowadays based on mathematical optimization techniques. In that786

context, the PTV concept was applied in proton therapy, however, its inadequacy as the787

only means of uncertainty handling has been recognized. One of the main additional788

heuristics to achieve robustness is the single field uniform dose (SFUD) concept. As the789

name suggest, each individual beam direction delivers a uniform dose to a PTV, which790

typically reduces the sensitivity to range and setup errors. However, the SFUD technique791

sacrifices some of IMPT’s potential for optimal sparing of normal tissues, especially792

for complex shaped target volumes that wrap around OARs. Over the past years,793

robust optimization methods for IMPT have been developed and are now implemented794

in several commercial treatment planning systems.795
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5.1. Limitations of the PTV concept in IMPT796

The limitations of a PTV concept for handling range uncertainty are illustrated in figures797

3a and 4a. The figures show an ependymoma patient treated with 3 fields. Gaussian798

pencil beams with an initial beam width of approximately 5 mm sigma have been used,799

corresponding to the latest generation of proton machines. Treatment planning aims800

at delivering a dose between 54 and 57 Gy(RBE) to the PTV using quadratic penalty801

functions. The PTV consists of a 2 mm isotropic expansion of the CTV. Additional802

objectives are quadratic penalty functions to limit the maximum dose in the brainstem803

to 54 Gy and for achieving conformity, minimization of the gEUD in the brainstem, and804

minimization of the mean dose in normal brain.805

806

Figure 3. Three-beam IMPT plans for an ependymoma patient. (a) conventional

PTV based treatment plan; (b) IMPT plan optimized for range uncertainty using

the stochastic programming approach. Shown are the dose contributions of the three

beams. The cumulative dose is shown in figure 4.

Figure 3a shows the contributions of the 3 fields. IMPT optimization tends to807

yield highly inhomogeneous dose contributions of individual fields. This is especially808

true if treatment planning aims at minimizing dose to healthy tissues. In this exam-809

ple, minimizing the mean dose in the normal brain leads to a preferential use of bragg810

peaks located at the distal edge of the target volume because these fields deliver dose to811
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the tumor for free while traversing the target volume. Figure 4a shows the cumulative812

dose distribution (left) together with the dose degradation observed for range overshoot813

(middle) and undershoot (right). A range error leads to a misalignment of the dose814

contribution of the three fields. In the case of a range overshoot (i.e. the range is larger815

than expected), the three dose contributions are shifted apart, leading to cold spots in816

the CTV. A range undershoot causes the dose contributions to be shifted closer together.817

This leads to increased doses in parts of the target volume, which may be undesirable818

in locations where the CTV overlaps with the brainstem. In both cases, range errors819

lead to inhomogeneous dose distributions within the target volume, a problem that can820

not be solved by PTV margins alone without additional heuristics such as SFUD.821

822

Figure 4. Robustness analysis of the IMPT plans shown in the figure 3. (left) nominal

dose distribution; (middle) range overshoot; (left) range undershoot. Range over- and

undershoot is modeled by down- and upscaling of the CT Hounsfield numbers by 4.6%.

Similarly, setup errors may lead to substantial degradation of the dose distribution823

rather than a simple shift of the dose as is approximately the case for photons [55, 12].824

This has two reasons. First, a setup error has a different impact on each beam.825

Therefore, a setup error leads to misalignment of dose contributions similar to range826

uncertainties as illustrated above. This effect may occur even in homogeneous tissue.827

Second, setup errors may lead to misalignment of tissue heterogeneities. This is further828
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discussed in section 5.5. The degree of dose degradation depends on the amount of dose829

modulation in the dose contributions of individual beams and tends to be more severe830

the steeper dose gradients in these dose contributions are [56].831

5.2. Qualitative features of robust planning832

Important qualitative features of robust planning are illustrated in figures 3b and 4b.833

The stochastic programming approach is applied to robustify the IMPT plan of the834

ependymoma patient to range uncertainties. Uncertainty is modeled via 3 scenarios:835

the nominal scenario with a scenario weight of 0.5, and one scenario for range over-836

and undershoot with a weight of 0.25 each. Range errors are modeled by down- and837

upscaling of the CT hounsfield units by 4.6%. Features of robust planning for range838

uncertainty include:839

• Dose gradients in beam direction in the dose contributions of individual beams are840

reduced. As a consequence, shifting these dose contributions in beam direction841

within the patient has a reduced impact on their cumulative dose distribution.842

• The region proximal and distal to the CTV is irradiated to cover the CTV for range843

over and undershoot. In contrast to an isotropic PTV margin, the exansion of the844

irradiated region is created in a beam direction specific manner and depending on845

the dose contribution of the beam.846

These features have been discussed in many early publications on robust planning847

[11, 21, 13]. Adding error scenarios for setup errors further modifes the treatment plan848

by expanding the irradiated region lateral to the CTV and by reducing dose gradients849

in the dose contributions of individual fields perpendicular to the beam direction [21].850

5.3. Summary of robust IMPT planning publications851

For IMPT planning, a large variety of methods have been studied. Table 1 provides an852

overview of publications focusing on those publications that introduce novel methods.853

The table summarizes the method used , the type of uncertainty accounted for, and the854

tumor site considered. So far, most works consider systematic range and setup errors.855

In recent years, a significant number of publications appeared that evaluate previously856

published methods or commercial implementations for various treatment sites [57, 58, 59,857

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 15, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83].858

• Unkelbach et al [11] published one of the first papers on robust IMPT planning.859

The work demonstrates stochastic programming as well as a voxel-wise worst case860

method for handling range uncertainty. The methods are demonstrated for a two-861

dimensional horseshoe shaped phantom and the qualitative features of robust plans862

are discussed.863

• Pflugfelder et al [21] suggested the method of treatment plan optimization based864

on the worst-case dose distribution, corresponding to the voxel-wise worst case865
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Paper Uncertainty Method Tumor site

Unkelbach [11] range SP, vWC 2D horseshoe phantom

Pflugfelder [21] range + setup vWC paraspinal

Moravek [84] dose alg. heuristic lung

+ organ motion

Unkelbach [12] range + setup SP paraspinal

Fredriksson [13] range + setup cWC lung, paraspinal, prostate

Inaniwa [85] range + setup heuristic cervix, 2D phantom

Inaniwa [86] range + setup heuristic prostate

Cao [87] range + setup vWC prostate, skull base

Chen [20] range + setup oWC chordoma, skull base

Fredriksson [88] range + setup SP, cWC, MSP 2D horseshoe phantom

Liu [89] range + setup vWC prostate, skull base

Liu [22] range + setup vWC lung, prostate, skull base

Bangert [90] range + setup SP 2D horseshoe phantom

Liu [91] range + setup vWC head&neck

Petit [92] range vWC liver, lung

Fredriksson [93] setup oWC lung, prostate

Liu [94] range + setup vWC base-of-skull

Fredriksson [95] setup cWC, oWC, vWC prostate

Liu [96] range + setup vWC lung

Liu [97] range + setup vWC lung

+ organ motion

Bokrantz [98] range + setup SP lung, prostate, 3D phantom

+ organ motion

An [15] range + setup SP lung, prostate, head&neck

Wahl [99, 100] range + setup SP prostate, paraspinal, intracranial

Table 1. Overview of publications on robust IMPT planning, summarizing the method

used, the uncertainties addressed and the treatment site used for demonstration.

SP = stochastic programming; cWC, vWC, oWC = minimax optimization in the

flavors composite, voxel-wise, and objective-wise worst case; MSP = minmax stochastic

programming.

method as described in section 3.4.3. The uncertainty model includes range and866

setup errors, modeled via 9 scenarios. The method is demonstrated for a horseshoe867

shaped tumor surrounding the spinal cord. The method was then further studied868

by Liu et al [89, 22] and evaluated for several tumor sites including head & neck869

[91], base-of-skull [94], and lung [96, 97].870

• Fredriksson et al [13] introduced minimax optimization to IMPT optimization and871

demonstrated the method to a lung, prostate, and paraspinal tumor.872

• Chen et al [20] investigated the objective-wise worst case method in the context873
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of multi-criteria optimization (MCO). In this case, the worst case is evaluated for874

each individual objective, which makes the method suited for MCO.875

• Fredriksson [88] describes the minimax stochastic programming model that876

can continuously interpolate between the minimax and stochastic programming877

approach. The three methods are compared for a for a two-dimensional horseshoe878

shaped phantom.879

• Knowing the qualitative features of robust plans can be used to develop heuristics880

for robust treatment planning. Inaniwa et al [85, 86] add terms to the objective881

function that suppress in-field dose gradients and pencil beams that may deliver a882

high dose to an OAR, instead of performing scenario based robust optimization.883

This provides some of the benefits of robust optimization at significantly reduced884

computational cost.885

• Bangert et al [90] devised an analytical probabilistic modeling framework bypassing886

sampling for stochastic programming. A fully Gaussian parameterization of887

the underlying dose calculation enables closed form computation and hence888

optimization of the expected value of the quadratic objective function.889

• Bokrantz and Fredriksson [98] introduced a scenario-based method that is890

equivalent to geometric margins if the scenario doses are calculated using the static891

dose cloud approximation. If more accurate scenario doses are used, then the892

method provides a comparable level of robustness as the minimax and stochastic893

approaches while simultaneously avoiding some of their disadvantages.894

5.4. Comparison of methods895

For handling range and setup errors in IMPT, a large variety of robust planning methods896

has been studied. So far, there is no consensus that one particular method is generally897

superior. To first approximation, all methods provide the same fundamental advantage898

over margins, i.e. the use of scenario dose distributions dk that provide a physically899

realistic model of the dosimetric effect of errors. Thereby, misalignments of tissue het-900

erogeneities or dose contributions of individual fields are accounted for irrespective of901

whether stochastic programming, minimax optimization or an intermediate approach is902

taken. That stochastic programming and worst-case approaches can give qualitatively903

similar results is a finding originally presented by Unkelbach et al [11].904

905

On a more detailed quantitative level, different methods may or may not yield dif-906

ferent results depending on geometry, uncertainty, and planning objectives. The most907

extensive comparison of robust planning methods is provided by the publications of908

Fredriksson and Bokrantz [95, 101, 98], showing that some methods may yield undesir-909

able results in specific situations. Figure 5 illustrates this for the case of setup errors.910

Figure 5a shows the planned dose for a prostate target without OARs in its vicinity.911

The depicted results were generated by optimization with respect to quadratic penalties912

on deviation from the prescription dose within the target and deviation from zero dose913
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elsewhere. The weight for healthy tissue sparing was set small enough as not to com-914

promise target coverage. Systematic setup shifts were discretized into scenarios using915

a uniform grid with a step size of 1/3 cm. Shifts up to 1 cm in 3D were accounted916

for in the optimization, which resulted in 123 scenarios in total. The uncertainty for917

the probabilistic formulation was assumed to follow a Gaussian distribution with 5 mm918

sigma that was truncated at two standard deviations. Stochastic programming (left)919

and minimax optimization (right) yield almost identical results (figure 5a).920

921

Figure 5. Comparison of stochastic programming (left) and minimax optimization

(right) for a prostate cancer case. The figures show a sagittal slice. In (a) all normal

tissue surrounding the target is weighted equally. In this case, both robust planning

approaches yield almost identical treatment plans. In (b) dose to the rectum is

penalized more such that target coverage is compromised for a setup error in posterior

direction. In this case, the two approaches yield distinct results.

A clearer distinction can be made when the desired target dose must be compro-922

mised due to adjacent OARs. This may yield circumstances when the worst-case ap-923

proach has undesired consequences. Figure 5b shows the same example as that shown924

in Figure 5a, except that the objective function f is augmented with a term that em-925

phasizes sparing of the rectum. The weight for this term was set high enough to be926

in considerable conflict with target coverage. The depicted results show that the mini-927
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max method can unnecessarily neglect easy scenarios where target coverage need not be928

compromised (shifts along the inferior-superior axis) if a severe conflict between targets929

and OARs exist under other scenarios (shifts along the posterior-anterior axis). A sim-930

ilar example can be found in Fredriksson et al [95]. These examples illustrate that the931

worst-case approach is more sensitive to the definition of the uncertainty set than the932

probabilistic approach. To resolve conflicts between OAR sparing and target coverage,933

the minimax approach may require explicit selection of the scenarios against which to934

be robust.935

936

The choice of robust planning method may also take the formulation of the objective937

function f into account. If the objective function is a probability measure, such as TCP938

or NTCP, the stochastic programming approach is more natural as described in section939

4.3.3. Similarities with a PTV margin regarding how target coverage is traded against940

OAR sparing may be an argument in favor of the worst-case approach if treatment plan941

optimization is performed with respect to standard physical penalties such as those used942

in Figure 5a. Further examples that compare the stochastic programming and minimax943

approaches with respect to physical penalties can be found in Fredriksson et al [101]944

and Bokrantz et al [98].945

5.5. Approximation of error dose distributions946

To quantify the effects of possible errors, robust radiotherapy planning methods require947

the dose distributions dk under multiple error scenarios. In photon therapy, these948

are often approximated based on the static dose cloud approximation as described in949

section 4.7.1. In proton therapy, this approximation is usually insufficient. This section950

outlines some of the advanced methods for calculating or approximating scenario dose951

distributions dk. The results of the methods are illustrated for scenario dose calculation952

for a systematic setup error on a lung case that has been planned with a 5 mm PTV953

rather than any robust treatment planning method. The nominal dose in a transversal954

slice for this case is shown in Figure 6a. Because of the heterogeneous density of the955

treatment site and the failure to use robust treatment planning, it is expected that the956

dose under the setup error will be deformed compared to the nominal dose, and no957

longer cover the target.958

5.5.1. Separate dose-influence matrices The most accurate way of determining the959

effects of errors on the dose distribution is to perform an accurate dose calculation960

under each scenario. Separate dose-influence matrices are then stored for each scenario961

during the optimization. The dose under each scenario is as accurate as the nominal962

dose. The method is expensive in terms of memory and computation time, however,963

this could be addressed through high-performance computing. Figure 6b shows the964

accurately calculated dose under a setup shift of 5 mm to the patient’s right (left side965

of the image). Because of the heterogeneous density of the site, the dose deforms as an966
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Figure 6. Comparison of different methods to approximate error dose distributions

in IMPT for a 5 mm setup error to the patient’s right (left side of the image). Changes

of the radiological depth along the path of a proton pencil beam resulting from a setup

error are approximated well only by a subset of methods.

effect of the error. In this example, this leads to a cold spot in the distal part of the967

target volume.968
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5.5.2. Voxel shifting methods: A computationally cheap way of calculating scenario969

doses is to perform transformations of the nominal dose distribution. In this case, the970

dose to a voxel for a given error is approximated based on the nominal dose to a different971

voxel. Here, three methods of doing so are presented.972

1. The static dose cloud approximation: This method is described in Section 4.7.1973

and has been extensively used for photons. Figure 6c shows the dose distribution974

according to the static dose cloud approximation under a setup shift of 5 mm to975

the patients right. Because the static dose cloud approximation does not deform976

the dose, it reflects the effect of the setup error poorly. Its γ(3%/3 mm) pass rate977

for voxels with accurately calculated dose above 10% of its maximum was 88.7%.978

2. The static dose cloud approximation per beam: The static dose cloud979

approximation can be improved based on the observation that a setup shift affects980

the dose contribution from different beam directions differently. For example, a981

setup shift along the beam direction does only marginally affect the dose delivered982

by this beam, but impacts the dose from other beam directions. Therefore, a setup983

error may, even in the absence of tissue heterogeneities, lead to dose degradation984

due to misalignment of the dose contributions from different beams. To account for985

this, the static dose cloud approximation can be applied to each beam separately986

by calculating an effective voxel shift taking into account the direction of the setup987

error, the beam direction, and the orientation of the patient’s surface [12]. Figure988

6d shows the dose distribution according to the static dose cloud approximation989

per beam under a setup shift of 5 mm to the patient’s right. For the lung patient,990

the dose difference indicates that there is little benefit in using the static dose991

cloud approximation per beam as compared to the standard static dose cloud992

approximation. Its γ(3%/3 mm) pass rate for voxels with accurately calculated993

dose above 10% of its maximum was 90.2%. This is because the dose degradation994

is dominated by the misalignment of tissue heterogeneities (which is not accounted995

for) rather than the misaligment of dose contributions from different fields.996

3. Voxel shifting accounting for radiological depth: A further improved voxel shifting997

method takes the radiological depth into account during the voxel shifting. The998

beam dose to each voxel is not only shifted according to the setup error projected999

onto the plane perpendicular to the beam central axis, but is also shifted in the1000

direction parallel to the beam to a point with the same radiological depth as the1001

voxel had prior to the shifting [102]. Figure 6e shows the dose distribution according1002

to the voxel shifting method taking radiological depths into account under a setup1003

shift of 5 mm to the patients right. The approximated dose reflects the deformation1004

that occurs due to the setup shift. Its γ(3%/3 mm) pass rate for voxels with1005

accurately calculated dose above 10% of its maximum was 99.4%.1006

5.5.3. Beamlet shifting: Beamlet shifting moves the approximation from the voxel1007

domain to the fluence domain. This way, the dose calculation algorithm’s ability to take1008
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the density distribution of the patient into account is utilized also for the scenario dose1009

calculation, but the computational effort is still much reduced compared to calculating1010

full dose-influence matrices for each scenario. In the beamlet shifting method, a setup1011

error is approximated as a shift of the spot weights (in a fixed spot grid) according to1012

the setup error projected onto the plane perpendicular to the beam. The spot weights1013

at the lateral edges of the spot grid are to be shifted to spots outside the spot grid,1014

which necessitates the calculation of the dose of virtual spots in an extended spot grid,1015

i.e. spots that are only used in the scenario dose calculation but are excluded from the1016

plan. Moreover, if the spots are shifted to positions for which no dose-influence has1017

been calculated, interpolation must be used. To improve on the interpolation, virtual1018

spots can be calculated between the planned spot positions [12]. Figure 6f shows the1019

dose distribution according to the beamlet shifting under a setup shift of 5 mm to the1020

patient’s right. Its γ(3%/3 mm) pass rate for voxels with accurately calculated dose1021

above 10% of its maximum was 99.8%. The differences between the doses arise because1022

shifting of beamlets does not account for beam divergence. Thus, the greater the source1023

axis distance, the smaller the approximation becomes.1024

5.5.4. Approximate dose calculation for range errors All approximation methods1025

except the static dose cloud can handle range errors. The static dose cloud per beam1026

would shift each beam dose longitudinally using geometric depth; static dose cloud with1027

radiological depth would shift each beam dose longitudinally using radiological depth;1028

beamlet shifting would shift the spot weights to other energy layers. For all methods,1029

the distance shifted is a function of depth or energy.1030

5.6. Analytical probabilistic modeling1031

In section 3, approaches to robust planning are formulated using a discrete set of error1032

scenarios. In some applications, the set of error scenarios has been small. For example,1033

in IMPT robust planning models with 9 error scenarios have been studied, consisting1034

of the nominal scenario, range overshoot, range undershoot, and 6 setup errors. In1035

IMRT applications a much larger number of scenarios is typically considered to more1036

accurately represent a Gaussian distribution. In any case, errors are discretized for nu-1037

merical integration. Analytical probabilistic modeling [90] is an alternative approach for1038

uncertainty quantification, which is primarily studied in the conjunction with stochas-1039

tic programming. The main idea behind analytical probabilistic modeling is to use a1040

functional parameterization of pencil beam dose distributions via Gaussian distribu-1041

tions. Using also Gaussian distributions for range and setup errors enables closed-form1042

integration to directly compute the expected value and the standard deviation of the1043

dose, and in some cases the objective function value. Consequently, the full continuous1044

probability density describing uncertainty can be incorporated; it is not necessary to1045

compute individual scenarios.1046

1047
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For proton therapy under range and setup uncertainty, analytical probabilistic1048

modeling provides more consistent estimates of the expected value and the standard1049

deviation of the dose at reduced computation times compared to sampling approaches1050

[99]. This translates into computational advantages for stochastic programming using1051

the quadratic objective function [99]. The computational advantages are particularly1052

prominent in the context of fractionated radiotherapy as analytical probabilistic model-1053

ing allows for a consistent incorporation of random and systematic sources of uncertainty1054

[100]. Recently, it has been shown that the analytical probabilistic modeling framework1055

also generalizes to the non-linear computations of the relative biological effectiveness of1056

carbon ions at the same computational complexity [103].1057

1058

Analytical probabilistic modeling has the potential to enable novel approaches1059

to uncertainty management based on an analytical definition and differentiation of1060

probabilistic objectives and constraints. However, it does not easily generalize to1061

non-pencil beam dose calculation algorithms providing higher accuracy and also the1062

incorporation of uncertainties beyond patient setup and particle range (e. g. anatomical1063

deformations) is an open question.1064

6. Respiratory motion1065

Commonly, motion compensation strategies for handling respiratory motion are divided1066

into 3 types of approaches: 1) gating, where the treatment beam is turned off when1067

the tumors is outside a defined region, 2) tracking, where motion of the treatment1068

couch or the MLC leafs is used to compensate for motion in real time, and 3) safety1069

margin approaches. The latter includes the internal target volume (ITV) approach,1070

where the target volume is defined as the union of the target volumes in all respiratory1071

phases obtained from a 4D CT. An alternative margin approach is the mid-ventilation1072

concept where an appropriate margin is added to the target volume defined in the mid-1073

ventilation phase. A fourth approach that incorporates the motion into treatment plan1074

optimization is often forgotten. Such methods can broadly be divided into two groups:1075

1. Approaches that assume a probability density function (PDF) for the position of the1076

target, which is incorporated into plan optimization. The motion PDF describes1077

the relative amount of time that the tumor spends in each breathing phase. In1078

this case a single treatment plan is created, which is delivered without any online1079

adjustments to motion measured during treatment.1080

2. Approaches that assume that the motion is predictable or monitored in real time,1081

and that the delivery of radiation can be synchronized with the motion.1082

Both approaches have sometimes been referred to as 4D optimization despite being1083

rather different. Therefore, we avoid this term in this review. The second type of1084

approach is difficult in terms of delivery. In the case of photon therapy, it could be1085

considered an extension of MLC tracking. We briefly review these works in section 6.4,1086
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however, we focus on the first type of approach that relates to robust planning more1087

directly.1088

6.1. Treatment plan optimization based on a known motion PDF1089

The ITV approach for moving tumors, and the PTV approach in general, aim to deliver1090

the prescribed dose to all regions were the tumor may be, regardless of how much time1091

the tumor spends in each position. In the presence of motion, and when the total tumor1092

dose is achieved by accumulating dose contributions from multiple geometric instances,1093

the ITV approach is suboptimal in terms of normal tissue sparing. In particular, normal1094

tissue dose can be reduced by delivering less dose to regions where the tumor is rarely.1095

To ensure that this dose reduction does not compromise target coverage, higher doses1096

should be delivered to regions largely occupied by the tumor.1097

To formalize this concept, assume that a lung tumor accumulates dose over different1098

phases ϕ of the breathing cycle, and let wϕ be the nonnegative fraction of time spent in1099

each phase. Each phase has an associated dose-influence matrix Dϕ, whose calculation1100

usually involves deformable image registration to map voxels in each breathing phase to1101

their location in a reference phase. Let us assume that the total dose accumulated over1102

a breathing cycle can be approximated as1103

d =
∑

ϕ

wϕDϕx = D̄x ,
∑

ϕ

wϕ = 1 (27)1104

where1105

D̄ =
∑

ϕ

wϕDϕ (28)1106

is an effective dose-influence matrix. It is important to note that wϕ is not a scenario1107

probability but the fraction of time spent in phase ϕ. Further, it is important to dis-1108

tinguish motion from uncertainty. Up to this point, no uncertainty is considered, i.e.1109

it is assumed that the cumulative dose is given by blurring a nominal dose distribution1110

with the known motion PDF. This is similar to the handling of random errors discussed1111

in section 4 for an infinite number of fractions. Using a fixed effective dose-influence1112

matrix D̄ in IMRT optimization will create a treatment plan featuring horns, which is1113

optimal for the assumed motion pattern characterized by wϕ.1114

1115

This approach was studied by various authors. Söhn et al [104] used the probabil-1116

ity density function (wϕ) to explicitly optimize the accumulated dose under respiratory1117

motion for lung patients and showed that their plan generated similar results as gat-1118

ing. Zhang et al [105] concluded that the approach can achieve plans similar to those1119

achieved by real-time target tracking. Watkins et al [106] and Lens et al [107] compared1120

the motion PDF approach and ITV planning, and showed that it resulted in similar1121

target coverage but significantly lower dose to surrounding healthy tissues. In the study1122

by Watkins et al [106], target coverage and OAR sparing was mostly maintained when1123
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the motion PDF differed from that assumed during optimization. The motion PDF ap-1124

proach was also studied in IMPT in combination with the voxel-wise worst-case method1125

for handling range and setup uncertainty [97].1126

1127

6.2. Robust planning for handling uncertainty in the motion PDF1128

A treatment that is optimized for a fixed motion PDF may degrade if the actual breath-1129

ing pattern varies substantially from the assumed motion PDF wϕ. Robust planning1130

methods can be used to robustify the plan against uncertainty in the breathing pattern.1131

One approach to parameterize this uncertainty is to assume uncertainty in wϕ, i.e. un-1132

certainty in the amount of time spent in each phase. This can be done by defining a set1133

of possible breathing patterns wϕ
k , which translates into a set of effective dose-influence1134

matrices D̄k. Subsequently, any of the robust planning concepts described in section 3.31135

such as the minimax or stochastic programming approach can be applied. However, in1136

this case it is also possible to consider a continuous uncertainty set W , containing a set1137

of realistic breathing PDFs.1138

1139

This robust planning approach is a generalization of both the ITV approaches1140

and optimization based on a fixed PDF. The fixed PDF approach can be recovered by1141

simply setting the uncertainty set W to be a single vector equal to wϕ for all ϕ. At1142

the other end of the spectrum, the largest set that W could be is the unit simplex:1143

{wϕ :
∑

ϕ w
ϕ = 1, wϕ ≥ 0, ∀ϕ}. This set models the situation where the breathing1144

motion can be any possible breathing pattern, including ones where the patient spends1145

100% of the time at a single phase in the breathing cycle. This is representative of the1146

ITV approach. An intermediate choice ofW results in a solution that balances between1147

healthy tissue sparing and target coverage under breathing motion uncertainty. Thus,1148

the robust optimization approach generates a continuum of robustness that allows the1149

decision maker to modulate the degree of conservatism when designing the treatment1150

[108].1151

1152

Several robust planning approaches for handling respiratory motion including un-1153

certainty in breathing patterns have been investigated [17, 109, 8]. Unkelbach et al1154

[109] investigated a stochastic programming approach for handling uncertain respiratory1155

motion. The work first considered uncertainty in the motion PDF as well as breathing1156

amplitude and baseline variations in a 1-dimensional phantom. This work was expanded1157

by Heath et al [8] and demonstrated for a lung cancer patient. The latter work also1158

provides a comparison of stochastic programming to the voxel-wise worst case method1159

described in section 3.4.3. Chan et al [17] were the first to propose a robust optimiza-1160

tion approach, which was demonstrated in a simplified 1-dimensional phantom. Later,1161

this approach was generalized and demonstrated in a lung patient geometry, with the1162

formal mathematical development of the continuum of robustness defined above [108].1163
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This approach was then adapted to optimize the DVH tails in breast IMRT under res-1164

piratory motion uncertainty, where the key trade-off was between cardiac sparing and1165

target coverage [110]. This approach demonstrated the potential to reduce the need1166

for breath-hold techniques [111], without requiring much extra computational effort to1167

solve the more challenging, tail DVH-based robust optimization problem [112].1168

1169

One of the consistent findings from robust treatment planning approaches is the1170

presence of horns in the dose distribution that would be delivered to a static geometry,1171

which are designed such that edge-enhancements are washed out by the motion so that1172

the prescribed cumulative dose is delivered to the target volume. For robust planning1173

approaches, the horns are smoother and less pronounced compared to treatment plan-1174

ning based on a fixed breathing PDF. In fact, depending on the degree of uncertainty in1175

the breathing PDF, the approach can interpolate between an ITV-like treatment plan1176

and the fixed PDF situation.1177

1178

In contrast to the case of random errors for setup and inter-fraction motion, horns1179

may be an acceptable approach to handle motion in the case of breathing motion. In1180

fact, in lung or liver SBRT highly non-uniform dose distributions are delivered in clinical1181

practice, which show hot spots of up to 150% of the prescription dose inside the target1182

volume. Although, these treatment plan may be motivated by other considerations, this1183

also facilitates target coverage with smaller margins. This aspect has been investigated1184

theoretically by Chan et al [113, 114], showing that horns can be optimal in dealing with1185

motion. Vranvcic et al [115] provided experimental validation by delivering horn-based1186

fluence maps on a linear accelerator. McCann et al [116] and Ahanj et al [117] showed1187

that edge-enhanced intensity maps at inhale and smaller beam apertures during inhale1188

can provide the same coverage as margins but potentially reduce the dose to healthy1189

tissue for lung cancer.1190

6.3. Combining adaptation with robust optimization1191

Adaptive radiation therapy describes a broad paradigm of closed-loop decision making1192

where parameters are updated as a treatment progresses to improve the quality of1193

the final treatment [118]. Although not originally proposed for dealing with uncertain1194

respiratory motion, the concept was adapted to this case to further improve the1195

performance of previously proposed robust optimization models, which are limited by a1196

fundamental trade-off: a larger uncertainty set results in better target coverage at the1197

expense of increased normal tissue dose. To push this trade-off frontier forward, Chan et1198

al [119] proposed an adaptive robust optimization approach where the uncertainty set is1199

updated from fraction to fraction based on past observations of the patient’s breathing1200

pattern. They showed that simultaneous improvements in both target coverage and1201

normal tissue sparing were possible, and provided theoretical justification to support the1202

effectiveness of their approach. Subsequent research showed that the adaptive robust1203
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approach also performed well when considering daily dose metrics [120] and breathing1204

patterns that drifted over time [121].1205

6.4. Plan optimization assuming synchronization of tumor motion and delivery1206

Another approach to incorporate respiratory motion in treatment plan optimization1207

consist in optimizing a separate fluence map for every respiratory phase. In this case,1208

the cumulative dose distribution1209

d =
∑

ϕ

Dϕxϕ (29)1210

is given by the sum of doses Dϕxϕ delivered in each phase, where xϕ is the fluence1211

map delivered while the patient is in phase ϕ. The objective function is evaluated for1212

the cumulative dose and minimized with respect to all fluence maps simultaneously.1213

In principle, this approach can provide a treatment that improves even on the current1214

approach to MLC or couch tracking. In the current approach to tracking, a treatment1215

plan is optimized for one respiratory phase. During delivery using MLC tracking, the1216

apertures of the treatment plan are shifted to compensate for target translation. The1217

above approach can in principle improve on that. A treatment that allows for distinct1218

fluence maps for each resiratory phase can treat different parts of the target volume1219

primarily in the respiratory phase that is the most suited, e.g. when the target moves1220

away from an OAR during inhale or exhale. In other words, this approach does not only1221

mitigate motion, but may exploit motion to improve a plan over the static situation.1222

1223

This approach has been investigated by Trofimov et al [122] and compared to other1224

motion handling approaches. Nohadani et al [123] added constraints on the fluence1225

maps to the treatment plan optimization problem to enforce similarity of fluence maps1226

for neighboring respiratory phases. In these works, the approach of delivering sepa-1227

rate fluence maps for each respiratory phase was investgated conceptually, however, the1228

question how such treatment plans would be delivered efficiently was not addressed.1229

1230

Obtaining a deliverable treatment plan requires an optimization method that is1231

aware of the delivery process. In photon therapy, this is the case for direct aperture1232

optimization. Assuming that both the motion of the tumor and the delivery of a1233

treatment plan over time is known a priori, each aperture can be assigned to a particular1234

breathing phase. In this case, a set of apertures is optimized based on their cumulative1235

dose, assuming that each aperture is delivered during a known breathing phase. Such1236

an approach was investigated for VMAT and for IMRT planning by several groups1237

[124, 125, 126]. Similarly, in proton therapy a predetermined scan path can be considered1238

such that each pencil beam spot can be assigned to a given breathing phase during plan1239

optimization. The cumulative dose to a voxel i can then be written as1240

di =
∑

ϕ

∑

j

zjϕD
ϕ
ijxj (30)1241
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where zjϕ is a binary indicator that assigns pencil beam j to phase ϕ, i.e. zjϕ = 1 if1242

pencil beam j is delivered during phase ϕ and zero otherwise. Such an approach was1243

investigated by Bernatowicz et al [127] and others. In this approach, a single fluence1244

map is optimized, but different beamlets are assigned to different phases. The resulting1245

treatment plan can therefore not reach the theoretical optimum where a separate fluence1246

map per phase is optimized, however, the approach would substantially improve on any1247

margin approach. The review by Bert et al [128] presents a detailed review of respiratory1248

motion management in proton therapy. So far, these approaches have assumed a1249

perfect synchronization of tumor motion and treatment delivery and did not consider1250

uncertainty in the delivered dose. In that sense, they represent a method to incorporate1251

respiratory motion in treatment planning, but not a robust planning method to account1252

for uncertainty in planning and delivery. Engwall et al. [129] applied robust optimization1253

to account for uncertainties in breathing motion and delivery synchronization while1254

optimizing a single proton spot scanning pattern to be delivered over the different phases.1255

The consideration of multiple breathing motion scenarios resulted in reduced sensitivity1256

to the interplay effect due to irregularities in the breathing motion for the considered1257

patients.1258

7. Discussion1259

The fundamental limitations of the PTV concept in IMPT led to the first implemen-1260

tations of robust planning in commercial treatment planning systems. Thereby, robust1261

planning has evolved from a research topic to a methodology used in clinical prac-1262

tice of proton therapy planning. RayStation (RaySearch Laboratories) supports robust1263

optimization for photons, protons, and carbon ions based on the composite worst-case1264

approach (equation 6). Robust optimization for protons is also available in Eclipse (Var-1265

ian), which features an implementation of the voxelwise worst-case approach (equation1266

11) similar as described by Liu et al [89], and in Pinnacle (Philips Healthcare), which1267

follows the probabilistic approach (equation 5) [130].1268

1269

All three of the commercial implementations can take patient setup uncertainty1270

and particle range uncertainty into consideration. The magnitude of the setup shifts to1271

be accounted for is generally specified separately for left-right, anterior-posterior, and1272

superior-inferior direction; the magnitude of particle range errors to be accounted for is1273

specified in percent of the nominal range. RayStation can also handle organ motion by1274

using multiple existing patient images, such as the phases of a 4D-CT, or by generating1275

synthetic images that simulate organ motion. Robust optimization in RayStation was1276

the first commercial implementation and has been evaluated for protons in several works1277

[60, 61, 62, 63, 64, 65, 66, 67]. Similar studies were done for Eclipse [131, 132, 59]1278

1279

The limitations of the PTV approach are less severe in IMRT compared to IMPT,1280

and robust planning for systematic errors based on quadratic penalty functions yields1281
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treatment plans that are often qualitatively similar to PTV based treatment plans. Situ-1282

ations where robust planning would have a fundamental advantage such as TCP/NTCP1283

based optimization or dose painting [16], are not commonly done in practice so far.1284

Perhaps therefore, the application of robust planning for IMRT has lagged behind that1285

for IMPT, even though methods like stochastic programming were initially investigated1286

for geometric uncertainty in IMRT and were only later applied to IMPT. Raystation is1287

the only commercial planning system that supports the use of robust optimization for1288

IMRT planning, which has been evaluated in a number of publications in recent years1289

[133] including applications to breast [134, 135], lung [136, 137], and glioblastoma [138].1290

1291

Even though IMRT planning systems do not commonly support robust optimization1292

methods, for some applications, it is possible to mimick the nature of the robust solution,1293

obtained from a research TPS, with a commercial one. For the case of boosting lymph1294

nodes of cervix patients in a simultaneous integrated boost technique, the coverage1295

probability approach by Baum [49] (section 4.6) was established and clinically validated1296

[139, 140] by a transfer of dose plan features obtained from the experimental TPS1297

Hyperion to Varian Eclipse RapidArc plans. The positive experience with this technique1298

have led to planning goals for the EMBRACE II cervix cancer trial that derive from1299

robust planning concepts, and not PTV concepts [141].1300
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