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ABSTRACT

Motivation: The continued progress in developing technological
platforms, availability of many published experimental datasets, as
well as different statistical methods to analyze those data have
allowed approaching the same research question using various
methods simultaneously. To get the best out of all these alternatives,
we need to integrate their results in an unbiased manner. Prioritized
gene lists are a common result presentation method in genomic
data analysis applications. Thus, the rank aggregation methods can
become a useful and general solution for the integration task.
Results: Standard rank aggregation methods are often ill-suited for
biological settings where the gene lists are inherently noisy. As a
remedy, we propose a novel robust rank aggregation (RRA) method.
Our method detects genes that are ranked consistently better than
expected under null hypothesis of uncorrelated inputs and assigns a
significance score for each gene. The underlying probabilistic model
makes the algorithm parameter free and robust to outliers, noise and
errors. Significance scores also provide a rigorous way to keep only
the statistically relevant genes in the final list. These properties make
our approach robust and compelling for many settings.
Availability: All the methods are implemented as a GNU R package
ROBUSTRANKAGGREG, freely available at the Comprehensive R Archive
Network http://cran.r-project.org/.
Contact: vilo@ut.ee
Supplementary information Supplementary data are available at
Bioinformatics online.

Received on April 23, 2011; revised on November 28, 2011; accepted
on December 21, 2011

1 INTRODUCTION
Data integration plays an important role in the analysis of high-
throughput data. As the outputs of individual experiments can be
rather noisy, it is essential to look for findings that are supported
by several pieces of evidence to increase the signal and lessen
the fraction of false positive findings. The structure of the data
and specific research questions largely dictate the methods used in
integration. Still, some very general techniques for aggregation of
genomic data have been proposed such as the Bayesian networks
(Troyanskaya et al., 2003) and the Kernel methods (Bie et al.,
2007). In this work, we limit ourselves to the situation where all
the data sources are represented as prioritized lists of genes. This is
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a very natural way to represent a result of a genome-wide study and,
therefore, ubiquitous in different types of analyzes.

Finding a meaningful combination of different data sources is
often a non-trivial task. For example, differences in measurement
platforms and lab protocols can render gene expression levels
incomparable. Hence, it might be better to analyze different datasets
separately and then aggregate the resulting gene lists. Such a strategy
has been employed to finding gene co-expression networks (Lee
et al., 2004; Stuart et al., 2003) and for defining more robust sets
of cancer-related genes (Griffith et al., 2006). Another example
is the study by Aerts et al. (2006), where the authors combined
different kinds of data sources to find disease-related genes. For
this they ranked genes by similarity to the disease genes in the
Gene Ontology (GO), pathways, transcription factor binding sites,
sequence and literature and subsequently aggregated these rankings
to get the final result. Boulesteix and Slawski (2009) used an
analogous methodology to combine results of differential expression
analysis.

Combining preference lists into a single ranking is known as
rank aggregation. This problem has a rich history in the fields of
information retrieval (Dwork et al., 2001a) and theory of social
choice (Copeland, 1951). In these contexts, the main focus is on the
‘correctness’ of the resulting ranking. For example, in elections it is
critical that each vote gets counted and represented in the final result.
However, finding the best ranking is often computationally very
expensive, for example the one that minimizes the misplacement
or so-called ‘bubble sort distance’, and thus applicable only for a
relatively small class of problems. (Dwork et al., 2001b; Pihur et al.,
2007).

Data from high-throughput genomic experiments usually contains
a significant proportion of noise and thus ‘correctness’ is not right
objective for these kinds of studies. For such settings, a good
rank aggregation method must be robust enough to find a relevant
ranking even in the presence of unreliable or irrelevant inputs. Since
it possible that all rankings are meaningless in the context of a
particular study, the method should also quantify the reliability or
significance of the results. Finally, the method should be applicable
also for partial or top rankings only, since full rankings are often
unavailable, e.g. gene lists derived from articles or various tools and
databases.

In this article, we propose a novel rank aggregation method
based on order statistics that achieves all described objectives.
Stuart et al. (2003) were the first to utilize order statistics in
rank aggregation. The computational scheme for their method was
further optimized by Aerts et al. (2006). This algorithm compares
the actual rankings with the expected behavior of uncorrelated
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rankings, re-ranks the items and assigns significance scores. While
being robust to noise, this method requires simulations to define
significance thresholds (Aerts et al., 2006) and does not support
incomplete lists.

To overcome these limitations, we propose a new algorithm that
is both computationally efficient and statistically stable. For each
item, the algorithm looks at how the item is positioned in the ranked
lists and compares this to the baseline case where all the preference
lists are randomly shuffled. As a result, we assign a P-value for all
items, showing how much better it is positioned in the ranked lists
than expected by chance. This P-value is used both for re-ranking
the items and deciding their significance.

We also extended this methodology to the case where only top
elements in the lists are available. Compared with the common
approach of counting the appearances of each item (Griffith et al.,
2006; Lee et al., 2004), our method is clearly an improvement.
It also takes into account the positional information and assigns
significance levels to the findings according to a theoretical model.

All methods described in this article, including average rank and
the method by Aerts et al. (2006), are implemented as a GNU R
package RobustRankAggreg.

2 ROBUST RANK AGGREGATION
Let m be the number of objects and n be the number of preference
lists. For instance, n might be the number of experiments and m
the number of genes studied. Moreover, assume that in each survey
genes are ordered according to their impact so that the ones most
likely to behave in a certain way are in the beginning of the list. Then
the rank of a gene is just the position in this ordering. If we divide
ranks by the maximal rank value m, we obtain normalized ranks
with the maximal value of 1. For each gene let the corresponding
rank vector r= (r1,...,rn) be such that rj denotes the normalized
rank of the gene in the j-th preference list.

A general strategy for obtaining an aggregated preference list
is to score each rank vector somehow and order the genes based
on the scores. Note that relative ranks can be used even if the
preference lists contain slightly different sets of genes. This is quite
a common scenario. For example, we might want to aggregate lists
from different microarray platforms where each of them measures a
unique subset of genes. To take this into account, we have to adjust
the maximal rank m according to the number of elements in each
list in the normalization step and use a scoring method that produces
comparable scores even if the length of rank vector varies.

Classical rank aggregation methods try to maximize the coherence
of the final ranking with all the preferences. However, maximal
coherence with all preferences is not always the best aggregation
criterion, especially if some preferences are unreliable. Some
ranking algorithms resolve this issue assuming that we can estimate
correctness probability for each rank or preference list see, for
example Li et al. (2011). For most biological studies, this type
of extra information is not available. Also, each ranking is most
probably informative only on a subset of relevant genes, since
it reflects only one aspect of the underlying biological question.
Therefore, it is not reasonable to view an entire ranking as
informative or non-informative but rather make a distinction at the
gene level. This can be achieved via fixing a null model, which
describes distribution of ranks when all studies produce irrelevant
results, and estimate statistical significance.

The simplest possible null model assumes that all studies are non-
informative and produce randomly ordered gene lists. When genes
are ranked based solely on measurement data, the null model is
equivalent to a permutation test, where measurements in each study
are randomly relabeled before the analysis step.

2.1 Scoring rank vectors using order statistics
In most cases, we are interested in finding genes that are ranked
highly in many preference lists ignoring a (small) fraction of non-
informative studies. Thus, we can assume that all informative
normalized ranks come from a distribution, which is strongly skewed
toward zero and our task is to detect these distributions.

For any normalized rank vector r, let r(1),...,r(n) be a reordering
of r such that r(1) ≤ ...≤r(n). Then we can ask how probable it is
to obtain r̂(k) ≤r(k) when the rank vector r̂ is generated by the null
model, i.e. all ranks r̂j are sampled from uniform distribution.

Let βk,n(r) denote the probability that r̂(k) ≤r(k). Then under the
null model the probability that the order statistic r̂(k) is smaller or
equal to x can be expressed as a binomial probability

βk,n(x) :=
n∑

�=k

(
n

�

)
x�(1−x)n−� , (1)

since at least k normalized rankings must be in the range [0,x].
Alternatively, βk,n(x) can be expressed through a beta distribution, as
r̂(k) is the order statistic of n independent random variables uniformly
distributed over the range [0,1].

Since the number of informative ranks is not known, we define
the final score for the rank vector r as the minimum of P-values

ρ(r)= min
k=1,...,n

βk,n(r) (2)

and order all rank vectors according to their ρ scores. Illustration
of how the scores are calculated on two example genes is in the
Figure 1.

As a minimum of P-values, ρ score itself is not a P-value. Hence,
it must be corrected against bias coming from multiple hypothesis
testing to determine statistical significance. Exact P-values can be
computed for each ρ score. However, the corresponding algorithm
relies on the same methods as Aerts et al. (2006) and thus inherits
all weaknesses. In particular, it is computationally expensive and
becomes numerically unstable for rather small examples. A full
description of the method is given in the Supplementary Material.

Alternatively, we can use Bonferroni correction for each ρ score
separately to find an upper bound on the associated P-value. For that
we must multiply each ρ score with the number of input lists. Since
the number of input rankings is usually in the order of 10–100, the
resulting correction is not overly stringent. Indeed, exact numerical
comparisons between Bonferroni correction and actual P-values
given in the Supplementary Material show upper bounds are very
close to exact values. Thus, the Bonferroni correction is a good
trade-off between efficiency and precision in most cases.

After the correction, we can decide whether the ranking of a
particular gene is statistically significant. To find all significant
genes, we have to correct derived (estimates of) P-values further
for multiple testing. This can be done we with standard methods.

From the computational viewpoint, the Robust Rank Aggregation
(RRA) method is inexpensive. Its complexity is linear with respect
to the input size. Therefore, its applicability is not restricted by
computational considerations.
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A B

Fig. 1. Visual description of RRA. (A) Shows an example of 20 ranked lists, with the positions of two genes highlighted. The first gene is placed to the top
of the lists and the second distributed uniformly. (B) Shows in detail how βk,n scores change and how the ρ score is found.

2.2 Aggregation of partial preference lists
In many cases, studies provide only partial rankings. For example,
instead of all genes the list contains only the differentially expressed
ones. Also, small fluctuations in measurements can cause large
changes in the bottom part of such lists. Thus, it might be beneficial
to keep only genes with statistically significant changes.

There are two ways to extend our basic algorithm. First, we can
obtain a conservative approximation of the P-values βn,k(r) and
ρ scores. Due to missing ranks we cannot correctly determine r(k).
However, if we replace all missing values with the maximal relative
Rank 1, the resulting order statistics r(k) can only increase. Hence,
by inserting these estimates of r(k) into the Formula (1) we get
upper bounds for all P-values βn,k(r). This approach is generally
applicable and suitable in most of the cases.

Alternatively, if we know the specific mechanism for eliminating
ranks and the length of preference lists varies substantially, we
can incorporate data deletion directly into the null model. This
provides more accurate and less conservative estimates of P-values.
As a drawback, the results must be computed with dynamic
programming, which is slightly less efficient. Further details of this
algorithm are shown in the Supplementary Material

3 RESULTS

3.1 Simulation study
We used simulations to investigate basic properties of our method.
Namely, we generated rankings with planted elements that were
preferentially ranked at the top. To add noise we included rankings
where the order of elements was completely random. Such data
allows us to study two aspects. First, we can study whether
the resulting rankings separate planted elements from the others.
Second, we can determine how many planted elements are revealed
and compare it with the performance of alternative methods.

We compared our method with two alternatives: average rank
and the method by Stuart et al. (2003). To calculate the scores for
Stuart method, we used the optimized algorithm from Aerts et al.

(2006). All three methods also provide significance scores for final
ranks showing how much higher a gene is placed in the inputs than
expected. Further details are given in Section 4.

All rankings consisted of 1000 elements out of which 5% were
preferentially ranked at the top. We achieved that by associating
randomly generated values to the elements and ordering them
according to these. All values were drawn form normal distribution
with unit variance. For planted elements, we chose the mean value
from the exponential distribution with λ=1/2 and used the standard
normal distribution for remaining elements.

For the first test, we generated 10 such lists. As can be seen from
Figure 2A, all three methods can order the lists very well, placing
elements from the positive class at the top of the aggregated list.
Corresponding area under curve (AUC) scores are 0.997, 0.995
and 0.979 for Stuart method, RRA and rank average. However, the
results start to differ if we study the number of elements deemed
significant by each method using the false discovery rate of 0.05 as
threshold (Fig. 2A). RRA method outperformed rank average even
with the data that does not contain any noise in the form of random
lists.

Stuart method has problems with significance scoring. It produces
probability values for each element and the original article treats
them as P, but actually they are not (Aerts et al., 2006). Using them
as P-values produces many false positives.

In the second test, we studied resistance against noise. Figure 2B
shows the receiver-operating characteristic (ROC) curve for the
three methods on data that contained 10 lists with signal as described
before and 30 randomly ordered lists. We can see that both RRA
and Stuart method perform considerably better than average rank
in ordering the lists, showing their robustness to this type of
noise.

We also tested the performance on recognizing planted elements
given various levels of noise (Fig. 2C). We generated 10 lists with
signal and added different numbers of randomly shuffled lists. In
each case, we counted the number of true positive predictions on
FDR level of 0.05. Because of the problems with significance scores,
we omitted the Stuart method. Results show that RRA performs
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A

B C

Fig. 2. Results from a simulation study. (A) Shows significance scores calculated with different methods on the 10 lists, which contained 50 planted elements.
The number of true and false positives was computed on FDR level of 0.05. Both methods based on order statistics (RRA and Stuart) separate planted elements
from noise better than average rank. Still, the Stuart method produces many false positives and thus cannot be used for deciding the significance of genes.
(B) Shows ROC curves of different methods on noisy data (10 lists with signal, 30 random). Methods based on order statistics outperform the average rank
considerably. (C) Shows the number of true positives given at different levels of noise. At each level, we simulated 10 datasets. RRA shows much higher
resistance to noise than an average rank. The Stuart method was excluded from (C) as it failed to identify planted elements from noise.

Fig. 3. The proportion of planted elements that were correctly identified by
RRA given different numbers of top elements available in input rankings.
The gray line shows the proportion of planted elements in the inputs. We can
see that the number of correctly identified elements starts to drop only after
almost the whole list is dropped. Therefore, by using partial instead of full
rankings we usually lose very little information.

consistently better than average rank and gives meaningful results
even if the levels of noise are relatively high.

Finally, we studied how well the RRA method works if we
consider only � top ranking elements. To answer this question, we

simulated datasets with 10 lists with planted elements as described
before. We cut out different proportions of top elements and counted
the number of statistically significant results as given by RRA. The
outcome is in Figure 3. As before 5% of the elements were planted.
A full list allowed us to identify about three-fourths of them. This
number started to fall only when we removed >95% of the elements
in the bottom of rankings. But, even with top-1% lists, we can on
average correctly identify about half of the planted elements. It must
be noted that the statistics are still correct using top-� lists. The
number of false positives was well within the allowed limits.

In summary, we can conclude that RRA is usable also in situations
where complete rankings are unavailable.

3.2 Predicting pathway members with knock-out data
Gene expression measurements before and after some transcription
factor knockouts reveal important information about genomic
pathways. However, we cannot infer the pathway members directly
from this data. We can only identify putative targets for these
factors. To identify pathway members, we must join target lists of
all factors related to a particular pathway. However, these target lists
are inherently noisy, since a knockout often affects genes that do not
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Fig. 4. Predicting genes to a GO category based on the knockouts of its transcription factors. A gene name on the x-axis corresponds to a knockout and each
bubble represents the Fisher’s exact test P-value, showing the enrichment of the knock-out affected genes in the GO category. The horizontal line shows the
same enrichment P-value for the aggregated list. The size of the bubble corresponds to the number of regulated genes in the knockout and the color shows
if the P-value is significant. The P-values show that the aggregated list is more enriched in the genes related to the corresponding process than most of the
inputs.

correspond to the pathway. By robust rank aggregation, we can filter
out genes that are not specific for the process.

We used yeast data by Hu et al. (2007) to validate this approach.
The data consist of experiments where the transcription factors are
knocked out one by one. Reimand et al. (2010) analyzed the data
and published the lists of genes where expression was most affected
by each knockout. We used these lists to predict members of the GO
groups. For each GO group, we identified the transcription factors
related to the group and extracted corresponding gene lists. Next we
used our methods to compile a list of statistically significant targets.
As a quality control, we used Fisher’s exact test on each list to
estimate the enrichment of the known members of the functional
group. Figure 4 depicts results for cell cycle and response to
chemical stimulus.

In both cases, aggregated lists are more enriched with genes
belonging to the GO category of interest than most of the individual
lists. Although, a particular knockout can outperform the aggregated
list, the impact of less informative lists is limited. Generally, we do
not know in advance which experiment is most informative and thus
aggregation is a good way to consolidate data.

Results with response to chemical stimulus demonstrate the utility
of robustness of our rank aggregation method. Only 6 of 39 of the
input rankings were enriched with genes related to the category. Still,
our method recognized the signal among all that noise and returned
a list with significant enrichment.

3.3 MEM project
Our method is already used in the Multi Experiment Matrix (MEM)
web server (Adler et al., 2009), which searches for co-expressed
genes over large collections of microarray data. Given a gene name,
the web server performs a co-expression query in hundreds of
datasets and then aggregates the results using the RRA algorithm.

To demonstrate the usefulness of rank aggregation in this setting
we performed the following study. The goal was to find transcription
factor targets by searching for genes that are co-expressed with it.
As a gold standard, we used targets found by ChIP-seq study Chen
et al. (2008). The study covered 15 embryonic stem cell-related
transcription regulators. We performed the co-expression search

with these 15 genes on 12 ES-related mouse datasets and recorded
both individual and aggregated search results. For each of those we
calculated ROC AUC scores showing prediction accuracy. We used
both RRA and Stuart method for this. The AUC values are close
to one if the prediction for the gold standard is good and ∼0.5 if
the gold standard cannot be predicted. The results can be seen in
Figure 5.

Generally, the aggregated list outperforms most of the input lists
but not all. For CTF, MYCS and SMAD1 queries, results of the
RRA algorithm are in the middle of pack. However, in all those
cases AUC scores for input lists are dispersed ∼0.5, i.e. there is
no signal. This explains the poor performance of our algorithm: it
can only amplify the signal if it is present in the input. So if we
could tell in advance what input is the most relevant, then we could
completely omit the aggregation step. However, pinpointing good
lists is not feasible in most cases. Even in our example, the best
individual dataset is different for each transcription factor. Hence, it
is safer to include all the data and use the aggregated results.

3.4 Comparison with other methods
The RRA algorithm has four key features: it is robust to noise, it can
handle incomplete rankings, it assigns a significance score to each
element in the resulting ranking, and it is also efficient to compute.
All these features are important in practice; in particular, if one wants
to build a tool for interactive data analysis.

To our knowledge, other available methods cannot match these
properties. Classical rank aggregation methods are often sensitive
to noise (as illustrated in Fig. 2) and do not identify the relevant
part of the aggregated ranking. In addition, some of them can be
computationally very expensive (Dwork et al., 2001b).

The Stuart method is a good alternative to RRA, as it is robust
to noise (Fig. 2A and B). The rankings produced by Stuart and
RRA algorithms are very similar in terms of discrimination. The
Stuart algorithm yields ROC AUC scores that are comparable if
not a bit better than RRA (Figs 2 and 5). This is an expected
result, as the statistics are very similar while Stuart’s method takes
more information into account. However, the scores of the Stuart
method are not directly P-values (Aerts et al., 2006) and closed form
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Fig. 5. AUC scores when predicting transcription factor targets based on
gene co-expression. The gray dots represent the individual results and black
dots and plus signs aggregated results with RRA and Stuart method. These
values show that in the presence of a signal in the inputs, aggregation methods
pick it up and outperform most of the inputs. When the signal is low in the
input (AUC ∼0.5), aggregated results are not considerably better. The results
for RRA and Stuart method are almost identical, since they use very similar
criteria for aggregation.

solutions are not known. Hence, extensive simulations are needed
to assess the significance of aggregated ranks. These results are not
easily pre-calculable, since we need simulations for each shape of
the rank matrix. As a consequence, the Stuart method with proper
thresholding is hundreds if not thousands times slower than the RRA
algorithm.

The Stuart method does not handle missing ranks. This can be
resolved with a small modification shown in the Supplementary
Material. Finally, the algorithm can become numerically unstable
when the number of lists is bigger. In our experience, it happens
around 40–50 input lists (see Supplementary Material for examples),
but depending on the data this number can be also smaller.

As a final test, we used updated Stuart’s method on the knock-out
data by making some adjustments for it to work in this setting. Out
of 15 cases, where we reached a significant result, in 11 cases the
RRA had the same or better enrichment score (see Supplementary
Material for details) showing the utility of RRA approach.

In summary, the unique properties of RRA make it suitable
for a variety of practical situations for which there are no good
alternatives available. Our tests show that even in the cases where
some alternatives could be used, our method gives comparable
results.

4 MATERIALS AND METHODS

4.1 Rank aggregation methods used in comparisons
We used average rank and the method by Stuart et al. (2003) for
evaluating RRA. To assign significance scores for average ranks,
note that the resulting rank follows normal distribution with mean
0.5, and SD

√
1/12n, provided that samples come from uniform

distribution.
The method by Stuart et al. (2003) outputs in our notation

a probability Pr[r̂(1) <r(1),...,r̂(n) <r(n)] where r̂ is a sample from
standard uniform distribution as an output score. We tried to
use this probability as a significance P-value, as was done in
the original article, although permutation tests would have been
more appropriate to assign significance scores. Since the formulas

used in the original article are computationally very demanding,
we used the algorithm proposed by Aerts et al. (2006). Both
these methods are also implemented in the associated GNU R
package RobustRankAggreg.

4.2 Pathway prediction
For pathway prediction, we used the statistical analysis results
from Reimand et al. (2010) that are available in ArrayExpress
(accession: E-MTAB-109). We used false discovery rate of 0.05 as
the significance cutoff when defining the lists. The response of the
chemical stimulus gene list was downloaded as a GO slim category
from Saccharomyces Genome Database (Hong et al., 2008) and cell
cycle genes from a review by de Lichtenberg et al. (2005).

4.3 Stem cell study using MEM
A gold standard for transcription factor targets were obtained from
the study by Chen et al. (2008). The article defined an association
score between each gene and a transcription factor that varied from
0 to 1. As scores showed a clear bimodal distribution, we considered
all genes with a score >0.6 to be targets of the corresponding
transcription factor.

In the MEM webtool (http://biit.cs.ut.ee/mem), we selected 12
datasets on mouse Affymetrix platform 430 2.0. Since the ChIP-
seq study was performed on mouse embryonic stem (ES) cells, we
selected only the datasets that mentioned ES cell in their description.
The list of datasets is available in the Supplementary Material.

We queried each of the transcription factors, for which we had
binding information, separately. The MEM webtool performed a
similarity search on each dataset using correlation distance between
the transcription factor and other genes. The resulting lists of
correlated genes were used in aggregation and assessing the AUC.

To combine the data from ChIP-seq with co-expression queries,
we translated all the results into Ensembl gene identifiers using
g:Convert (Reimand et al., 2007).

5 DISCUSSION

5.1 Gene expression meta-analysis
The accumulation of gene expression studies has created a situation
where one can pose new questions about the co-expression and
functional role of genes by integrating the already existing data
(Wren, 2009). It is also easier to answer some biological questions
by reanalyzing and combining old datasets rather than redoing
experiments. For example, meta-analysis of gene expression data
has been successfully used for studying cancer and its subtyping
(Rhodes et al., 2002; Wirapati et al., 2008).

There are two general strategies for meta-analysis. The first
involves rigorous normalization, integration and analysis of the raw
expression datasets. In general, this is the preferred type; however, it
might not be always practical. The main problem is the availability
of the data. Many older publications do not have the data uploaded
to public repositories, such as ArrayExpress (Parkinson et al., 2009)
or GEO (Barrett et al., 2009). Even from the data that is available in
these repositories, about two-thirds might be unusable for meta-
analysis due to poor quality or missing raw files (Larsson and
Sandberg, 2006).Another problem is caused by the usage of different
microarray platforms. Each platform uses different technology to
measure the expression and features its own set of probes and
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genes. Therefore, proper integration of gene expression values over
platforms is very difficult, although, doable in special cases.

The second option is to merge only the published results. This way
we can avoid normalization problems caused by different platforms
and also improve the data availability dramatically, since most of
the microarray publications include a gene list or a signature of
some sort. On the downside, this approach introduces many potential
sources of noise arising from different preprocessing, normalization
and statistical analysis steps (Cahan et al., 2007).

Commonly used methods for integrating published gene lists are
usually very simple. Sometimes, the aggregated list is obtained by
counting the number of times each gene occurs in the input lists
(Griffith et al., 2006; Miller and Stamatoyannopoulos, 2010). Rank
aggregation methods are an obvious choice and several of them have
also been tried in this setting (DeConde et al., 2006; Pihur et al.,
2008). Generally, these methods give reasonable results but there
are different drawbacks. Counting-based methods do not naturally
take into account the ranked nature of the gene lists, although, there
are some workarounds. Many of the rank aggregation methods are
computationally very expensive, making some questions intractable
(Dwork et al., 2001b). Most of the classical methods also lack
robustness, which is critical, since some input sources can be dubious
due to differences in clinical and experimental setups, etc. The main
problem with all the methods is the lack of a statistical model for
assessing the relevance of the results.

Our RRA algorithm fits very well to this meta-analytic setting.
Most importantly, it is based on a statistical model that naturally
allows evaluating the significance of the results. In addition, RRA
is easy to compute and robust, not restricting its use to certain
subset of problems or requiring all data to be of top quality. The
RRA algorithm can also handle variable gene content of different
microarray platforms. By defining the rank vector for each gene
based only on the datasets where it is present, we do not have to
omit the genes that are not present in every platform.

6 CONCLUSIONS
Ranked lists of genes are a common output of a vast array of
bioinformatics tools. Often, the same question can be answered
using several datasets or algorithms producing multiple lists of
genes and there is a need to combine the results. In this article,
we present a novel rank aggregation algorithm RRA that is very
well suited for such bioinformatic settings. The aggregation is based
on the comparison of actual data with a null model that assumes
random order of input lists. A P-value assigned to each element
in the aggregated list described how much better it was ranked than
expected. This provides basis for reordering and identifies significant
elements. As the P-value calculation procedure takes into account
only the best ranks for each factor, the method is very robust, which
is important when using high-throughput data.

We validated the method both on simulated and biological data.
The simulations showed that the algorithm can very well retrieve the
positive factors planted into the input lists, even in the presence of
noise. The method still managed to find some of the planted factors,
even if over 75% of the input rankings did not contain any relevant
information. We also showed that the method can work with partial
rankings as well. In fact, we can omit very large parts of the input
lists without influencing the results at all.

In the two case studies on biological data, we found that RRA
can amplify the biological signal if it exists in the input data. The
aggregated ranking displays stronger signal than most of the inputs
lists. Even if some of the inputs may perform well individually,
we are in practice often better off by taking into account all the
possible information rather than trying to guess the most informative
source. All the methods described here have been implemented and
are available in additional GNU R package RobustRankAggreg.
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