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Robust real‑time 3D 
imaging of moving scenes 
through atmospheric obscurant 
using single‑photon LiDAR
Rachael Tobin1*, Abderrahim Halimi1, Aongus McCarthy1, Philip J. Soan2 & Gerald S. Buller1

Recently, time‑of‑flight LiDAR using the single‑photon detection approach has emerged as a potential 
solution for three‑dimensional imaging in challenging measurement scenarios, such as over distances 
of many kilometres. The high sensitivity and picosecond timing resolution afforded by single‑photon 
detection offers high‑resolution depth profiling of remote, complex scenes while maintaining low 
power optical illumination. These properties are ideal for imaging in highly scattering environments 
such as through atmospheric obscurants, for example fog and smoke. In this paper we present the 
reconstruction of depth profiles of moving objects through high levels of obscurant equivalent to five 
attenuation lengths between transceiver and target at stand‑off distances up to 150 m. We used a 
robust statistically based processing algorithm designed for the real time reconstruction of single‑
photon data obtained in the presence of atmospheric obscurant, including providing uncertainty 
estimates in the depth reconstruction. This demonstration of real‑time 3D reconstruction of moving 
scenes points a way forward for high‑resolution imaging from mobile platforms in degraded visual 
environments.

�e Light Detection and Ranging (LiDAR) technique o�en uses the time-of-�ight (ToF) information of a re�ected 
optical signal to determine the distance to an  object1. Compared to Radio Detection and Ranging (RADAR) 
approaches, LiDAR systems are generally capable of higher resolution imaging of objects at long ranges due to 
the use of much shorter  wavelengths2. �e modular and compact nature of current LiDAR system designs has 
enabled them to be deployed in a variety of ranging and imaging applications, such as airborne  platforms3–5 and 
vehicle navigation  systems5–7.

More recently, the time-correlated single-photon counting (TCSPC) technique has been employed in proto-
type three-dimensional imaging LiDAR systems for sensing in demanding scenarios, due to its high  sensitivity8,9. 
While some conventional ToF LiDAR systems based on linear avalanche photodiode (APD) detector tech-
nologies are capable of providing high-resolution images at long ranges in clear conditions, they lack however 
the shot-noise limited sensitivity provided by the time-correlated single photon detection approach. �e high 
sensitivity exhibited by single-photon detectors, such as superconducting nanowire detectors (SNSPDs)10–13 
or single-photon avalanche diode (SPAD) detectors, allow the use of low average optical output power levels 
for scene illumination. Typically, both detector types are capable of picosecond timing, permitting excellent 
surface-to-surface resolution that is not readily achievable using an analogue optical detector  approach12,14,15. 
SPAD detectors are the most commonly used single-photon detectors for remote sensing applications as they 
are capable of operation near room temperature, typically in Peltier-cooled packages. Single-pixel SPAD detec-
tors have been used to image a scene by scanning in a point-by-point manner in the visible, near-infrared and 
short-wave infrared  regions16–20. SPAD detector arrays have also been used in large pixel formats (e.g., 32 × 32, 
128 × 64) that can o�er high spatial resolution and rapid data  acquisition14,21–28. �is recent emergence of high 
data-rate single-photon LiDAR systems, which employ SPAD detectors, has stimulated research into potential 
new applications that seem well-suited to this detector technology such as autonomous navigation, environmental 
monitoring, and subsea mapping. SPAD-based LiDAR systems have been successfully demonstrated in several 
challenging scenarios including long-range depth  imaging29–34, imaging through  clutter35,36, non-line-of-sight 
detection of targets hidden from  view37–39, and imaging of targets in high levels of scattering  media27,40–45.
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Although CMOS-based SPAD arrays o�er advantages in terms of large format detector arrays, they are 
typically restricted to wavelengths of less than 1000 nm. �e use of short-wave infrared (SWIR) wavelengths 
in LiDAR systems can have several advantages over shorter wavelengths, such as reduced in-band solar 
 background46, higher atmospheric transmission in clear  conditions47,48, and improved transmission in some 
obscurants when compared to near-infrared  wavelengths36. Most importantly, being outside the retinal hazard 
region (400–1400 nm)49, the selection of 1550 nm as the operating wavelength enables the use of a higher average 
optical power illumination beam whilst remaining eye-safe when compared to visible and near-infrared bands. 
�e increased optical power levels a�orded by use of the SWIR region can result in a greater maximum attainable 
LiDAR range and/or improvement in achievable depth resolution for shorter acquisition times.

�e use of more conventional imaging approaches for “seeing” through degraded visual environments, such 
as those caused by natural and man-made obscurants (e.g., dust, fog, smoke, and haze), pose an impediment to 
situational awareness in scenarios such as airborne navigation, surveillance and  reconnaissance50–52. Previously, 
sensing technologies that have been used in the presence of obscurants include RADAR based  sensors53,54, and 
passive sensors based on thermal  imaging55,56. �ere has been some previous work on using LiDAR for imaging 
through obscurants, but this was mostly laboratory-based work or range-gated LiDAR techniques such as Burst 
Illumination LiDAR (BIL)  systems43,44. �e single-photon sensitivity and excellent depth resolution of TCSPC 
LiDAR systems have o�ered potential for high-resolution 3D imaging through atmospheric  obscurants41,42. �is 
paper reports the imaging through approximately 10 m of obscurant, of moving targets over distances of 50 and 
150 m using full-�eld single-photon detection.

In recent years, there has been great interest in the implementation of image processing algorithms designed 
to reconstruct images from sparse photon data, and several algorithms have demonstrated good performance 
for data obtained in free-space scenarios where the return signal is very low and the background is relatively 
 high29,57–64. Currently, a major bottleneck in the use of single-photon LiDAR systems is that these algorithms 
typically su�er from the disadvantage of long execution times (generally 10 s to 100 s of seconds), limiting their 
use in applications that rely on near instantaneous target analysis. Real-time reconstruction of 3D scenes from 
single-photon data was achieved recently using highly scalable computational tools being run on a graphics pro-
cessing unit (GPU)65. However, this algorithm is not optimized for imaging through turbid media which contain 
high and non-uniform background levels, but instead was speci�cally designed for complex scenes typically 
containing more than one surface in each pixel. �is paper presents a new approach for the real-time process-
ing of single-photon data acquired from imaging scenes through obscurants, which can deal with particularly 
high and non-uniform background levels. �e proposed reconstruction algorithm combines ingredients from 
recent state-of-the-art algorithms including the use of an advanced statistical  modelling48,53,54, the exploita-
tion of spatio-temporal information, and combining non-linear parameter estimation and �ltering  steps66,67 
to deliver a robust estimation strategy. �e resulting algorithm allows scene reconstruction from extremely 
noisy data with a non-uniform temporal (or depth) pro�le, as expected from propagation through high levels 
of obscurants, whilst quantifying the uncertainty of the depth and intensity reconstruction, which is essential 
for practical 3D imaging applications. �is algorithm includes a new statistical formulation that exploits the 
multi-scale and multi-temporal information of single-photon LiDAR data to improve robustness to noise and 
quantify the uncertainty of the estimates. In addition, this algorithm allows the use of latent variables that can 
be updated in parallel, improving computational costs. Finally, this model produces simple iterations that can 
be e�ciently implemented.

In this paper we present an active imaging system based on the single-photon ToF approach to obtain depth 
and intensity pro�les of moving targets through high levels of obscurant. �e bistatic system comprised a pulsed 
laser source with an operational wavelength of 1550 nm and a maximum average optical output power level of 
220 mW, and an InGaAs/InP SPAD detector array which is highly e�cient in the SWIR region.

�e combination of this active imaging system with the proposed advanced algorithm allowed, for the �rst 
time, the reconstruction of depth and intensity pro�les of static and moving targets, placed in high levels of 
atmospheric obscurant at stand-o� distances of up to 150 m in both indoor and outdoor environments.

Results
Experiment layout. �e LiDAR transceiver was arranged in a bistatic optical con�guration, and used a 
32 × 32 InGaAs/InP SPAD detector array. A pulsed �bre laser source operating at a wavelength of 1550  nm 
was used to �ood-illuminate the scene using an average optical power of 220 mW at a pulse repetition rate of 
150 kHz. �e overall instrumental jitter was 485 ps full width at half maximum. �e choice of 1550 nm wave-
length operation meant that the transceiver system used in these measurements was characterised as being eye-
safe at all distances between the system and target, i.e., the system had a nominal ocular hazard distance of zero 
metres. Further details of the transceiver are described in “Methods” below and in Supplementary Material 2.

Measurements were performed both indoors and outdoors in daylight for stand-o� ranges of 50 m and 
150 m respectively with the setup as shown schematically in Fig. 1. For each measurement, a smoke gun was 
used to produce an oil-based vapour with droplet sizes on the order of a few microns. In order to contain the 
obscurant, it was released in a polyethylene tent or marquee with dimensions of 3 m (H) × 4 m (W) × 10 m (L), 
with 2 m × 2 m openings at either end. �is was positioned in the line-of-sight between the system and target 
area and was located at distances of approximately 35 m and 125 m from the LiDAR system for the for 50 m and 
150 m ranges, respectively. For each measurement, the closed tent was �lled with the oil vapour until a su�cient 
density was achieved. �e tent doors were then opened and measurements of the target scene were made while 
the oil vapour slowly dispersed (see Fig. 2a). For the indoor range, two large fans were used to help control the 
dispersal of the obscurant for improved homogeneity. It is worth noting that during the indoor measurements at 
a range of 50 m the obscurant dispersed throughout the building, enveloping the target area. A depth calibration 
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was performed using a target consisting of four �at 500 × 500 mm wooden panels separated at 100 mm increments 
in the direction of the beam path. �ese four �at surfaces were placed immediately adjacent to each other, as 
shown in Fig. 1 and the transceiver was aligned to incorporate all four target surfaces within the �eld of view. �e 
target surfaces were painted matt white, which resulted in uniform scattering of the incident illumination, and 
were used for depth and re�ectance calibration measurements. �is 3D wooden panel target was included in the 
scene and used to evaluate the system performance when imaging through di�erent densities of the oil vapour.

Estimation of attenuation. �e number of attenuation lengths between the system and the target at the 
operating wavelength of 1550 nm was calculated from the number of photon counts collected in clear conditions 
(n0) and the number of photons collected through obscurant (n), from the same area on the 3D wooden panel 
target, under otherwise identical operating conditions. �e attenuation coe�cient (α) for the level of obscu-
rant present in the chamber, and hence the number of attenuation lengths  (NAL), for the one-way distance (d) 
between the transceiver and target, was then calculated from the Beer-Lambert  law68 as follows:

where, due to the low return signal through high levels of the obscurant, n and n0 were calculated from the pho-
ton counts summed over a 9 × 9 pixel neighbourhood for a 1 s data acquisition in order to acquire an accurate 
measurement of the number of attenuation lengths.

A transmissometer was also used to perform a second independent measurement of the number of attenua-
tion lengths, in the visible region of the spectrum, corresponding to the level of obscurant. �e transmissometer 
operated at a wavelength of λ = 637 nm and was set up to one side of the LiDAR system location, approximately 
10 m closer to the target. �e transmissometer laser beam was directed through the marquee to a corner cube 
retro-re�ector (located near the target position) and re�ected back to a �bre-coupled Si photodiode. �e trans-
missometer measurements were synchronised with those of the LiDAR system but it is important to note that 
the two systems did not follow the exact same optical path, although care was taken that the transmissometer 
data were as representative as possible of the optical attenuation experienced by the bistatic LiDAR system. A 
comparison of the number of attenuation lengths over the duration of a measurement set for wavelengths of 
1550 nm and 637 nm is shown in Fig. 2b. �is �gure clearly demonstrates the advantage of λ = 1550 nm opera-
tion for this type of obscurant, with signi�cantly less attenuation compared with the visible wavelength shown.

(1)NAL = αd =

1

2
ln

[

n0

n

]

Figure 1.  Measurement set-up for the bistatic time-of-�ight depth imaging system comprising a 32 × 32 format 
InGaAs/InP SPAD detector array and a pulsed �bre laser source. �e time-of-�ight approach was used to obtain 
depth information of targets at ranges of 50 and 150 m from the transceiver location, through various densities 
of an oil-based vapour (contained inside a 10-m-long marquee). �e marquee was positioned at distances 
of approximately 35 m and 125 m from the LiDAR system for the for 50 m and 150 m ranges, respectively. 
An example of a raw data cube representing detected photon counts is also shown. �e data was obtained by 
imaging a moving man located behind �xed boards through an obscurant. �e raw data shown was acquired for 
100 ms, which is composed of 15,000 binary frames. During the indoor 50 m measurements the fog dispersed 
backwards and enveloped the target area.
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Observation model. 3D imaging through obscurants raises several challenges due to back-scattered pho-
tons leading to high and non-uniform background level in the observed histograms. �is limits the use of the 
classical matched �lter (or cross-correlation) strategy for depth estimation and increases the requirement for 
statistical con�dence guarantees regarding the reconstructed scene. In addition, for 3D video representation, 
the system acquires successive data cubes, highlighting the need for an online robust processing approach to 
account for temporal data correlations while dealing with the high volume of acquired data. In the following, 
we describe the observation model and proposed reconstruction algorithm, which o�ers a solution to previous 
challenges, i.e., it allows robust and online processing of 3D LiDAR imaging data through obscurants while 
providing uncertainty estimates of the depth value.

�e TCSPC system provides K successive data cubes composed of two spatial dimensions (i.e., pixel loca-
tions) and one time-of-�ight dimension (related to depth). �e kth cube/frame is denoted by yt,n,k and contains 
histograms of photon counts at pixel location, n ∈ {1, . . . ,N} , time-of-�ight bin t ∈ {1, . . . ,T} and cube number 
k ∈ {1, . . . ,K} . Figure 1 shows an example of a raw data cube.

Assuming at most one surface per-pixel, each photon count can be assumed to be drawn from the Poisson 
distribution P(.) as  follows57,61:

where f  represents the system impulse response assumed to be known from a calibration step, dn,k > 0, rn,k > 0 
denote the distance from the sensor and re�ectivity of the object for the k th data, bt,n,k > 0 gathers the back-
ground and dark counts of the detector. To account for obscurants, several studies showed that the background 
level might vary with respect to the depth observation window such as described by Satat et al.41, which approxi-
mated the noise using a Gamma shaped distribution. In this paper, we assume the signal is located in the decreas-
ing tail of the background distribution leading to the approximation bt,n,k = max(an,kexp

−cn,kt , ẽn,k), where 
an,k and cn,k respectively represent the amplitude and decreasing rate of the exponential, and ẽn,k is a constant 
background level per-pixel. �e observation model is �nally given by (see Fig. 3 for an example of a real timing 
histogram obtained by the system using a gate duration of 20 ns (i.e., 80 timing bins)).

(2)yt,n,k ∼ P
[

rn,kf
(

t − dn,k
)

+ bt,n,k
]

,

(3)yt,n,k ∼ P
[

rn,kf
(

t − dn,k
)

+ max(an,kexp
−cn,kt , ẽn,k)

]

.

Figure 2.  (a) Photographs of the target scene taken in visible light with a compact digital camera as the 
obscurant disperses during a measurement set. Over several minutes, the obscurant disperses and the 
attenuation between the LiDAR transceiver and the target reduces. �e corresponding number of attenuation 
lengths at λ = 1550 nm between transceiver and target is given for each image. (b) A comparison of the number 
of attenuation lengths as a function of time over the duration of a measurement set for wavelengths of 1550 nm 
and 637 nm. �e λ = 1550 nm measurements were obtained using the bistatic depth imaging system at a stand-
o� distance of 50 m.
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Our goal is to adaptively and robustly estimate the vector � = (�s,�n) that includes the target � = (D,R) 
and noise �n = (A,C, Ẽ) parameters using the successively observed histograms yt,n,k , ∀t, n, k , and exploiting 
their statistics in Eq. (3).

Reconstruction algorithm. �e proposed solution deals with previous challenges by adopting a three-step 
strategy. �e �rst pre-processing step is used for the estimation of noise parameters using an e�cient median 
estimator for the constant level, ẽn,k , and approximate analytical estimators for the exponential parameters. �is 
step allows the approximate unmixing of signal and background counts and can be easily adapted to di�erent 
background distributions to deal with di�erent scenarios.

�e second step represents the core of the algorithm and aims at the robust estimation of depth and re�ec-
tivity images by adopting a hierarchical Bayesian model. �is approach introduces prior distributions for the 
unknown parameters to account for their known properties, i.e., positivity, and multiscale/multitemporal cor-
relations. �e combination of the measurement statistics summarised in the likelihood and the parameters prior 
distributions leads to a posterior distribution on the parameters. �e latter summarises the probability informa-
tion regarding each parameter allowing the extraction of its estimate and the quanti�cation of its uncertainty. 
A main contribution relies on the appropriate choice of prior that accounts for the parameter properties while 
leading to fast parameter estimates. Multiscale information will be considered as it accounts for spatial correla-
tions between pixels and has shown its importance in many restoration  algorithms57,62 especially in extreme 
conditions due to a sparse-photon regime or high noise levels. For added robustness, the proposed algorithm 
also accounts for multi-temporal information by considering previously estimated depth and re�ectivity frames 
to restore the current frame. �ese priors are accounted for through the introduction of a depth latent variable 
denoted x that decouples the multiscale spatial and multitemporal information of the depth allowing parallel 
and fast parameter estimation. To preserve edges between distinct surfaces, we adopt a Laplace prior for x as it 
promotes depth sparsity through the implicit ℓ1-norm69, that has demonstrated good results for several depth 
reconstruction  applications70.

�e re�ectivity is assumed spatially smooth and this is introduced by exploiting multiscale information. Depth 
uncertainty is represented using a variance parameter for x, which is assigned a conjugate non-informative scale 
prior. �e resulting posterior distribution is exploited by considering maximum a-posteriori estimators for the 
parameters. �e latter are obtained using a coordinate descent algorithm that iteratively maximize the parameters 
conditional distributions. �e resulting algorithm alternates between robust non-linear parameter estimation 
(e�cient weighted  median71) and a �ltering step (generalised so�-thresholding), which are commonly observed 
steps in several state-of-the-art  algorithms65–67 and optimisation  algorithms72.

�e third optional step relates to data super-resolution to improve the spatial quality of the images. Inspired 
from the depth maximum a-posteriori estimate, super-resolution is performed using a combination of a weighted 
median operator with a point cloud �ltering step.

�e main steps of the proposed algorithm, named Median-based Multi-scale Restoration of 3D images 
(M2R3D), are summarised in Fig. 4 and are described with additional detail in the Supplementary Information. 
�e acquired histograms have non-uniform timing bins due to timing issues with the detector array read-out cir-
cuitry (see section I-D of the Supplementary Information for further information). �is e�ect is corrected before 
applying the proposed strategy and the correcting procedure is denoted as ‘histogram corrections’ in this paper.

Figure 3.  An example of a timing histogram from an individual pixel taken from a �at area of the 3D depth 
chart at 50 m range through 4.5 attenuation lengths of obscurant, showing the observed histogram a�er 
correction as discussed in the main text (black line), the estimated signal plus background (blue), and the 
estimated target signal (red). �is histogram contains 80 timing bins due to the use of a 20 ns gate duration by 
the detector. Further details in main text and Fig. 4.
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Depth and intensity reconstruction at 50 m range. A series of measurements were performed indoors 
using a scene containing the 3D wooden panel target positioned at a range of 50 m (100 m round-trip) from the 
system. �e results were reconstructed using both a simple pixel-wise cross-correlation algorithm (i.e., matched 
�lter of the raw histogram with the impulse response of the system) and the proposed M2R3D algorithm. �e 3D 
panel chart was �ood-illuminated with 220 mW average optical output power from the laser source. �e �eld of 
view (FoV) of the SPAD detector array camera setup was approximately 0.53 × 0.53 m meaning that only the cen-
tral region of the 1 × 1 m target was imaged at this range. Attenuation results for this measurement obtained by 
the transmissometer (for λ = 637 nm) and the depth imaging system (for λ = 1550 nm) are shown in Fig. 2b. �e 
attenuation results are shown from 200 s until the end of the measurement (590 s) since the transmissometer was 
unable to obtain reliable attenuation values at the very high densities of obscurant observed at the beginning of a 
measurement cycle. �ese results indicate that λ = 1550 nm light has considerably lower attenuation than that at 
λ = 637 nm demonstrating a clear bene�t in the use of SWIR illumination over shorter illumination wavelengths 
for this type of obscurant. Figure 5 shows reconstructed depth pro�les of the target at the stand-o� distance 
of 50 m with varying obscurant density corresponding to 4.0, 4.5, 5.0 and 5.5 attenuation lengths between the 
LiDAR transceiver and target, measured at the illumination wavelength of 1550 nm. �e data was acquired over 
a time of 1 s in each case, at an average optical output power level of 220 mW. As mentioned previously regarding 
measurements on the 50 m range, the obscurant dispersed throughout the target area and fully submerged the 
target. In order to investigate the consequence of obscurant density on the reconstruction quality we investigate 
several scenarios as indicated in the rows of Fig. 5. In rows from top to bottom: (a) the cross-correlation was 
�rst applied to non-corrected histograms; (b) the cross-correlation was applied to corrected histograms; (c) the 
cross-correlation was applied to corrected histograms while accounting for an exponential background; and 
�nally (d) the M2R3D algorithm was used to reconstruct depth pro�les and (e) the depth uncertainty, as quanti-

Figure 4.  Description of the M2R3D algorithm. �e algorithm �rst estimates the background level (as shown 
in red). �en the depth and re�ectivity are estimated by a robust statistical procedure accounting for multiscale 
and multi-temporal information. �e algorithm estimates a depth statistical distribution for each pixel (denoted 
PDF for probability density function). �e overall procedure is rapid, enabling > 10 frames per second using 
Matlab.
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Figure 5.  Depth pro�les and uncertainty maps of the 3D panel target at a stand-o� distance of 50 m indoors for 
various level of attenuation. �e data acquisition time was 1 s. �e pro�les were reconstructed using the cross-
correlation with no corrections applied to the histogram or exponential background (row (a)), corrections to the 
histogram only (row (b)), and with corrections applied to both the histogram and the exponential background 
(row (c)). Row (d) shows the high-resolution depth pro�les (128 × 128 pixels) reconstructed using the M2R3D 
algorithm with a processing time of ~ 90 ms per frame in Matlab (details in main text). A true positive 
percentage value for a depth absolute error (DAE) of 5.6 cm is shown in red below each reconstruction (see 
main text and Supplementary Information). Row (e) illustrates the uncertainty of the depth estimate obtained 
from the M2R3D algorithm, shown as the standard deviation of the estimated depth statistical distribution. �e 
SBR is also shown for each attenuation length (details in main text).
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�ed by the standard-deviation of the depth conditional distribution. Note that the M2R3D algorithm provides 
super-resolved depth pro�les composed of 128 × 128 pixels. A depth threshold was set such that all depths out-
side a pre-determined distance around the target (in this case 0.6 m) were considered to be inaccurate estimates, 
disregarded, and presented in the reconstructed depth pro�les as empty pixels for clarity (shown as white pixels 
in Fig. 5). In addition, the signal-background-ratio (SBR) estimated from M2R3D is given for each correspond-
ing attenuation length. SBR is de�ned as the ratio of the average signal photons-per-pixel  (Sppp) and the average 
background photons-per-pixel  (Bppp). More details on these parameters are given in the supplementary material.

�e results in Fig. 5 show that the 3D panel target can only be partially reconstructed using the cross-corre-
lation algorithm at up to 4.5 attenuation lengths with no histogram corrections nor background consideration 
(Fig. 5a), and similarly with only histogram correction (Fig. 5b). When both histogram correction and an expo-
nential background are considered, using the cross-correlation provides a better reconstruction at 4.5 attenua-
tion lengths, and a partial reconstruction can be achieved for obscurant densities up to 5.0 attenuation lengths 
(Fig. 5c). However, using the M2R3D algorithm (Fig. 5d), the 3D panel target can be partially reconstructed at 
5.0 attenuation lengths and fully reconstructed at 4.5 attenuation lengths. In fact, a partial reconstruction was 
also made using the M2R3D algorithm at up to 5.5 attenuation lengths. Signi�cantly, M2R3D also quanti�es 
depth uncertainty as represented in (Fig. 5e) by showing the standard deviation of the estimated depth statistical 
distribution. It can be seen that higher uncertainty is observed around object edges and in the presence of high 
obscurant densities. In particular, standard deviations (of a Laplace distribution) greater than 4 cm are observed 
for badly estimated pixels at greater than 5.0 attenuation lengths.

True positive percentage values, which represent the percentage of pixels satisfying a given depth within 
a given  error61, were calculated for the results obtained with each algorithm are shown in red in Fig. 5. As an 
example, for the 5.0 attenuation lengths results the true positive percentage values satisfying a depth absolute 
error (DAE) of 5.6 cm are 1%, 0%, 35%, and 75% for each algorithm respectively, illustrating a signi�cant 
quantitative improvement in the reconstructed depth pro�les by using both the exponential background and 
the proposed M2R3D algorithm. To compute the DAE, a 32 × 32 pixel reference depth map was generated using 
data obtained in the absence of fog. �ese values were calculated using the lower resolution depth maps due to 
the unavailability of a high-resolution ground truth. A more detailed description of the true positive percent-
age, DAE, and further analysis are supplied in the Supplementary Information. We also provide video 1 which 
displays the results of M2R3D and cross-correlation algorithm (with all corrections) when processing this data 
at di�erent time instances.

Depth and intensity reconstruction at outdoor 150 m range. A second set of measurements was 
performed outdoors in daylight conditions at a range of 150 m (300 m round-trip) from the transceiver location. 
�e 3D wooden panel target was housed within an intermodal container to help shield it from adverse weather 
conditions. An actor was also situated directly behind the 3D wooden panel target. Since the horizontal and 
vertical FoV was three times larger at 150 m than at 50 m, the resultant data contained information from the 
entire 3D wooden panel target, the actor, as well as super�uous information from the back wall of the container. 
As with the 50 m range measurements shown above, the depth pro�les of the scene were reconstructed using 
cross-correlation with no corrections applied, with only the histogram corrections applied, with both histogram 
corrections and an exponential background, and with the proposed M2R3D algorithm, as shown in Fig. 6.

�e results shown in Fig. 6a–d indicate that a partial depth reconstruction can be made at up to 5.0 attenua-
tion lengths using both cross-correlation and the proposed M2R3D algorithm at a stand-o� distance of 150 m. 
It should however be noted that a high depth uncertainty is observed for most regions at attenuation lengths of 
greater or equal to 5.0 as highlighted in Fig. 6e. A full reconstruction of the target scene could be made at 4.5 
attenuation lengths for both the cross-correlation with both histogram and exponential background correc-
tion (Fig. 6c) and the M2R3D algorithm (Fig. 6d). In this case, the depth pro�le reconstructed using corrected 
cross-correlation is noisier than that of the M2R3D algorithm. However, the reconstruction using the M2R3D 
algorithm does tend to over-smooth the �ne target details, such as the arms and face of the actor, while assigning 
higher depth uncertainty levels for these regions. �ese results demonstrate the potential of the system for rapid 
three-dimensional imaging outdoors in high levels of obscurants, in high levels of solar background, and adverse 
weather conditions using SWIR wavelengths. Since the human target was moving in this measurement set, no 
ground truth could be obtained and therefore no true positive percentage values could be calculated for this data.

Real‑time processing of moving 3D scenes in obscurant. �is section describes a further set of 
measurements using a moving target at a distance of 50 m through the oil-based vapour obscurant. �e target 
scene included the 3D wooden panel target and an actor walking from side to side through the scene holding 
alternating objects (a box and a plank of wood). �e measurements were acquired using the same system con-
�guration and parameters as previously described. For these measurements 15,000 successive binary frames, 
each with an acquisition time of approximately 6.7 µs, were aggregated to create a 10 frames per second video 
with an overall duration of several minutes. Figure 7 shows three stationary depth pro�les obtained with cross-
correlation (with histogram corrections and assuming no background), and the proposed M2R3D algorithm. 
�ese stationary frames from the video correspond to the point in time when there were approximately 3 attenu-
ation lengths at λ = 1550 nm between the system and the target.

�ese results highlight the bene�t of the M2R3D algorithm in removing false detections and improving 
spatial resolution. As expected, higher depth uncertainty is estimated for pixels located at object edges, around 
small object features (e.g., the man’s hat) or in regions where the pixels of the SPAD array camera demonstrate 
lower single-photon detection e�ciency (e.g., the region at the right in the depth map). �e processing time of 
the M2R3D algorithm is around ~ 90 ms per frame enabling real time processing (latency lower than one frame). 
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Figure 6.  Depth pro�les and uncertainty maps of the 3D wooden panel target and actor in various densities of 
obscurant at a stand-o� distance of 150 m outdoors using a maximum average optical power level of 220 mW 
and a data acquisition time of 1 s. �e depth pro�les were reconstructed using the cross-correlation with no 
corrections applied to the histogram or exponential background (row (a)), corrections to the histogram only 
(row (b)), and with corrections applied to both the histogram and the exponential background (row (c)). 
Row (d) the super-resolved depth pro�les (128 × 128 pixels) reconstructed using the M2R3D algorithm with 
a processing time of ~ 90 ms per frame (details in main text). Row (e) illustrates the uncertainty of the depth 
estimate obtained from the M2R3D algorithm, shown as the standard deviation of the estimated depth statistical 
distribution. An RGB photograph of the scene with no obscurant present is shown for reference. �e SBR is also 
shown for each attenuation length.
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Video 2 shows the results of the M2R3D algorithm and the cross-correlation algorithm (with all corrections) 
when processing this data at di�erent time instances. Other data and comparison algorithms have also been 
considered in the supplementary materials, which shows the advantages of the proposed algorithm.

Discussion
�is paper presents depth and intensity pro�ling of static and moving targets in high levels of obscurant at stand-
o� ranges of 50 m and 150 m outdoors using the time-correlated single-photon counting technique. �e eye-safe 
time-of-�ight imaging system comprised a 32 × 32 InGaAs/InP SPAD detector array and a picosecond pulsed 
�bre laser with an illumination wavelength of 1550 nm and a maximum average optical output power of 220 mW. 
�is was used to perform three-dimensional imaging at up to 5 attenuation lengths for a range of 50 m and 4.5 
attenuation lengths at 150 m. A comparison of light propagation through the oil-based vapour (i.e., arti�cial 
fog) was also made between short-wave infrared wavelengths and visible wavelengths, illustrating a signi�cant 
wavelength dependence in the attenuation due to increased scatter at the shorter wavelengths with this particular 
obscurant, as seen in our previous  work42. Of course, wide scale implementation of this approach means that 
attention must also be paid to the development of cost-e�ective LIDAR sources, since eye-safe implementation 
in the SWIR region permits much higher optical powers than possible in the near-infrared.

�is paper presented an advanced image processing algorithm, which is capable of real-time reconstruction of 
depth and intensity pro�les of moving targets in high levels of obscurants. In contrast to other  algorithms57,60,65, 
the M2R3D uses an observation model that accounts for the presence of obscurants which typically can exhibit a 
non-uniform depth pro�le, allowing a robust reconstruction of the scene while providing uncertainty estimates of 
the depth measurements using multiscale and multi-temporal information. In the Supplementary Materials, it is 
shown that the proposed M2R3D algorithm performs better than several state-of-the-art single-photon depth and 
intensity reconstruction  algorithms57,60,65 especially in the presence of high or non-uniform background levels, 
which are o�en observed in presence of  obscurants41. �e real-time processing allowed the demonstration of 
depth imaging of moving targets, a critical attribute necessary for future implementations on mobile platforms. 
A key aspect of this algorithm is that the processing time is not proportional to the number of photon events in a 
histogram, which is particularly important for the speci�c case of imaging in obscurants which necessarily incurs 

Figure 7.  (a) RGB reference photographs taken of the moving scene with no obscurant present, using a visible 
camera. (b) Stationary frames extracted from video of estimated depth pro�les and uncertainty maps of the 
moving target scene measured through the oil-based vapour obscurant. �ese frames were reconstructed using 
the cross-correlation algorithm with histogram correction (top) and the proposed M2R3D algorithm (middle 
and bottom). In this scene (le�) a man is carrying a box, (middle) the man is empty handed, and (right) the 
man is carrying a plank of wood. At this point there was approximately 3 attenuation lengths at λ = 1550 nm 
between the system and the target, and each still frame represents 100 ms of data acquisition and ~ 90 ms of data 
processing (details in main text). �e corresponding SBR is also shown for each of the frames.
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an unusually high level of back-scattered photon events from the illumination. More details and comparison 
with other algorithms are given in Supplementary Information.

�e results presented in this paper demonstrate the potential for the implementation of single-photon count-
ing approaches using InGaAs/InP SPAD detector arrays in modern embedded systems (e.g., driverless cars). 
While the high timing resolution, long-range capabilities, and low optical power levels inherent to the TCSPC 
approach ful�l many of the requirements of current systems, further investigation is necessary to evaluate the 
system and proposed algorithm in more challenging scenarios. �erefore, future work will include measurements 
made in natural fog environments and high levels of precipitation, and the investigation of targets travelling at 
higher velocities at longer ranges. Generalising the proposed model to account for alternative background pro-
�les, and to account for pixels without target information are also important points that will be investigated. Also, 
the use of parallel processing tools and graphical processing units (GPU) will be investigated to decrease frame 
processing times to a duration of a few milliseconds in order to utilise next generation, larger format detector 
arrays. We have demonstrated depth image reconstruction using a LiDAR system with a limited optical �eld of 
view, and must acknowledge that many applications will require an extended FoV requiring optical scanning in 
at least one dimension, which will, in turn, reduce pixel dwell time. Future work will concentrate on the imple-
mentation of a scanning strategy and examining the trade-o�s between FoV, spatial resolution, and dwell time.

Methods
System description. �e LiDAR system was based on an InGaAs/InP 32 × 32 SPAD detector array camera 
manufactured by Princeton Lightwave. �e pixel elements of the detector array were on a 100 μm square pitch, 
resulting in the active area of the sensor having dimensions of ~ 3.2 mm × 3.2 mm. �is sensor can be used for 
single-photon and low-light detection in the SWIR wavelength range of 1400–1620 nm. �e sensor was oper-
ated at a frame rate of 150 kHz, and this provided the synchronised trigger for the pulsed laser source. �e SPAD 
detector array was con�gured to use a 250 ps timing bin width (the smallest available), which corresponds to a 
3.75 cm depth resolution. For the measurements reported here, a 20 ns gate duration was selected, which corre-
sponds to a total of 80 histogram bins and is equivalent to a measurement depth range of 3 m. A 300 mm e�ective 
focal length objective lens operating at f/3.5 was attached to the sensor unit to collect photons scattered back 
from the target scene and resulted in a FoV of approximately 11 mrad horizontally and vertically. �is means 
that the sensor imaged an area of approximately 0.53 × 0.53 m at a stand-o� distance of 50 m, and 1.6 × 1.6 m at 
a stand-o� distance of 150 m, which corresponded to each individual pixel covering an area of approximately 
16 × 16 mm and 50 × 50 mm, respectively.

�e LiDAR system was implemented using a bistatic con�guration and a schematic diagram of the setup is 
included in Supplementary Information Fig. 10. �e illumination channel (to which the laser source was �bre-
coupled) and SPAD detector array camera channel were mounted side by side. �e illumination source was a 
pulsed �bre laser with a central operating wavelength of 1550 nm, and run at a repetition rate of 150 kHz (clocked 
by the camera control electronics), which resulted in a pulse-width of 413 ps, and a maximum average optical 
output power of approximately 220 mW. Further details on the system set-up can be found in Supplementary 
Material 2.

Algorithm implementation. �e algorithm performs weighted median �ltering using the C ++ e�cient 
implementation proposed  in71. All other steps were implemented using MATLAB R2019a on a computer with 
an Intel(R) Core(TM) i7-4790 CPU running at 3.60 GHz and with 32 GB RAM.

 Data availability
�e data will be made available upon publication of this work. Algorithm available on request.
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