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Robust Real-Time Embedded EMG Recognition
Framework Using Temporal Convolutional

Networks on a Multicore IoT Processor
Marcello Zanghieri, Simone Benatti, Alessio Burrello, Victor Kartsch, Francesco Conti, Luca Benini

Abstract—Hand movement classification via surface elec-
tromyographic (sEMG) signal is a well-established approach
for advanced Human-Computer Interaction. However, sEMG
movement recognition has to deal with the long-term reliability
of sEMG-based control, limited by the variability affecting the
sEMG signal. Embedded solutions are affected by a recognition
accuracy drop over time that makes them unsuitable for
reliable gesture controller design. In this paper, we present a
complete wearable-class embedded system for robust sEMG-
based gesture recognition, based on Temporal Convolutional
Networks (TCNs). Firstly, we developed a novel TCN topology
(TEMPONet), and we tested our solution on a benchmark
dataset (Ninapro), achieving 49.6% average accuracy, 7.8%,
better than current State-Of-the-Art (SoA). Moreover, we de-
signed an energy-efficient embedded platform based on GAP8,
a novel 8-core IoT processor. Using our embedded platform, we
collected a second 20-sessions dataset to validate the system
on a setup which is representative of the final deployment.
We obtain 93.7% average accuracy with the TCN, comparable
with a SoA SVM approach (91.1%). Finally, we profiled the
performance of the network implemented on GAP8 by using
an 8-bit quantization strategy to fit the memory constraint of
the processor. We reach a 4× lower memory footprint (460 kB)
with a performance degradation of only 3% accuracy. We
detailed the execution on the GAP8 platform, showing that the
quantized network executes a single classification in 12.84ms

with a power envelope of 0.9mJ, making it suitable for a long-
lifetime wearable deployment.

I. INTRODUCTION

Decoding hand gestures is an established method for devel-

oping advanced Human-Machine Interfaces (HMIs), which

leads to a wide range of application scenarios, such as

industrial robot control, gaming interfaces, prosthetic control

or augmented reality [1], [2]. In the HMI field, gesture recog-

nition relies on the processing of information coming from

video cameras [3] or from muscular activity [4]. Camera-

based techniques rely on image processing algorithms which

recognize users’ hand in a scene and recognize different

gestures using computer vision. Although this approach can

decode a vast number of gestures reliably, it suffers from

the line of sight issues and scene illumination variability,

and it requires pre-installed environmental cameras. On the

other hand, approaches based on muscular signal analysis are
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inspired by the prosthetics domain, where electromyographic

signals are used to control artificial hands [5], [6]. Com-

mercial prosthetic controllers are simple and highly reliable.

However, they provide a non-natural interface, unsuitable for

intuitive gesture interface design, because of the high level

of concentration required by the user and the long learning

curve.

New machine learning approaches have been extensively

explored to enable the design of natural gesture interfaces.

They aim to map muscular contraction patterns onto a set of

intended gestures [7], using supervised learning methods such

as SVM, LDA or ANN [8], [9], [10]. Such approaches reach

accuracy above 80% on classifying several hand gestures

(from 4 to 12), making them suitable for the design of human-

machine interfaces.

Nevertheless, the EMG signal is affected by high variabil-

ity caused by subjects’ fatigue, perspiration, changes in the

skin-to-electrode interface, user adaptation, and mostly by

electrode shifts during multi-day usage [8], [11], [10]. These

factors severely limit the long-term usage and the reliability

of the EMG-based gesture recognition, leading to an inter-

sessions accuracy drop of up to 30% [12]. While extending

the training dataset and enhancing the algorithms with more

features can help to reduce this drop [8], this is still too high

(> 10%) to make these approaches suitable for robust and

commercially available systems.

A promising possible solution could come from using

Deep Learning (DL) techniques. In recent years, they have

been successfully proposed for biosignal application sce-

narios [13], and have achieved state-of-the-art accuracy on

a wide range of applications such as activity recognition

or neural diseases detection. The major advantage of the

DL approaches is the removal of manually-extracted signal

features. Indeed, a deep network automatically learns a good

representation of the signal during the training step. This

automatization is particularly useful for signals that are

affected by very high variability like the sEMG; for this

class of signals, the algorithm could learn a signature of the

signal, which is not affected by the variability, but allows

to characterize the muscle stimuli and differentiates multiple

hand gestures. As a result, such an approach enables a better

generalization on more massive datasets.

Most of the DL models are based on complex architectures

with a high number of layers and neurons [13], [14], [15]

to obtain high recognition accuracy and low performance

drop on multi-day sessions. On the other hand, these models

require a memory footprint of several MBytes, which is not

suitable for a real-time deployment on low-power embedded
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platforms. Pursuing the creation of a DL reliable framework

on an energy-efficient platform requires a multilevel approach

with HW/SW codesign. In particular, the designer should

i) develop a robust and high-accuracy network topology,

ii) minimize the number of parameters of the algorithm

through software DL optimizations and finally iii) couple the

algorithm with the embedded optimization (e.g. quantization

and memory management) of the firmware implementation

on the digital platform.

In this work, we tackle the challenge of variability ro-

bustness of sEMG-based hand gesture recognition, and we

propose a real-time embedded platform for robust sEMG-

based gesture recognition. The major contributions we are

proposing are:

• TEMPONet, a novel EMG classification algorithm based

on a Temporal Convolutional Network (TCN), tested on

a benchmark EMG dataset (NinaPro DB6);

• a complete embedded platform for EMG acquisition and

processing. The system is based on the combination of a

commercial Analog Front End for biopotential acquisi-

tion with GAP8, a multicore low-power IoT processor;

• a 20 session dataset, collected with our custom plat-

form, which allows us to validate the algorithm and to

profile a quantized version of the TCN, suitable for the

deployment on a resource-constrained platform.

We tested the performance of TEMPONet on the NinaPro

DB6 dataset [11], achieving 65.2% inter-session accuracy on

steady signals and 49.6% inter-session on the full dataset –

7.8% better than the current state-of-the-art [16]. Moreover,

after the system design, we tested the same TEMPONet

topology on a new dataset we introduce in this work, com-

prising 20 sessions on three subjects. On this dataset, we

achieve 93.7% inter-session accuracy. The 20-session dataset

is collected using the same platform on which we deploy our

detection algorithm. Therefore, it is representative of the real

kind of data that an embedded setup can gather. Our results

show that the accuracy drop on entirely unseen sessions can

be reduced to 6.6% on NinaPro DB6 and 3.4% on the 20-

session dataset, surpassing the current state-of-the-art.

Finally, we performed a full quantization of our TEM-

PONet, dropping the data representation of the weights and

the feature maps from 32-bit floating point to 8-bit integer,

thus reducing the network memory footprint by 4×. To

leverage the 8-core architecture of the GAP8 processor and

parallelize the execution of the algorithm, we used highly

optimized neural network libraries [17]. The quantized TCN

can be executed in real-time on the GAP8 chip (a full

inference takes less than 13ms and consumes 0.9mJ), but

still achieves 93.3% inter-session accuracy on the 20-session

dataset and 61.0% on the NinaPro DB6 while providing up

to 54h of battery life, showing a computational efficiency of

10× compared to SoA systems for sEMG processing, suitable

for convolutional network deployment, such as [18], [19].

II. BACKGROUND AND RELATED WORK

A. Background

1) sEMG Signal and Datasets

The electromyographic (EMG) signal [20], [21], [22] is the

bioelectric potential originating from the current generated

by the ionic flow through the membrane of the muscular

fibers, and it is, therefore, a major index of the muscular

activity. This potential is generated by the electrical stimulus

starting from the central nervous system and passing through

the motor neurons (motoneurons) that innervate the muscular

tissue. Typically, the EMG signal has amplitude ranging from

10 µV to 10mV, and bandwidth ∼ 2 kHz.

Moreover, it is a very challenging signal as it is affected

by several noise sources, such as motion artifacts, floating

ground noise, crosstalk, and Power Line Interference [23],

[24].

EMG data can be acquired either with invasive or non-

invasive methods. In this work, we focus on surface elec-

tromyography (sEMG), a non-invasive technique which uses

electrodes operating on the surface of the skin. In the sEMG

setup, the action potentials (APs) can be detected using

an instrumentation amplifier with the positive and negative

terminals connected to two metal plates positioned on the

skin surface; the sEMG signal results from the superposition

of all the detected APs underlying the amplifier [10]. In

the Human-Machine Interface (HMI) field, building gesture

recognition upon the analysis of sEMG signals is one of

the most promising approaches, since non-invasiveness is an

essential requirement for many types of interface.

The Non-Invasive Adaptive hand Prosthetics Database 6

(NinaPro DB6) [11] is a public sEMG database realized

to investigate the repeatability of sEMG-based hand gesture

(grasps) recognition over time. The data were collected from

10 intact (i.e. non-amputee) subjects (3 females, 7 males,

average age 27 ± 6 years). The database consists of 10

sessions (5 days, two sessions a day: morning and afternoon),

each involving 12 repetitions of 7 grasps, for all the 10

subjects. The grasps were selected from the robotics and

rehabilitation literature, covering hand movements typical of

Activities of Daily Living (ADL). The sEMG signals were

measured with 14 Delsys Trigno sEMG Wireless electrodes,

placed on the high half of the forearm, at sampling rate 2 kHz.

Each grasp repetition lasts approximately 6 s, followed by 2 s
of rest.

In addition to the analysis performed on NinaPro DB6, we

also introduce a study on our dataset, which incorporates the

effects of a real-life scenario in our embedded platform. This

dataset targets hand gestures that are fully compatible with

Human-Machine Interaction. To analyze the sEMG temporal

variability and validate our results, we collected a 20-session

dataset, using our custom 8-electrodes platform. The dataset

is described in detail in Section IV-C.

2) Temporal Convolutional Networks

More recently, Temporal Convolutional Networks (TCNs)

have been gaining attention for the analysis of time se-

ries [25], [26]. TCNs are a recently proposed class of sequen-

tial models able to learn the temporal dependencies of a given

input signal. TCNs are the State-of-the-Art in many sequence

modeling challenges, outperforming the more expensive and

complicated Recurrent Neural Networks (RNNs) [25], [26],

[14]. The novel and unique properties granting success to this

kind of network are situated in its 1D-convolutional layers

operating along the time dimension. These layers present two

fundamental novelties:

(1) causality, which implies that each output ytN of the layer
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only relies on convolutions of elements xtI with tI ≤ tN . In

this way, only the previous history of the signal is used to

predict the label at time tN .

(2) dilation: a fixed step d is introduced between the filter

inputs. Using this approach, TCN layers present an increased

receptive field with a reduced number of parameters (e.g.,

with d = 4 and filter size = 3, the receptive field is 9). This

method allows to take into account a wide signal history

without impairing the network with a too high number of

parameters (increasing the filter size) or with many stacked

layers (reducing the training efficiency). Thus, a convolu-

tional layer of a TCN operates as:

yo
n = Conv (x) =

L−1∑

l=0

K−1∑

i=0

xl
n−d i ·W

l,m
i

with x input feature map and y output feature map, n the

time index, W the filter weights, L the number of input

channels, m the output channel, d dilation, and K the filter

size. The lower part of Figure 1 portraits how the presented

dilated 1D-convolutional layers work on an input time series.

B. Related Work

In the last few years, several sEMG-based hand recognition

approaches have been presented both in academia and in

commercial applications. All of them share a typical struc-

ture, based on i) an analog front end for bio-potential acquisi-

tion, ii) a data preprocessing and feature extraction/selection

step, and iii) a final classification back end. Moreover, they

usually all rely on Machine Learning (ML) algorithms such

as Support Vector Machine (SVM), Random Forest (RF),

LDA or artificial neural networks (ANN) [8], [9], [27], [10],

[13], [28].

For instance, in [29], [30], the authors presented a 4

hand gesture classification with accuracy above 90%, using

ANN with 5 time-domain features (Mean Absolute Value

(MAV), Mean Absolute Value Slope (MAVS), number of

Slope Sign Changes (SSC), number of zero crossings (ZC),

and Waveform Length (WL)). Castellini et al. [31] illustrated

a three grasp recognition, achieving 97.1% classification

accuracy using the Root Mean Square (RMS) as features

extraction for an SVM. On a more general scenario (up to

50 different hand gestures), remarkable results were obtained

by Atzori et al. [9] on the Non-Invasive Adaptive hand

Prosthetics Databases 1, 2, and 3 (NinaPro DB1, DB2, and

DB3), employing a mixture of time- and frequency-domain

features. As a downside, all these works are limited to a

single-session setup. This setup fails to tackle the issue of

the inter-session accuracy drop observed when classifying

gesture from a never-seen session after training on just one

session.

As a result, the crucial challenge in sEMG-based gesture

recognition has shifted from absolute classification accu-

racy to managing the variability of the signal, which is

affected by several factors such as anatomical variability,

posture, fatigue, perspiration, changes in the skin-to-electrode

interface, user adaptation, and electrode repositioning over

multi-day usage [34], [8], [11], [10]. These factors strongly

hamper generalization, thus limiting the long-term use and

the realization of robust real-time recognition systems.

 

Figure 1: Structure and functioning of Convolutional Block

2: two dilated convolutions (d = 4), one strided convolution

(s = 2) and average pooling. The input of the block is the

temporal sequence computed by Convolutional Block 1.

For instance, Benatti et al. [12] and [11] collected sEMG

data from several subjects in multi-day sessions to analyze

the performance degradation of conventional ML algorithms

when donning and doffing the sensory setup. In these ex-

periments, the inter-session accuracy drop after training on a

single session was up to 30%. The proposed solutions mostly

rely on the extension of the training datasets, the modification

of the acquisition setup (e.g. by increasing the electrode

count), and the extraction of a broader set of features to

improve algorithm convergence. These solutions lower the

average accuracy drop, decreasing the average error rate to

12% [8]. However, this performance drop and the lack of

generalization are still hampering the deployment of these

solutions in reliable, commercially available systems.

A new state-of-the-art strategy to robustify recognition

against temporal variability is multi-session training, which

is the methodology implemented in this work. This strategy

has been made possible by the release of multi-session sEMG

datasets such as the Non-Invasive Adaptive hand Prosthetics

Database 6 (NinaPro DB6, 10 sessions, 8 classes) [11] and

the University of Bologna - INAIL (Unibo-INAIL) database

(8 days × 4 arm postures, 6 gestures) [10].

The NinaPro DB6 is the dataset used as a benchmark in

this work. On these data, Palermo et al. [11] reached an

inter-session accuracy of 25.4% by feeding Wave Length to

a Random Forest. Cene et al. [16] successfully employed

Extreme Learning Machines (ELMs) to raise this inter-

session accuracy to 41.8%. It is worth to notice that the

reason why the accuracy reached on the NinaPro DB6 is

much lower than the one reached on other datasets with

a similar number of classes and sensors, is that the hand

movements of NinaPro DB6 are all grasps, thus much less

diverse and discernable than the gestures in ordinary datasets.

On the Unibo-INAIL dataset, Milosevic et al. [10] showed
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TABLE I: Comparison between SoA embedded platforms for EMG processing.

Work Dataset # subj # sessions # classes # channels Time
window

Features Algorithm Accuracy [%]
Intra / Inter

Real-time Embedded

Hudgins [29] private 18 1 4 1 200ms MAV,
ZC, SSC,

WL

Shallow
ANN

88.9 / N.A. no no

Park [32] NinaPro DB1 27 1 6 1 8 2000ms RMS
time×ch.

CNN N.A./∼94 2 3 no no

Tsinganos [28] NinaPro DB1 27 1 53 8 200ms RMS
time×ch.

CNN 70.5 / N.A. no no

Tsinganos [15] NinaPro DB1 27 1 53 8 300ms,
1200ms

RMS TCN 89.8 / N.A. no no

Betthauser [14] private 9 1 27 8 1675ms 200ms-
MAV

TCN 69.5 / N.A. no no

Hu [13] NinaPro DB1 27 1 53 8 200ms RMS CNN+LSTM 87.0 / N.A. yes no

Kaufmann [8] private 1 121 10 8 150ms MAV,
ZC, SSC,

WL

SVM N.A. / 87.7 no no

Milosevic [10] Unibo-INAIL 7 8 6 4 1 sample RMS SVM ∼90 4 /∼70 4 no no

Du [33] CapgMyo 8 2 8 128 1 sample inst. HD-
sEMG
images

CNN 98.6 / 63.3 3 yes no

Palermo [11] NinaPro DB6 10 10 8 14 200ms WL RF 52.4 / 25.4 no no

Cene [16] NinaPro DB6 10 10 8 14 200ms MAV,
VAR,
RMS

ELM 69.8 / 41.8 no no

This work

NinaPro DB6 10 10 8 14 150ms raw
sEMG

TCN 54.55/ 49.6 yes yes

20-session 3 20 9 8 150ms raw
sEMG

TCN 97.1 / 93.7 yes yes

1 Restricted to 6 functional movements, without rest class. 2 Inter-subject. 3 With domain adaptation. 4 Precise values depending on session and training strategy.
5 Our lower-than-SoA intra-session accuracy is due to the fact that [16] (1) relies on single-session training, prone to overfit to the sessions; and (2) uses a very aggressive
signal filtering over 200ms time windows, jointly with outlier removal embedded in the algorithm, so as to smooth the transients or even discard them from the accuracy.

that multi-posture and multi-day training improve inter-

session generalization. A Radial Basis Function kernel SVM

(RBF-SVM) applied on 4-channel single samples of the RMS

signal yielded an intra-session recognition accuracy higher

than 90%, with an inter-session accuracy drop up to 20% (a

value similar to [11], [16]). The aforementioned approaches

showed the major limitation of classical ML: it strongly relies

on domain-specific knowledge and hand-crafted features,

limiting the capability to generalize over time.

To cope with this issue, DL represents a valid approach,

since it incorporates feature learning into model training, and

can reach a better generalization on the data. DL-based solu-

tions have also been prompted by increased data availability

(public sEMG benchmark databases) and great improvements

in computing hardware [35]. Table I shows that, DL methods

outperform traditional ML approaches when classifying data

from different sessions. This conclusion is also reinforced in

the revision made by Phinyomark et al. [34]. The first end-to-

end DL architecture was proposed by Park and Lee [32], who

applied a Convolutional Neural Network (CNN) + RMS on

NinaPro DB1, outperforming an SVM in classification accu-

racy across subjects. From our variability point of view, it is

interesting to note that this early work already addresses inter-

subject variability, showing that a CNN benefits more than a

SVM from an adaptation phase introduced before classifying

data from unseen subjects. Atzori et al. [36] also proposed a

CNN-based approach to recognize the 52 hand gestures from

the NinaPro DB1, DB2 and DB3 (taking 150ms-windows

of RMS, acting on time×channels), reaching classification

accuracy comparable to classical methods such as RF.

As to the issue of variability, a strategy typical of DL

is Adaptive Batch-Normalization (AdaBN) [33], a domain

adaptation consisting in re-training the Batch-Normalization

(BN) layers [37] of deep models without fine-tuning the

entire network. AdaBN is parameter-free, free of additional

components, and computationally simpler than generalized

fine-tuning. These qualities make AdaBN interesting for real-

time setup, in which it has already shown some success. For

instance, Du et al. [38] employed a CNN + instantaneous

High-Density (HD) sEMG images, attaining 63.3% accuracy

on the 8 classes of their CapgMyo database.

Recently, TCN approaches have started appearing in recent

research work, gaining traction for sEMG-based gesture

recognition. Tsinganos et al. [15] achieve 89.8% classification

accuracy on the 53 classes of NinaPro DB1 with an RMS-

fed TCN. This result is 4.8% better than SoA [39] and sur-

passes by 19.3% the previous results from the same authors

obtained with conventional 2d-CNNs [28]. This TCN was

evaluated using receptive field (i.e., input sequence lengths)

of 300ms up to 2.5 s. Although the NinaPro DB1 dataset is

not multi-session [9] and so does not involve the temporal

variability which is the focus of this work, [15] is a valuable

demonstration that TCNs can yield good accuracy on this

task. Betthauser et al. [14] proved that TCNs outperform

Long Short-Term Memory (LSTM) networks in the sEMG-

based gesture recognition task, reaching 69.5% accuracy on

27 classes. Also, the TCN used in this work has a very large

receptive field: the 1.7 s input windows were generated by
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Figure 2: A) Hardware diagram of the proposed system. sEMG sensors on the forearm are connected to the Analog Front

End, which sends the data via SPI to the GAP8 processing platform. A Bluetooth link allows streaming the data and the

classification to an external gateway. B) Detailed block diagram of the GAP8 processor.

computing the MAV from 200ms-long sequences.
Overall, these works proposing TCNs for sEMG-based

gesture recognition share the limitation of using very long

(i.e., ≥ 300ms) signal windows. In particular, in [15] the

dilated convolution is used to hugely enlarge the receptive

field at constant network size, instead of exploiting dilation to

work with smaller networks at a constant receptive field. This

limitation implies two (related) issues: i) the comparison is

altered with the other works that comply with the consensus

of using time windows < 300ms [29]; ii) the proposed

TCNs are evaluated under conditions which are not feasible

for a usable real-time implementation. In contrast, in this

work, we focus on real-time classification and target full

compliance with the upper limit of 300ms. Our proposed

TCN, TEMPONet, uses 150ms signal windows as input, and

needs < 15ms for inference when deployed on an embedded

platform.

III. MATERIALS AND METHODS

A. Acquisition and Processing Platform

The EMG signal acquisition is based on an 8 channel

commercial Analog Front End (AFE) (ADS1298) connected

to the GAP8 breakout board [40]. ADS1298 is mostly used

in acquisition system design for EMG, EEG and ECG

signals, and it is considered the de facto standard for such

applications. It allows simultaneous sampling of up to 8

bipolar channels with 24-bit resolution, reaching 32k samples

per second (ksps). Each channel has a programmable Gain

Amplifier with a gain that ranges from 1 to 12. In this

application, it drives 8 fully differential channels at sampling

rate 4 kHz connected to an array of passive gel-based EMG

electrodes, placed in a ring configuration around the forearm.

The block diagram of the GAP8 architecture is provided

in Figure 2 B. GAP8 has two main functional blocks: a

single tiny RISCV core, namely the fabric controller (FC)

and an 8-parallel set of RISCV core, i.e. the computational

cluster. FC controls SoC and peripherals and can be viewed

as a simple microcontroller. The 8 cores cluster is used for

vectorized and parallelized computationally-intensive tasks

such as embedded artificial intelligence [41].
GAP8 is not equipped with an FPU; hence, algorithms

need to be carried out using fixed-point arithmetic. The

internal memory of GAP8 is divided into two layers: L1

memory and L2 memory. L2 memory is 512 kB in size

and accessible by all cores. L1 memory is split into two

parts: a 16 kB memory for the fabric controller and a 64

kB shared memory for the cluster cores. There is also a

third level, namely L3, which externally connected via quad-

SPI or a HyperBus interface. The GAP8 processor also

includes an internal programmable DC/DC converter which

provides power supply to the fabric controller and cluster

(0.9V to 1.3V, 0.8V for retentive sleep mode). As shown in

Figure 2, this setup has been developed for measurement and

characterization purpose, using development boards, but, by

virtue of the BGA packages of ADC and GAP8, the whole

system can be integrated into a single PCB with 30x20mm

form factor, suitable for wearable applications.

All firmware has been written in C and runs on the low-

power GAP8 processor. For the development, we relied on the

GAP8 Software Development Kit (SDK) [42], which embeds

all the APIs to access the GAP8 HW features such as DMA

engines, hardware timers, and I/O. The GAP8 SDK also

includes a customized version of the RISC-V GCC compiler

with support for the GAP8 ISA extensions used to accelerate

the inference of Deep Neural Networks [17]. As shown in

Fig 2 A), GAP8 is connected to the AFE (i.e. ADS1298) via

a 20MHz SPI connection (GAP8 acts as master) in parallel

to an interrupt wire (#DRDY) connected to a GAP8 digital

pin. Once a new sample is ready, the AFE asserts the #DRDY

data ready signal with a pulse. The #DRDY pulse wakes up

an interrupt routine on the GAP8 Fabric Controller, which

starts acquiring the SPI data using the embedded I/O uDMA.

Data loaded via SPI is stored in the GAP8 L2 memory as

24-bit signed fixed-point numbers, with the least significant

bit representing a value of VREF/(223–1). Acquired sEMG

samples are then used as input of the TEMPONet TCN,

whose embedded implementation is described in Section

III-B2 and profiled in Section IV.

B. TEMPONet TCN

Unlike previous studies in sEMG-based gesture recogni-

tion, which are formulated as single-sample recognition [10]

or image recognition [13], and mostly rely on extracted

features, in this work we address the sEMG signal as a time

series, using a small Temporal Convolutional Network (TCN)
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layers that perform the final classification.

based architecture to assign labels to 150ms raw sEMG time

windows.
1) TEMPONet architecture

In this section, we present a novel TCN based topology,

TEMPONet (Temporal Embedded Muscular Processing On-

line Network), depicted in Figure 3.

TEMPONet stacks 3 Convolutional Blocks composed by:

- 2 temporal convolutional layers with filter size 3 × 1,

variable dilation and full padding;

- 1 convolutional layer with filter size 5 × 1, variable stride

and padding, followed by an Average Pooling (AvgPool) with

kernel 2× 1.

The 3 blocks are characterized by dilation d = 2, 4, 8,

respectively, and stride s = 1, 2, 4, respectively. The strided

convolution of the 1st, 2nd and 3rd block raises the number

of channels to 32, 64 and 128 respectively, while each

AvgPool halves the sequence length immediately after. As an

example, Convolutional Block 2 is represented in Figure 1.

The Convolutional Blocks are followed by 2 Fully Connected

(FC) layers with dropout (to help regularization [43]) and a

SoftMax operation. FC layers flatten the input information

to compute the final label assigned to the sequence. All

layers have ReLU non-linearity as activation function and

are equipped with Batch-Normalization (BN) to counter the

internal covariate shift [37].

The two main characteristics of this network, block com-

position, and 1D dilated convolutional layers, are inspired by

the novel developments in the deep learning field. Division in

blocks of several layers where the number of channels and

size of the activation tensors is kept constant is typical of

many modern networks [44], [45], [46], [47]. It enables to

build a network where the temporal dimension is consumed

“slowly”, therefore enabling a deeper network with more

powerful processing of the raw information in the time series.

On the other hand, as previously mentioned, dilated layers

allow to increase the receptive field of each layer gradually.

Dilation factors are chosen so that the receptive field at

the end of the network covers an entire time window1.

The network topology is designed in such a way that the

convolutional block increases the receptive field and reduces

the width of the signal (i.e., the input time window “visible”

from a given neuron in the layer). A larger input window

can then be analyzed by stacking more blocks instead of

increasing the filter sizes, i.e., by making the network deeper

instead of wider and therefore limiting the increase in the

number of parameters.

Combining these insights, the TEMPONet 3-blocks con-

figuration presented in this paper can process a 150 ms input

window using only 460k parameters, which is well suited

for the implementation on our developed processing board

as detailed in the following sections.
2) TEMPONet embedded deployment

In this section, we describe the procedure to distill the

TEMPONet algorithm for our embedded platform for sEMG

acquisition and processing for real-time classification of

acquired sEMG signals. As mentioned in Section III-A,

the target execution platform (GAP8) has limited memory

capacity and no support for floating-point data. To enable

deployment of the trained TEMPONet on an embedded

platform, therefore, we also targeted its quantization, i.e.

reducing it to use only 8-bit integer (INT-8) parameters

and feature map tensors. The pre-trained TCNs are fine-

1The modular nature of the network structure would allow to stack further
blocks and therefore process signals on different timing windows: for the
sEMG-based gesture recognition, this is of particular interest since the time-
window width could change based on the target application.
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Figure 4: TEMPONet flow. Left: the DMA manages L2-

L1 communication using double-buffering. Right: the cluster

executes PULP-NN on a tile stored in one of the L1 buffers.

tuned after replacing ReLU activation functions with step

functions using the PACT methodology [48]; weights are also

quantized using a similar function. Quantization is performed

layer-wise. The INT-8 representations of feature maps y and

weights W are given by (respectively)

ŷ =

⌊
clip[0,αy)(y)

εy

⌋
; εy =

αy

256
(1)

Ŵ =

⌊
clip[αW,βW)(W)

εW

⌋
; εW =

βW − αW

256
(2)

The quantization procedure operates as follows, starting

from a pretrained full-precision network: first, the parameters

αW, βW are initialized with the minimum and maximum

values of W, respectively, while αy parameters are initialized

by registering minimum and maximum values of y over a run

on the training set.

All parameters (including W, αW, βW, αy) are then

fine-tuned via backpropagation using the Adam optimizer.

Learning rate is set to a small value (10−6) for both datasets,

and the training is stopped after 30 epochs, or earlier if

convergence is achieved (i.e., if the difference in loss between

two epochs is bounded to 0.05). The quantized network can

be deployed on GAP8 by directly using the INT-8 weights

Ŵ and implementing Equation 1 as a set of comparisons

against thresholds [49]. Apart from fitting in the GAP8 L2

512 kB memory constraint (INT-8 TEMPONet has a footprint

of 460 kB), we also get rid of floating-point multiplications,

reducing both the time and energy per classification as GAP8

has no floating-point unit and would emulate these operations

in software.

The GAP8 processor receives and accumulates the data to

fill an internal 150ms × 8 channel (i.e. ∼ 10KB) buffer in

L2 and then starts the classification. Meanwhile, a second

buffer, also located in L2, receives the data in real-time from

the analog front-end in a double-buffering procedure. Data is

fed to the network at 2kHz sampling rate and using INT-32

representation only for the input data (as the ADC resolution

is 24 bits).

The implementation of TEMPONet on GAP8 is based

on the dedicated PULP-NN libraries [17] for optimized ad-

hoc convolutional kernels deployment. PULP-NN uses all the

cores available in the GAP8 cluster as well as their SIMD

extensions and bit-manipulation instructions to achieve the

best speed up and energy saving from the chip. As PULP-

NN functions work on data in the 64 kB L1 scratchpad, it is

necessary to move weights and feature maps between the

512 kB L2 memory and the L1 scratchpad. This process

is performed by using an automated tool [50] to i) divide

the data tensors in each layer in tiles that fit the L1; ii)

insert appropriate DMA calls to realize a double buffering

scheme (separate from the one on ADC data), so that data

movement is always overlapped with computation. The DMA

calls are asynchronous and non-blocking, allowing to import

new activations and weights while the previous calculation

is ongoing. Figure 4 describes this flow by highlighting the

memory L2-L1 memory traffic, managed by the DMA, and

the cluster execution of PULP-NN.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our TEMPONet TCN approach using

Python 3.5 and the specialized DL development PyTorch [51]

1.1 framework. The TCN is fed with 150ms time windows

(slide 15ms) of the raw 14-channel and 8-channel sEMG

signal, for the NinaPro DB6 and for our 20-session dataset

respectively.

To analyze the accuracy drop in multi-session classifica-

tion, we propose an incremental training protocol, where we

sweep training data from 1 to a maximum of half dataset

sessions (i.e., 5 for NinaPro DB6 and 10 for the 20-session

dataset), using the remaining half for testing. The training

sessions always precede the testing ones, in a sequential

scenario, to maintain temporal coherence among sessions.

Regarding the amount of data used for the training, we adopt

an internal 2-fold stratified (i.e. equal number of gestures

repetition for each fold) cross-validation to evaluate our

algorithm also on the same sessions used for training (i.e.

without the temporal variability). TCN training uses cross-

entropy as a loss function and stochastic gradient descent

for 20 epochs (batch size = 64) with L2 regularization

(weight_decay=10−4). The initial learning rate is set to 0.001

for the NinaPro DB6 dataset and 0.01 for the 20-session

dataset; in both cases, it is divided by 10 at epoch 9 and

19.

We introduce two figures of merit to evaluate our ap-

proach, based on our protocol: (1) the intra-session validation

accuracy, computed as the average accuracy on the fold

not used for training (alternately), and (2) the inter-session

validation accuracy, calculated as the average accuracy on

sessions 6-to-10 for the NinaPro DB6 and 11-to-20 for

the 20-session dataset, which are never used for training.

Network training is always performed off-line, hence on

steady gestures, removing contraction transients. This was

obtained by discarding the first and the last 1.5 s of each

gesture for NinaPro and 300ms for the dataset we introduce

in this work, thus focusing the classification only on steady

signal portions.

To evaluate the inference performance, we run TEMPONet

on the Ninapro DB6 comparing the results of the multi-

session testing described in [16], that represents, at the best
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Right: classification accuracy of RMS + RBF-SVM and TEMPONet, after training on sessions 1-to-5 of NinaPro DB6. All

validations are done on steady states.
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Right: classification accuracy of RMS + RBF-SVM and TEMPONet, after training on sessions 1-to-10 of the 20-session

Dataset. All validations are done on steady states.

of our knowledge, the previous state-of-the-art inter-session

accuracy for the NinaPro DB6. We obtained an average

49.6% accuracy against 41.8% reported in [16]. In this test,

the accuracy is evaluated on the entire gestures (i.e. including

transients).

Furthermore, we compare our TCN topology against a

baseline Radial Basis Function kernel Support Vector Ma-

chine (RBF-SVM) applied on the Root Mean Square (RMS)

of the sEMG signal, computed on 60ms time windows. This

setup has been chosen as a baseline since it is a widely

used approach [52] and it allows to show how the algorithm

performs against a well-established classification scheme.

We implement the SVM using the Scikit-learn framework

(version 0.20.0) [53], and we optimize the SVM parameters,

resulting in C = 1 and gamma=‘scale’.

Figure 5 depicts the results of RBF-SVM and TCN on the

NinaPro DB6 dataset, evaluated on the full validation set. The

algorithm comparison shows that TCN performs 4.3% better

than the SVM. All accuracy results are reported as mean (i.e.

average over subjects, training folds, and validation sessions),

or as mean ± Standard Error.

It is noteworthy that, since most of the classification errors
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Figure 9: Average inter-session accuracy obtained on steady

signals (removing transients, in full color) and on full signals

(including transients, in a light color) for both datasets and

techniques.

are located in the transients, the design of an end-to-end ges-

ture controller usually requires to remove gesture transients.

This is a well-established procedure common to both inter-

session [8], [54], [55] and inter-subject [56] studies, and is

sufficient for the aim of a steady gesture controller design.

It can be done by techniques such as threshold comparison,

DTW, or Hidden Markov Models. For this reason, in the

following paragraphs, we present the accuracy results also

with data purged of transients. To provide better insight in

how the accuracy varies when removing transients, Figure 9

compares the average inter-session accuracy achieved testing

only on steady signals and on full ones for both datasets

and considering both RBF-SVM and TEMPONet TCN ap-

proaches. Similarly to what happens with steady signals,

the advantage of TEMPONet in terms of accuracy on full

grows proportionally to the number of sessions involved in

the training. The accuracy drop on full with respect to steady

is substantially similar between RBF-SVMs and TCNs for

  

Figure 10: Hand gestures used during experimentation in-

cluding finger and wrist contractions.

both datasets.

B. NinaPro DB6 (steady)

On NinaPro DB6, both the SVM and the TCN yield

the best recognition accuracy when trained with a higher

number of sessions, namely 1-to-5 (i.e. the first half of the

dataset sessions). Recognition accuracy over time are plotted

in Figure 6.

The SVM trained on sessions 1-to-5 reaches an average

intra-session validation accuracy of (69.2 ± 0.7)%, and an

average inter-session validation accuracy on sessions 6-to-10

of (60.4± 0.9)%, resulting in a drop of 8.8%. Compared to

training on only session 1, the 5-session training maintains

the same intra-session accuracy (+0.4%) but increases the

inter-session accuracy by 9.5%.

The TEMPONet TCN trained on sessions 1-to-5 reaches a

similar intra-session validation accuracy of (71.8 ± 0.7)%
(2.6% higher than the SVM), while increases the inter-

session validation accuracy of 4.8% compared to the SVM

((65.2±1.0)%), with a resulting drop of 6.6%. Compared to

training on only session 1, the 5-session training increases the

intra-session accuracy by 5.5%), and strongly increases the

inter-session accuracy by 17.5%. Noteworthy, increasing the

amount of training data is a key point for our TEMPONet,

which strongly increases its performance.

These results confirm the initial assumption that TCNs are

more efficient in extracting information directly from raw

data, as well as to remove part of the noise due to temporal

variability, thus achieving better generalization over time.

C. 20-session Dataset (steady)

Our dataset has been acquired for 10 days and involves 3

subjects (all male, average age of 29±3 years). Each day in-

cludes 2 sessions, taking place in the morning and afternoon,

for a total of 20 sessions for the complete experimentation.

A single session has an approximate duration of one and

a half minutes, including 8 hand gestures and rest, as shown

in Figure 10. Each gesture is repeated 6 times, with a

contraction time of approximately 3 s. To ease the labeling

process, 3 s of rest between contractions of the same gestures

and up to 5 s between each new gesture are left.

We tested both the SVM and the TEMPONet TCN again

on our 20-session dataset. We maintain the same topology
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and the same training parameter, except for the learning rate

(Section IV). Recognition accuracy using our incremental

training protocol and among time is plotted in Figure 7.
Both the SVM and the TEMPONet TCN reach again

the best average intra-/inter-session validation accuracy with

the maximum training session (1-to-10). The SVM reaches,

(96.0 ± 0.3)%, (91.1 ± 0.6)%, and 4.9% of respectively

intra-session, inter-session (on sessions 11-to-20), and drop.

The TEMPONet increases this performance to (97.1±0.3)%
intra-session accuracy, (93.7± 0.5)% inter-session accuracy,

and only 3.4% accuracy-drop.
Compared to training on only session 1, the SVM main-

tains the same intra-session accuracy (−0.2%), while the

TEMPONet strongly increases its performance of 9.4%.

Noteworthy, both methods enhanced with more training ses-

sions show a sharp performance gain of the inter-session

accuracy, namely 12.9% for the SVM and 22.7% for the

TCN.
Similarly to NinaPro DB6, the effect of multi-session

training on the SVM and the TCN is similar, but with higher

gains for the TCN. The fact that our TEMPONet TCN

outperforms the SVM also on the new 20-session dataset

further validates the initial hypothesis that TCNs can attain

better generalization by their higher ability to process raw

data and to handle the inter-session sEMG variability noise.
Furthermore, a more explicit comparison between the

recognition accuracy of the SVM and our TEMPONet is

shown in Figure 8, which displays the output labels of

the two classifiers in the real-time inter-session setup on

our 20-session dataset (subject 1, training sessions 1-to-10,

validation session 20). This visual inspection highlights that

the output sequence returned by TEMPONet is more accurate

and more stable (i.e., smooth) in inter-session validation than

the output of the SVM. The smoothness of the TEMPONet

TCN classification is due to the fact that, for each inference,

TEMPONet leverages 150ms of signal history, rich enough

to enhance stability and avoid erratic oscillations as the ones

exhibited by the SVM.
We can finally notice that the classification accuracy

reached on the 20-session dataset (all > 90%) is consistently

much higher than on NinaPro DB6 (all < 75%), even in

presence of a similar number of classes (8 for NinaPro DB6

vs. 9 for the 20-session dataset) and sensors (14 for NinaPro

DB6 vs. 8 for the 20-session dataset). The cause is that hand

movements in NinaPro DB6 are all grasps, thus much less

diverse and discernible than the hand gestures of our 20-

session dataset.

D. Embedded Deployment Performance

Regarding the embedded implementation, the input sEMG

signals are preprocessed digitally before executing the TEM-

PONet TCN. This process includes a 10-tap notch filter

to remove PLI interference, and a 15-tap band-pass filter

(BW = 2Hz − 1 kHz) to cancel the DC drift and high-

frequency components. The signal is then downsampled to

2 kHz to match the sampling rate of the NinaPro DB6 dataset.

The execution time of these steps is negligible (< 100 µs) and

does not affect the real-time performance of the classifier.

The processing chain later continues with the execution of

TEMPONet as described in Figure 4.

TABLE II: Memory footprint and best intra-/inter-session

accuracy of the baseline RMS + RBF-SVM, full-precision

TEMPONet TCN and 8-bit quantized TCN.

Memory Intra-sess. Inter-sess.
Footprint acc. acc.

NinaPro DB6
RMS + RBF-SVM (float) 1.3MB 69.2% 60.4%
RMS + RBF-SVM (INT-8) 332 kB 50.7% 44.7%
TEMPONet TCN (float) 1.8MB 71.8% 65.2%
TEMPONet TCN (INT-8) 460 kB 64.5% 61.0%

20-session dataset
RMS + RBF-SVM (float) 670 kB 96.0% 91.1%
RMS + RBF-SVM (INT-8) 168 kB 95.8% 78.6%
TEMPONet TCN (float) 1.8MB 97.1% 93.7%
TEMPONet TCN (INT-8) 460 kB 96.6% 93.3%

TABLE III: Inference time and energy of the TEMPONet

deployed on GAP8.

inf. time energy MAC/cycle

TEMPONet inference on GAP8 @ 1V, 170MHz

Dilated Convolutions 5.40 ms 0.38 mJ 9.54
Non-Dilated Convolutions 5.86 ms 0.41 mJ 6.95
Pooling 0.16 ms 0.01 mJ n.a.
Fully Connected 1.42 ms 0.10 mJ 4.10

Full net 12.84 ms 0.90 mJ 7.73

To evaluate fairly the accuracy of the quantized version

of TEMPONet, we also distilled the RBF-SVM support

vectors to INT-8. This was performed offline by evaluating

the mean µ and standard deviation σ of the support vectors

and applying Eq. 2 by setting αW = µ−5σ, βW = µ+5σ 2.

Table II reports the memory occupancy and the accuracy

of the full-precision and 8-bit TEMPONet, compared to the

SVM baselines. Remarkably, the accuracy drop after quan-

tization decreases given its regularizing effect. On NinaPro

DB6, quantization leads to an accuracy loss of 7.3% intra-

session and 4.2% inter-session, still above the full-precision

RBF-SVM baseline. On our 20-session dataset, quantization

causes an accuracy loss of just 0.5% intra-session and only

0.4% inter-session, again above the full-precision SVM, but

with a 1.5× lower memory footprint. On the other hand, the

quantization of the support vectors, which is still necessary

to deploy SVMs on our GAP8 based processing platform

(512 kB memory constraint), results in a ∼ 15% inter-session

accuracy loss for both the datasets.

Table III highlights the performance of our network in

terms of inference time, energy, and MAC/cycle, collected

with real execution of the net on the GAP8 SoC targeting

the most efficient voltage-frequency configuration to save

energy (1V, 170MHz). Also, we detail these metrics for

the different layer types involved, namely Dilated and Non-

Dilated Convolutions, Pooling, and Fully Connected layers.

The last column of Table III, the mean MAC/cycle, is a key

indicator of computational efficiency; Dilated Convolutions

are not only algorithmically effective but also achieve the

highest level of efficiency: 42% of the execution time is spent

to run 53% of the overall operations of the network. Overall,

exploiting the 8-cores of GAP8, our network reaches a mean

MAC/cycle of 7.73. Therefore, TEMPONet can classify a

2We tried several other settings for αW , βW; we chose the one resulting
in the smallest accuracy drop.
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Windowing in real-time inference: 15ms slide

150ms window 12.8ms computation time

time
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Figure 11: The windowing scheme and inference time. The

real-time requirement, i.e. upper limit of 300ms [29], is

fulfilled.

time window in 12.8ms, consuming 0.90mJ. Our real-time

constraint is given by the 15ms of the sliding window,

and is therefore well-met by the embedded application, as

shown in Figure 11. Moreover, Figure 11 highlights that our

windowing scheme (same for off-line training and real-time

inference) and computation comply with the consensus real-

time requirement, i.e. the upper limit of 300ms [29].

Looking at classification energy, each a time window costs

0.90mJ per inference. Between two adjacent inferences, the

GAP8 SoC is only collecting data (and not processing it)

for 2.2ms . During this phase, we are able to idle the 8-

core cluster using its embedded hardware synchronization

unit [57], which enables fully state-retentive clock gating and

wakeup in a few nanoseconds. The power consumption in

this phase is limited to the ∼ 10mW consumed by the SoC

to collect data from the sensor. Overall, a 15ms window

costs 0.90mJ, yielding an average power of 60mW. Using

a small 1000mAh battery, the sEMG gesture classification

system can run continuously for ∼ 13 · 106 classifications,

i.e., for a lifetime of ∼ 54 h.

To measure the computational impact of Dilated Convo-

lutions as opposed to conventional ones, we projected our

measured results over a modified version of TEMPONet

where dilation factors are removed. Still, the dimension of the

receptive field is kept constant, therefore covering the same

time window as our TEMPONet. To do so, we increased the

filter size of the layers to 5, 9, and 17 in each of the three

blocks. The consequence is twofold: first, execution time and

energy jump to 28.7ms and 2.0mJ, respectively. Second, the

dimension of the modified TEMPONet grows to 970 kB, too

high to be suitable for embedded deployment in the GAP8

L2 memory (512 kB).

To have fair benchmarking, we need to compare our

approach against platforms that are capable of running deep

learning algorithms (e.g., Cortex H7 or A8 family) on sEMG

signals. There are some embedded systems for sEMG pro-

cessing and gesture classification, such as [18] and [19]

which can execute DL algorithms on a Cortex-A processor,

with a power envelope ≥ 500mW, almost one order of

magnitude higher than GAP8. Platforms of this class are

capable of running inference of Deep Neural Networks [58],

but their size and power envelope limit their applicability

to real wearable systems. Recently, some attempts have also

been made on Deep Neural Network deployment on high-end

Cortex M family (ARM Cortex H7), leveraging an energy-

efficient software support (i.e., CMSIS-NN, the SoA in SW

implementation of Deep Neural Networks). Unfortunately,

the deployment of a Neural network on an H7 platform

reaches a top performance of 0.69MAC/cycle @ 346mW
@ 400MHz measured on an STM32-H7 microcontroller

[17], more than 10× slower and 23× less efficient than

our proposed TCN implementation, which combines parallel

execution of the GAP8 cluster cores and the ISA extensions

utilized by the PULP-NN computational backend [17].

V. CONCLUSION

In this work, we addressed the temporal variability af-

fecting the inter-session generalization of sEMG-based hand

gesture recognition. We proposed a new approach based on

the novel TEMPONet Temporal Convolutional Network.

Our approach, validated on the NinaPro Database 6 and

on our new 20-session sEMG dataset, proves that the best

training set compositions are the ones including the highest

number of sessions, producing an inter-session classification

accuracy of 65.2% on NinaPro DB6, and 93.7% on our 20-

session dataset. These accuracies improve by up to 4.8%

and 2.6% the results yielded by a reference RBF-SVM, on

NinaPro DB6 and on the 20-session dataset respectively.

This low inter-session accuracy drop allows the design of

a robust long-term sEMG-based controller. Moreover, the

TEMPONet does not require any additional hand-crafted

feature extraction.

We also distilled the TCN applying deep network quanti-

zation to 8-bit, showing that our approach reaches as little

as 2.8× and 1.5× lower memory footprint compared to a

baseline RBF-SVM, for the NinaPro DB6 and the 20-session

dataset respectively, with an inter-session accuracy decrease

of only 4.2% and 0.4% respectively, still higher than the

reference SVM.

Finally, we showed an implementation of the quantized

TEMPONet on the GAP8 microcontroller, achieving 12.8ms
time with 0.90mJ energy per classification. Considering

a 1000mAh battery, our TEMPONet running on GAP8,

reaches up to 13M gesture classifications, for a total always-

on classification time of ∼ 54 h.
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