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Abstract—Objective: Current clinical biomechanics involves 
lengthy data acquisition and time-consuming offline analyses and 
current biomechanical models cannot be used for real-time 
control in man-machine interfaces. We developed a method that 
enables online analysis of neuromusculoskeletal function in vivo 
in the intact human.  Methods: We used electromyography 
(EMG)-driven musculoskeletal modeling to simulate all 
transformations from muscle excitation onset (EMGs) to 
mechanical moment production around multiple lower-limb 
degrees of freedom (DOFs). We developed a calibration 
algorithm that enables adjusting musculoskeletal model 
parameters specifically to an individual’s anthropometry and 
force-generating capacity. We incorporated the modeling 
paradigm into a computationally efficient, generic framework 
that can be interfaced in real-time with any movement data 
collection system. Results: The framework demonstrated the 
ability of computing forces in 13 lower-limb muscle-tendon units 
and resulting moments about three joint DOFs simultaneously in 
real-time. Remarkably, it was capable of extrapolating beyond 
calibration conditions, i.e. predicting accurate joint moments 
during six unseen tasks and one unseen DOF. Conclusion: The 
proposed framework can dramatically reduce evaluation latency 
in current clinical biomechanics and open up new avenues for 
establishing prompt and personalized treatments, as well as for 
establishing natural interfaces between patients and 
rehabilitation systems. Significance: The integration of EMG 
with numerical modeling will enable simulating realistic 
neuromuscular strategies in conditions including 
muscular/orthopedic deficit, which could not be robustly 
simulated via pure modeling formulations. This will enable 
translation to clinical settings and development of healthcare 
technologies including real-time bio-feedback of internal 
mechanical forces and direct patient-machine interfacing. 

 
 Index Terms— Electromyography; Extrapolation; Joint 

Moment; Musculoskeletal Modeling; Real-Time. 

I. INTRODUCTION 
TUDYING the neuromusculoskeletal (NMS) mechanisms 
underlying human movement is a fundamental challenge. 

This is central to characterize movement function and how it 
alters with pathology, thus providing a basis for devising 
personalized treatments. The study of human movement 
typically starts from recording of experimental data including 
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whole-body kinematics, foot-ground reaction forces (GRFs) 
and muscle electromyograms (EMG). Computational NMS  
models and simulations can be subsequently established to 
track experimental recordings, i.e. EMGs, GRFs, and marker 
trajectories [1]. This enables accessing internal body variables 
that are not easily measured experimentally [2], e.g. muscle 
force [3] or joint loadings [4].  

Musculoskeletal models based on inverse dynamics are 
currently operated offline and available in software packages 
such as OpenSim [5], AnyBody [6] and Biomechanics of 
Bodies [7]. Recent studies proposed online solutions, 
facilitating translation to clinical scenarios [8], [9]. In these 
methods, the multi-muscle recruitment problem is solved by 
navigating the solution space and selecting one muscle 
activation strategy that is optimal according to a priori defined 
physiological criteria, i.e. minimal sum of squared activation 
[10]. However, pre-defined criteria cannot encompass an 
individual’s entire neuromuscular repertoire and its 
adaptations across conditions [11].  

This motivated forward dynamics methods where EMG is 
combined with numerical simulation to account for realistic 
neuromuscular strategies without making assumptions on 
muscle recruitment. These are referred to as EMG-driven 
musculoskeletal models [12]–[16]. The authors and colleagues 
have developed and used them for estimating internal body 
forces [12] tightly depend on multi-muscle co-excitation, such 
as joint loadings [4], [17] or joint stiffness [18], [19], where 
inverse dynamics methods would be challenged [20], [21]. 

Online EMG-driven modeling has been so far proposed 
and tested only in restricted conditions, i.e. about one single-
degree of freedom (DOF) only [22]–[25], on isometric tasks 
[22], and validated on the same tasks used for model 
calibration. Moreover, current online formulations did not 
model the full force-length-velocity properties of muscles 
[22]–[25]. This all would prevent robust translation of these 
solutions to real-world applications. Although a real-time two-
DOF upper limb model was recently proposed [26], this was 
not driven by actual voluntary EMGs but operated via 
synthetic simulated signals. Moreover, it was tested for 
computational speed on a desktop computer and was not 
validated on the ability of blindly predicting internal joint 
forces.   

We propose for the first time, an EMG-driven 
musculoskeletal modeling framework, that enables operating 
any musculoskeletal geometry model online and simulating 
the dynamics of multiple skeletal DOFs simultaneously. We 
tested the framework on the ability of predicting joint 
moments from motor tasks and DOFs that were not used for 
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calibration, demonstrating extrapolation capacity. We also 
demonstrated that the framework can operate online on low 
power embedded systems with computational latencies that 
are within the physiological electromechanical delay (EMDs). 
Our framework realizes processing steps that are normally 
performed by multiple software tools while providing real-
time access to internal body variables, such as muscle 
activation, fiber length, contraction velocity as well as 
musculotendon length (Lmt), moment arm (MA), force and 
resulting net joint DOF moments. To enable further use in the 
scientific community we provide open-access to movement 
data and simulation at simtk.org†.  

The paper is organized as follows: Section II presents the 
model structure and architecture. Section III presents the 
experiments conducted. Section IV-VI provide results, 
discussion and conclusion remarks. 

II. REAL-TIME EMG-DRIVEN MODELING 
We developed a real-time musculoskeletal modeling 

pipeline driven by measured EMGs and motion-capture data 
based on our previous work (Fig. 1) [15], [27], [28]. The 
pipeline first stage (see IK & ID in Fig. 1E) is based on a 
mathematical representation of the dynamics and kinematics 
of the human whole-body encompassing 23 DOFs. The second 
stage (see BSpline in Fig. 1F), uses lower extremity joint 
kinematics (6 DOFs) to determine the underlying muscle-
tendon kinematics, i.e. Lmt and MA. The third stage (see 
EMG-driven model in Fig. 1G), uses EMGs in conjunction 
with muscle-tendon kinematics to compute musculotendon 
force and resulting joint moments in the knee and ankle joints 
(Fig. 2). 

The real-time framework was developed in ANSI C++ (Fig. 
1). It comprises two plug-in modules for direct connection 
with external recording devices (Fig. 1A-B) and with the 
OpenSim application programming interface (API, Fig. 1E-F). 
Moreover, it comprises a modeling component for the 
computation of musculotendon kinematics based on our 
previously developed Multidimensional Cubic BSpline 
(MCBS) method (Fig. 1F) [28] as well as a component for the 
 

† https://simtk.org/projects/rems 

simulation of musculotendon dynamics based on the 
previously developed Calibrated EMG-informed 
Neuromusculoskeletal Modeling (CEINMS) method [15], [27] 
(Fig. 1G). 

A. Software Plug-In 
The first plug-in module enables TCP/IP direct connection to 
external EMG amplifiers (Fig. 1A). It records raw EMGs and 
extracts amplitude-normalized linear envelopes. The 
processing steps include high-pass filtering, full-wave 
rectification, and low-pass filtering. For each subject and 
muscle, the resulting EMG linear envelopes were amplitude-
normalized with respect to the peak-processed values obtained 
from the entire set of recorded trials including both isometric 
maximal voluntary contractions (MVCs) and dynamic trials. 
This assured EMG linear envelopes always varied between 0 
and 1, an important requirement for musculotendon unit 
(MTU) force-production modeling. Filtered and amplitude-
normalized EMGs will be referred to as muscle excitations.  

The second plug-in module enables TCP/IP direct 
connection to external motion capture (MOCAP) systems 
(Fig. 1B). It records and processes three-dimensional marker 
trajectories and GRFs to derive joint angle and joint moment 
estimates via real-time inverse kinematics (IK) and inverse 
dynamics (ID) performed using the OpenSim API. The 
module low pass filters the three-dimensional marker 
trajectories and rotates them from the MOCAP system 
reference frame into the OpenSim reference frame (Fig. 1D). 
The OpenSim model used for the IK and ID procedure is taken 
from [29] and comprises 23 DOFs.  

We extended the OpenSim single-thread IK algorithm into 
a multi-thread algorithm that produced real-time estimates 
(i.e., at 100Hz) of three-dimensional joint angles from filtered, 
rotated marker trajectories (Fig. 1E). In this, we established a 
direct TCP/IP connection to the MOCAP system to record 
markers trajectories and stream them to the OpenSim API 
framework (Fig 1B-E). The IK problem in OpenSim is solved 
via static optimization. For each time frame, three-dimensional 
joint angles are computed to minimize the root mean squared 
error (RMSE) between a set of virtual markers attached to the 
OpenSim musculoskeletal model anatomical landmarks and 
the corresponding set of experimental markers placed on the 

Fig. 1. Schematics of the modeling framework. It is composed of four 
main parts including: movement data recording (A, B), plug-in system 
for data processing (C-E, with real-time inverse kinematics and inverse 
dynamics), musculoskeletal model calibration procedure and the real-
time EMG-driven musculoskeletal modeling (F, G). The Calibration 
procedure and the BSpline coefficients computation are performed 
offline. Also see Section II.  

Fig. 2. Workflow of the EMG-driven musculoskeletal modeling 
pipeline. From EMG-excitations and joint angles to predicted internal 
joint moments. The diagram depicts, representatively, Soleus muscle 
variables and the net joint moment contributed by the muscles spanning 
the ankle plantar-dorsi flexion DOF. Angles are in radians, the EMG-
excitations and activation are normalized. Fiber length, LMT and MA 
are in meter. Muscle forces are in Newton and joint moments in 
Newton-meter. 
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same anatomical landmarks of each subject [5]. To obtain 
real-time IK capability, we ran simultaneously multiple 
optimizations on different threads within a multi-stage 
pipeline. When a single frame of experimental marker 
trajectory is received, it is assigned to one thread, which 
performs one IK optimization. When a new experimental 
marker trajectory is received and the previous thread has not 
yet completed by the IK optimization, a new thread is 
established to perform concurrent optimization. The initial 
parameters used for the up-coming optimization stage are the 
latest computed DOF angles available. The plug-in also 
records experimental GRFs, low pass filters them and 
computes the resulting foot-ground center of pressure (COP, 
Fig. 1C). Filtered GRFs and COPs are rotated from the force 
plate reference frame into the OpenSim reference frame (Fig. 
1D). The plug-in employs a Kalman filter [30] to process IK-
generated joint angles and computes dynamically consistent 
estimates of joint angular velocity and acceleration (Fig. 1D). 

The Kalman filter parameters are derived as described 
previously [30]. Filtered and rotated GRFs, COPs as well as 
Kalman filtered joint angle, velocity and acceleration are 
streamed to the OpenSim API for the ID calculation and 
subsequent computation of the resulting joint moments (Fig. 
1E). We refer to these to as the “experimental moment”. 

B. EMG-driven modeling 
The alternative pathway to joint moments is via EMG-driven 
musculoskeletal modeling (Fig. 1G). In this scheme, the same 
musculoskeletal geometry model used for the IK and ID 
calculations is employed (Section III). We computed EMG-
dependent forces for 13 MTUs spanning the knee and ankle 
joints. These included: semimembranosus, semitendinosus, 
biceps femoris long and short head, tensor fasciae latae, rectus 
femoris, vastus medialis, vastus intermedius, vastus lateralis, 
gastrocnemius medialis, gastrocnemius lateralis, soleus and 
tibialis anterior.  We used a subset of the IK-generated whole-

Fig. 4. Joint moments estimated via real-time EMG-driven modeling and inverse dynamics. Results report mean (solid lines) and standard deviation (dotted lines) 
values across all subjects and trials. Results during gait tasks are reported over the stance phase with 0% being heel strike and 100% toe-off. The remaining tasks 
are reported as a function of the movement cycle. The tasks to the left of the vertical red line were not used for the model calibration procedure (Section II-B), i.e. 
these are referred to as extrapolation tasks. The degrees of freedom (DOF) below the vertical red line were not used for calibration, i.e. extrapolated DOF. 

Fig. 3. Real-time inverse kinematics results. Black lines report the mean angular positions across all subjects and experiments, and the dotted line is the standard 
deviation. Subgraphs are organized with tasks horizontally and degrees of freedom vertically. 
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body angle estimates. These are six lower extremity DOFs 
defining the kinematics of the 13 selected MTUs, including 
subtalar flexion, ankle flexion-extension, knee flexion-
extension, hip abduction, hip flexion-extension, and hip 
internal-external rotation [29]. IK-generated joint angles about 
the six selected DOFs are used to determine the underlying 
MTU kinematics, i.e. Lmt and MA (Fig. 1F). To achieve real-
time performance we integrated in our framework the MCBS 
method we previously developed [28] (Fig. 1F). This 
synthesizes the complex MTU paths defined in large-scale 
OpenSim musculoskeletal geometry models into a set of 
MTU-specific multidimensional cubic Bsplines. This enables 
accurate computation of kinematic-dependent length and 
moment arms for all MTUs at the fastest computational speed 
to date, allowing the use of embedded systems with limited f 

EMG-excitation, Lmt and MA estimates are then used to 
compute EMG-dependent MTU force and joint moment 
estimates (Figs 1G and 2). EMG-excitations are processed via 
a non-linear transfer function to determine the muscle fiber 
twitch dynamics in response to EMG-derived muscle 
excitation, as previously proposed [31]. Tendons were 
modeled as fiber series elements of constant tendon slack 
length. Resulting musculotendon forces were transferred to the 
joint via moment arms with no modeled ligament contribution. 
This enabled substantial computation speed with little to no 
loss of accuracy with respect to elastic tendon elements in the 
estimation of joint moments, as we previously proved [32]. s 

We developed a calibration procedure for deriving MTU 
parameters that determine subject specific MTU-force 
generating capacity and that vary nonlinearly with subject 
anthropometry (Fig. 1F). These included MTU-specific 
optimal fiber length and tendon slack length, grouped maximal 
muscle forces, and a global excitation-to-activation shape 
factor [35]. In the first stage, the calibration procedure 
computes BSpline coefficients necessary for the estimation of 
Lmt and MA. The OpenSim API is used to derive Lmt 
nominal values for all MTUs spanning the ankle subtalar-
flexion, ankle flexion-extension and knee flexion-extension 
DOFs. Using these data, the piecewise polynomial coefficients 
are computed for every order of the BSpline. The order of the 
BSpline depends on the number of DOFs crossed by an MTU. 
The second stage determines subject-specific values of 
optimal fiber length and tendon slack length specifically for 
each MTU, as previously described in [33]. An optimization 
procedure determines tendon slack length and optimal fiber 
length values so that normalized muscle fiber length and 

tendon strain between the scaled and unscaled musculoskeletal 
geometry models are preserved across DOF functional 
operating ranges [33]. The third stage uses a constraint 
optimization to vary between pre-defined boundaries the 
EMG-to-activation shape factor parameter (i.e. between -3 and 
0), the MTU maximal isometric force (i.e. scaled by factors 
between 0.5 and 1.5) and further refine the previous estimates 
of optimal fiber length (i.e. within ± 2.5 % of its initial value) 
and tendon slack length (i.e. within ± 5% of its initial value). 
Parameters are varied using a simulated annealing procedure 
[34] until the discrepancy between experimental and predicted 
joint moments is minimized over a range of calibration trials 
(Section III). We developed a graphical user interface (GUI) 
to enable real-time visual feedback of modeling steps 
including IK and ID calculations, EMG-muscle excitation 
processing as well as EMG-driven model-based estimation of 
MTU and joint variables. The video available in the 
supplementary material shows the real-time modeling 
framework being used on one individual subject. 

III. EXPERIMENTAL PROCEDURES 
The University Medical Center Göttingen Ethical Committee 
approved all experimental procedures. Five healthy men (see 
Table I) volunteered for this investigation after providing 
signed informed consent. Data were recorded and processed in 
real-time using the modeling framework described in Section 
II, depicted in Fig. 1, and displayed in supplementary video.  

EMGs were recorded using a 256-channel EMG amplifier 
(OTBioelettronica, Italy) at 2048Hz. The high-pass filter was 
a second-order Butterworth filter with 30Hz cut-off. The low-
pass filter was a second-order Butterworth with a 4Hz cut-off. 
We recorded EMG signals from 10 muscle groups including: 
rectus femoris, lateral and medial hamstrings, vastus medialis 
and lateralis, tensor fasciae latae, gastrocnemious medialis and 
lateralis, soleus and tibialis anterior. Muscle group EMGs 
were allocated to individual MTUs defined in the modeling 
framework (Section II.B). In this allocation, two MTUs that 
shared the same innervation and contributed to the same 
mechanical action were assumed to have the same EMG 
pattern. According to this convention the lateral hamstring 
EMGs drove both the biceps femoris short head and long head 
MTUs. The medial hamstring EMGs drove both the 
semimembranosus and the semitendinosus MTUs. The vastus 
intermedius EMG activity was derived as the mean between 

Fig. 6. Normalized musculotendon unit (MTU) force computed via the 
EMG-driven model across all tasks for MTUs including (from top to 
bottom) the semimembranosus, semitendinosus, biceps femoris long head, 
biceps femoris short head (BFS), tensor fasciae latae, rectus femoris, vastus 
medial, vastus intermedius, vastus lateralis, gastrocnemius medialis, 
gastrocnemius lateralis, soleus, tibia anterior. 

Fig. 5. Filtered and normalized EMGs across all tasks for muscles 
including (from top to bottom): semimembranosus, biceps femoris, tensor 
fasciae latae, rectus femoris, vastus medialis, vastus laterals,  
gastrocnemius lateralis,  gastrocnemius medialis, soleus and tibia anterior.  
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the vastus lateralis and vastus medialis EMGs [15]. All 
remaining MTUs had dedicated EMG channels. A set of 29 
retroreflectives markers was placed on the trunk and lower 
extremity, as previously described [15]. Three-dimensional 
marker trajectories were recorded using a seven-camera 
motion capture system (Qualisys, Göteborg, Sweden) at 
128Hz. Foot-ground reaction forces (GRFs) were recorded 
using two in-ground force plates (Bertec, Columbus, USA) at 
2048Hz. The low-pass filter used for both marker and GRF 
data was a second order Butterworth filter with 10Hz cut-off 
and a time group delay of 0.1-25ms with average delays in the 
order of 20ms. 

The subjects performed a static standing trial. The 
recorded marker trajectories were used to scale an OpenSim 
generic musculoskeletal model to match each individual 
subject’s anthropometry. MVC trials consisting of isometric 
contractions were performed for each muscle group for EMG 
normalization. The subjects performed three model calibration 
trials including one static standing trial, one single repetition 
of forward gait at self-selected speed, and one single repetition 
of knee squat followed by calf rise. The model calibration 
procedure (Section II) was performed to minimize discrepancy 
between predicted and experimental moments about the knee 
flexion-extension and ankle plantar-dorsi flexion DOFs. The 
subtalar-flexion DOF was not included in the calibration 
procedure. Validation trials included five additional repetitions 
of the calibration tasks (excluding the static standing task) as 
well as five repetitions of novel motor tasks including: 
backward gait at self-selected speed, fast forward gait, knee 
squat, single-leg knee squat, calf rise, single-leg calf rise, knee 
squat followed by vertical jump, and side stepping. Motor 
tasks were chosen to underlie a variety of different 
neuromuscular strategies and produce a range of dynamic joint 
moments across knee and ankle joint DOFs.  

The whole real-time modeling framework (i.e. EMG-
processing, IK, ID, and EMG-driven modeling, Fig. 1) was 
operated on a laptop with dual-core processing unit (2.60GHz) 
and 16GB of RAM memory. Tests were also repeated using an 
embedded system (Raspberry Pi 2, Raspberry Pi Foundation, 
UK), which is a single board computer with a four-core 
processing unit (900MHz) and 1GB of RAM memory. In this, 
joint angles and EMGs were read from file, i.e. we did not 
employ real-time EMG processing and IK computation. Three 
tests were performed for validating the framework 
capabilities.  

IV. RESULTS 
The first test verified the framework ability of computing joint 
angular positions in real-time via IK. Angles estimates about 
23 articular joint DOFs were produced at an average rate of 
168±141Hz. Fig. 3 reports values derived about the knee 
flexion-extension, ankle plantar-dorsi flexion, and ankle 
subtalar flexion across all motor tasks. These are the DOFs 
employed in the subsequent EMG-driven modeling pipeline. 
IK-generated angles reflect literature values across forward 
gait [35], backward gait [3], and squat tasks [36]. Table I 
summarizes locomotion speeds performed by all subjects as 
well as each individual’s anthropometry properties. The Table 
I also show how self-selected locomotion speeds largely 

varied across participants generating a variety of different 
motor conditions to be predicted by the framework. 

 The second test (Fig. 4) verified the real-time framework 
ability of estimating joint moments in real-time using the 
EMG-driven modeling pipeline using experimental EMG-
excitations (Fig. 2) and IK-angles (Fig. 3). Results showed 
estimated joint moments being in agreement with ID 
generated joint moments (reference) derived using 
experimental GRFs and IK angles. Fig. 4 shows the model 
ability of predicting moments during novel repetitions of the 
calibration trials including gait at self-selected speed, knee 
squat with subsequent calf rise. Moreover, Fig. 4 also shows 
the model ability of extrapolating beyond calibration 
conditions. That is, to completely unseen motor tasks (i.e. 
extrapolation capacity: backward gait, side step, ingle leg 
squat with calf rise, fast gait and vertical jump), and about one 
unseen DOF (i.e. ankle subtalar flexion). The largest Pearson 

coefficients r = 0.9±0.07 was observed at the ankle plantar-
dorsi flexion DOF during gait at self-selected speed. The 
smallest root mean square error (RMSE) was observed at the 
subtalar flexion DOF (0.01±0.01Nm/kg) during the single leg 
squat task. Pearson coefficients were always greater than r = 
0.43±0.36 with least favorable values observed at the knee 
flexion-extension DOF during gait at self-selected speed. The 
RMSE was always smaller than 0.37±0.12Nm/kg with least 
favorable values observed at the knee flexion-extension DOF 
during the single leg calf rise task. The EMG-driven model 
prediction accuracy during the unseen motor tasks was 
comparable to that observed during novel trials of the same 
type used for calibration. The RMSE and r variation from 
calibration to extrapolation trials was 0.02Nm/kg and 0.07 
respectively at the knee flexion-extension, 0.003Nm/kg and 
0.06 at the ankle plantar-dorsi flexion, and 0.25Nm/kg and 
0.12 at the ankle subtalar flexion. The task that displayed 
largest prediction accuracy variation between calibration and 
extrapolation tasks was the single leg knee squat with calf rise. 
The joint moments predicted both using EMG-driven 
modeling and ID well reflected normative values found in 
literature for tasks including gait [37], backward gait [38] and 
squat [39].  

Fig. 5 shows the EMG-excitations used for joint moment 
prediction across all tasks and muscles and reported for one 
subject. Excitations were found to assume values comparable 
for the forward gait[40], backward gait [41] and squat [39], for 
which literature data are available. During the knee squat, 
excitations from the quadriceps group assumed substantially 
high values in the knee extension part of the task. Similarly, 
calf muscle excitations assumed larger values during the calf 

Participant Age 
(years) 

Height 
(m) 

Weight 
(Kg) 

Gait Speed (m/s) 
Free Fast Backward 

1 26 1.77 73 0.66 0.74 0.59 
2 31 1.82 70 0.68 0.93 0.43 
3 34 1.82 67 0.65 0.70 0.31 
4 29 1.71 73 0.58 0.84 0.49 
5 28 1.86 85 0.66 0.96 0.63 

TABLE I 
PARTICIPANTS’ ANTHROPOMETRIC PROPERTIES AND 

LOCOMOTION SPEEDS 



0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2017.2704085, IEEE
Transactions on Biomedical Engineering

TBME-01493-2016.R1 6 

raising part of the tasks. The jump task had comparable 
excitation patterns to the squat task particularly at the 
beginning and the end of the task.  

Fig. 6 shows the normalized force predicted for all MTUs 
across all motor tasks and reported for one subject. Results 
showed values matching literature data for gait [42] and squat 
tasks [39] for which values for comparison are available. 
Importantly, Fig. 5 and 6 highlight the non-proportionality 
existing between EMG-excitations and resulting forces, where 
modulations in EMG-excitations does not always correspond 
to a linear modulation at the force level. This reflects the non-
linear EMG-to-activation transfer function (Section II) and the 
Hill-type viscoelasticity via force-length-velocity relationship.  

The third test (Figs 7 and 8) quantified the framework real-
time computation performance when operated both on a 
laboratory desktop computer and on an embedded system. We 
used metrics including: the mean computation time and 
standard deviation measured across all simulation frames from 
all subjects and tasks, the maximal expected computation time 
within a 95% confidence interval assuming computation time 
frames with a normal Gaussian distribution, and the maximal 
expected computation time with a 90% confidence interval 
with no assumption on the computation time frame 
distribution, i.e. using the Chebyshev’s Theorem. Fig. 7 shows 
the computation time of the different components of the real-
time EMG-driven pipeline (Fig. 1) on a desktop computer. 

 The MTU kinematics component (Fig. 1F) executed with 
a mean computation time of 0.4±0.47ms with 95% of the 
samples being computed within 1.5ms. The inverse kinematics 
component (Fig. 1E) executed with a computational time of 
10.1±8.5ms with 95% of the samples being computed within 
28ms. The EMG-driven model (Fig. 1G) executed in 
0.301±0.65ms with 95% of the samples being produced within 
1.6ms. Fig. 7 also shows the total delay from the EMG 
recording time to the multi-DOF moment computation, with 
mean delay being 35±11ms and with 95% of the samples 
being produced within 55ms.  

Fig. 8 shows the computational time of the EMG-driven 
model and the MTU spline on the Raspberry Pi 2 embedded 
system. The MTU kinematics component (Fig. 1F) operated in 

4.3±0.2ms with 95% of the samples being produced within 
4.7ms. The EMG-driven model (Fig. 1G) operated in 
2.7±0.48ms with 95% of the samples being produced within 
3.6ms. The video in the supplementary material displays the 
framework data recording, processing and musculoskeletal 
simulation capacity in real-time.  

V. DISCUSSION 
We developed and validated a real-time framework for 
modeling and simulating the dynamics of the human NMS  
system using EMG-driven modeling. The real-time framework 
enables recording and processing movement data (marker 
trajectories, GRF, EMGs) and determining reference three-
dimensional joint angles and moments via real-time IK and 
ID. Moreover, it enables simulating how EMG-controlled 
muscle contractions transfer mechanical force to skeletal 
structures instantly during an individual’s movement. In this, 
EMGs enable simulating realistic subject-specific 
neuromuscular strategies across different individuals in 
conditions also including muscular/orthopedic deficit, which 
could not be robustly simulated via pure modeling 
formulations [43]. In this study, we calibrated and tested the 
EMG-driven modeling pipeline using a lower extremity 
musculoskeletal geometry model with six DOFs (Section II). 
However, the proposed framework enables real-time 
simulation of any musculoskeletal geometry model generated 
using the OpenSim modeling software package. § 

The proposed framework enabled for the first time, robust 
estimation of muscle-contributed joint moments about 
multiple DOFs simultaneously, during unseen dynamic motor 
tasks and DOF as well as using low power portable embedded 
systems. The joint moment estimation ability over the unseen 
motor tasks and DOFs was comparable to that observed 
during novel repetition of the calibration tasks and DOFs 
(Section II). These results support the possibility of 
translating the proposed EMG-driven musculoskeletal 
modeling technique to real-world applications, i.e. computer-
aided motor diagnosis and rehabilitation, human-machine 
interfacing, model-based control of assistive devices.  

 
§ http://simtk-confluence.stanford.edu:8080/display/OpenSim/ 
Musculoskeletal+Models 

Fig. 8. Computation time on the Raspberry Pi 2. The left-hand histogram 
depicts the computation time of MTU spline component. The right-hand 
histogram depicts the computation time of the EMG-driven model 
component.  
 

Fig. 7. Computation time on a desktop computer. The histograms (starting 
from left) respectively depict computation times for the MTU spline, 
inverse kinematics, and EMG-driven model component as well as the total 
delay between EMG sampling time and multi-DOF moment computation. 
The inverse dynamics computation time is not reported as this is constant 
and does not add substantial latency to the workflow.  
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Results from the first test (Fig. 3) revealed large variability 
about the subtalar angular position highlighting this DOF 
predominant function of leg stabilization. This appears to be 
an important element especially when comparing single leg-
squat with respect to double leg-squat tasks (Fig. 3). These 
tasks display substantially different ankle moment trends (i.e. 
see ID moments in Fig. 4). This is explained by single leg-
squat tasks requiring larger knee joint moment production (see 
knee extensors function, Figs 5-6) and greater ankle 
stabilization function (see ankle antagonist muscle co-
activation, Fig. 5). In this, estimation accuracy of fine ankle 
moment modulation was limited in our modeling framework 
by the fact that not all ankle muscles were recorded. However, 
despite current limits, the proposed modeling formulation was 
able to provide joint moment estimates in close agreement to 
reference data (Fig. 4). The results also revealed that the 
EMG-driven model better predicted the ankle plantar-dorsi 
flexion moments than the knee flexion-extension moments. 
This is due to the larger number of muscle prime movers in 
the knee than in the ankle. It is important to stress that the 
central requirement in our system was to achieve real-time 
performance, for which we needed to address computational 
challenges across all modeling and processing stages (i.e. Figs 
1-2). These included on-line data acquisition and filtering 
introducing data losses and phase shifts respectively. In this 
context, we employed standard TCP/IP data acquisition 
protocols not specifically designed for hard real-time 
performances. This all limited the prediction accuracy of our 
system when compared to previous offline studies [12], [14], 
[15]. Future work will develop ad-hoc data acquisition and 
processing hardware and software systems, which will better 
enable handling real-time constraints. 

Future work will investigate the real-time modeling 
formulation with a larger set of recorded EMG channels 
spanning the knee and quantify the associated model 
prediction sensitivity. Also, future work will explore whether 
high-density EMG can  enable better estimates of muscle 
activity especially important during tasks underlying fine-
control of muscle excitation and small modulations of force.  

The ability of predicting muscle forces while distributing 
their force output along all spanned DOFs simultaneously 
enables addressing the indeterminacy of the muscle force 
distribution problem, which has been achieved here for the 
first time in real-time. We previously showed that EMG-
driven models calibrated with respect to different single-DOFs 
generated different MTU force solutions for the same input 
data and MTU set [15]. On the other hand, our proposed real-
time multi-DOF modeling formulation provides a unique 
MTU force solution that satisfies all DOFs simultaneously and 
is therefore more generalizable across novel conditions. This 
was reflected by the model ability of extrapolating both task-
wise and DOF-wise (Fig. 4).  

The ability of operating the modeling pipeline in real-time 
is important in the context of human-machine interfacing for 
wearable assistive devices as it would enable predicting 
internal body forces and the intended movement before they 
actually manifest in the human body. This would enable 
supporting individuals with reduced motor abilities but with 
detectable electrophysiological activity. Conversely, systems 
that operate on the basis of the detection of externally 

measurable forces (i.e., limb orthosis interaction force) would 
not provide support until the user has produced detectable 
interaction force.  

Results also revealed that the elements contributing to the 
total computational time included: (1) the motion capture 
system and IK algorithm, which relies on static optimization 
and therefore required substantial computational power and 
(2) the EMG recording system we used, which sends 30ms-
packets of data over TCP/IP. The EMG-driven modeling 
pipeline used only a small portion of the total computation 
time, as depicted in Figs 7-8. Future work will use fully 
integrated EMG and position sensors, to decrease the 
computational latency and assure enhanced real-time 
capability using wearable solutions.  

The computational performance obtained using the 
embedded system (Fig. 8) revealed that 90% of predicted 
frames were computed with latencies comparable to those 
derived using a laptop system. Peak latencies were observed to 
be one order of magnitude larger than using a laptop computer 
system, however only in a small percentage of the cases.  

Future work will investigate the possibility of predicting 
multiple mechanical variables including those tightly 
dependent on muscle co-excitation such as joint stiffness [44]. 
This will underlie the employment of series elastic tendon 
elements as previously described [44] and ligaments, thus 
enabling the accurate estimation of a greater range of 
mechanical variables. Future work will also focus on the use 
of co-excitation primitives [16] for relaxing sensory-
constraints, i.e. the need for recording from large sets of 
muscles. Applications will also include the interfacing of our 
proposed framework with wearable assistive technologies for 
restoring (robotic exoskeletons) or replacing (artificial limbs) 
[43] lost motor capacity. In this context, previously proposed 
offline NMS modeling formulations demonstrated to 
successfully capture patient-specific musculoskeletal function 
in conditions including cerebral palsy [45][46],stroke [14] or 
quadriceps weakness [43]. In this, important muscle functional 
abnormalities could be modeled by optimizing the passive 
muscle stiffness parameters (i.e. muscle contractures) or using 
velocity-dependent feedback controllers (i.e. spasticity) [45]. 

VI. CONCLUSION 
We proposed and extensively validated an online EMG-driven 
musculoskeletal modeling framework that simulates the 
dynamics of multiple muscular and skeletal DOFs 
concurrently. This will enable (1) filling the gap between data 
collection and advanced analysis, (2) out-of-the-lab analysis 
for understanding human movement beyond constrained 
laboratory conditions, and (3) translation to the clinics and to 
assistive technologies.  
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