
1

Robust Real Time Pattern Matching using

Bayesian Sequential Hypothesis Testing

Ofir Pele and Michael Werman

Abstract— This paper describes a method for robust

real time pattern matching. We first introduce a family of

image distance measures, the “Image Hamming Distance
Family”. Members of this family are robust to occlusion,

small geometrical transforms, light changes and non-

rigid deformations. We then present a novel Bayesian

framework for sequential hypothesis testing on finite pop-

ulations. Based on this framework, we design an optimal

rejection/acceptance sampling algorithm. This algorithm

quickly determines whether two images are similar with

respect to a member of the Image Hamming Distance
Family. We also present a fast framework that designs

a near-optimal sampling algorithm. Extensive experimen-

tal results show that the sequential sampling algorithm

performance is excellent. Implemented on a Pentium 4

3GHz processor, detection of a pattern with 2197 pixels,

in 640x480 pixel frames, where in each frame the pattern

rotated and was highly occluded, proceeds at only 0.022

seconds per frame.

Index Terms— Pattern matching, template matching,

pattern detection, image similarity measures, Hamming

distance, real time, sequential hypothesis testing, compos-

ite hypothesis, image statistics, Bayesian statistics, finite

populations

I. INTRODUCTION

MANY applications in image processing and

computer vision require finding a particular

pattern in an image, pattern matching. To be use-

ful in practice, pattern matching methods must be

automatic, generic, fast and robust.

Pattern matching is typically performed by scan-

ning the entire image, and evaluating a distance

measure between the pattern and a local rectangular

window. The method proposed in this paper is appli-

cable to any pattern shape, even a non-contiguous

one. We use the notion of “window” to cover all

possible shapes.

First, we introduce a family of image distance

measures called the “Image Hamming Distance

O. Pele and M. Werman are with the The Hebrew University of

Jerusalem e-mail: {ofirpele,werman}@cs.huji.ac.il

Manuscript received ; revised

Family”. A distance measure in this family is the

number of non-similar corresponding features be-

tween two images. Members of this family are

robust to occlusion, small geometrical transforms,

light changes and non-rigid deformations.

Second, we show how to quickly decide whether

a window is similar to the pattern with respect

to a member of the “Image Hamming Distance

Family”. The trivial, but time consuming solution is

to compute the exact distance between the pattern

and the window by going over all the corresponding

features (the simplest feature is a pixel). We present

an algorithm that samples corresponding features

and accumulates the number of non-similar features.

The speed of this algorithm is based on the fact

that the distance between two non-similar images

is usually very large whereas the distance between

two similar images is usually very small (see Fig.

2). Therefore, for non-similar windows the sum will

grow extremely fast and we will be able to quickly

decide that they are non-similar. As the event of

similarity in pattern matching is so rare (see Fig.

2), we can afford to pay the price of going over all

the corresponding features in similar windows. Note

that the algorithm does not attempt to estimate the

distances for non-similar windows. The algorithm

only decides that these windows, with a very high

probability (for example, 99.9%), are non-similar.

The reduction in running time is due to the fact that

this unnecessary information is not computed.

The idea of sequential sampling [1] or sequential

sampling a distance is not new [2]. The major con-

tribution in our work is a novel efficient Bayesian

framework for hypothesis testing on finite popula-

tions. Given allowable bounds on the probability

of error (false negatives and false positives) the

framework designs a sampling algorithm that has

the minimum expected running time. This is done

in an offline phase for each pattern size. An online

phase uses the sampling algorithm to quickly find

patterns. In order to reduce offline running time we

2

(a)

(b) (c) (d)

Fig. 1. Real time detection of a rotating and highly occluded pattern.

(a) A non-rectangular pattern of 2197 pixels. Pixels not belonging to the mask are in black. (b) Three 640x480 pixel frames out of fourteen

in which the pattern was sought. (c) The result. Most similar masked windows are marked in white. (d) Zoom in of the occurrences of the

pattern in the frames. Pixels not belonging to the mask are in black.

The SEQUENTIAL algorithm proceeds at only 0.022 seconds per frame. Offline running time - time spent on the parameterization of the

SEQUENTIAL algorithm (with P-SPRT, see Section IV-D) was 0.067 seconds. Note that the distance is robust to out of plane rotations and

occlusion. Using other distances such as CC, NCC, l2, l1 yielded poor results. In particular they all failed to find the pattern in the last frame.

We emphasize that no motion consideration was taken into account in computation. The algorithm ran on all windows. Full size images are

available at: http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip

3

0 500 1000 1500 2197
0

2000

4000

6000

8000

Hamming distance

#w
in

do
w

s

0 500 1000
0

2

4

6

8

10

Hamming distance

#w
in

do
w

s

Fig. 2. The distance of the pattern to most windows in pattern

matching is very high. A distance measure from the Image Hamming

Distance Family was computed between the pattern and a sliding

masked window in the video frames of Fig. 1. Above we see the

resulting histogram. The left part of the histogram is zoomed in. We

can see that most of the windows in the video were very far from

the pattern. This is a typical histogram.

also present a fast framework that designs a near-

optimal sampling algorithm. For comparison, we

also present a framework that designs an optimal

fixed size sampling algorithm. Theoretical and ex-

perimental results shows that sequential sampling

needs significantly fewer samples than fixed size

sampling.

Sampling is frequently used in computer vision,

to reduce time complexity that is caused by the

size of the image data. Our work (like work by

Matas et al. [3], [4]) shows that designing an optimal

or a near-optimal sequential sampling scheme (by

contrast to the frequently used fixed size sampling

scheme) is important and can improve speed and

accuracy significantly.

A typical pattern matching task is shown in Fig. 1.

A non-rectangular pattern of 2197 pixels was sought

in a sequence of 14, 640x480 pixel frames. Using

the sampling algorithm the pattern was found in

9 out of 11 frames in which it was present, with

an average of only 19.70 pixels examined per win-

TABLE I

NOTATION TABLE

A, |A| Set that contains spatial coordinates

of features (for example, spatial co-

ordinates of pixels). |A| is the size of

the set.

D Random variable of the Hamming

distance.

t Image similarity threshold, i.e. if the

Hamming distance of two images is

smaller or equal to t, then the images

are considered similar. Otherwise, the

images are considered non-similar.

p Pixel similarity threshold. Used in

several members of the Image Ham-

ming Distance Family.

dow instead of 2197 needed for the exact distance

computation. On a Pentium 4 3GHz processor, it

proceeds at only 0.022 seconds per frame. Other

distances such as cross correlation (CC), normalized

cross correlation (NCC), l1, l2, yielded poor results

even though they were computed exactly (the com-

putation took much longer).

This paper is organized as follows. Section II

is an overview of previous work on fast pattern

matching, Hamming distance in computer vision

and sequential hypothesis testing. Section III intro-

duces the Image Hamming Distance Family. Section

IV describes the Bayesian framework. Section V

discusses the issue of the prior. Section VI presents

extensive experimental results. Finally, conclusions

are drawn in Section VII. A notation table for the

rest of the paper is given in Table I.

II. PREVIOUS WORK

A. Fast Pattern Matching

The distances most widely used for fast pattern

matching are cross correlation and normalized cross

correlation. Both can be computed relatively quickly

in the Fourier domain [5], [6].

The main drawback of correlation, which is based

on the Euclidean distance, is that it is specific

to Gaussian noise. The difference between images

of the same object often results from occlusion,

geometrical transforms, light changes and non-rigid

deformations. None of these can be modeled well

4

with a Gaussian distribution. For a further discus-

sion on Euclidean distance as a similarity measure

see [7]–[10]. Note that although the Hamming dis-

tance is not specific to Gaussian noise as the l2
norm, it is robust to Gaussian noise (see Fig. 3).

Normalized cross correlation is invariant to additive

and multiplicative gray level changes. However, nat-

ural light changes include different effects, such as

shading, spectral reflectance, etc. In addition, when

a correlation is computed in the transform domain,

it can only be used with rectangular patterns and

usually the images are padded so that their height

and width are dyadic.

Lucas and Kanade [11] employed the spatial in-

tensity gradients of images to find a good match us-

ing a Newton-Raphson type of iteration. The method

is based on Euclidean distance and it assumes that

the two images are already in approximate registra-

tion.

Local descriptors have been used recently for

object recognition [12]–[17]. The matching is done

by first extracting the descriptors and then matching

them. Although fast, our approach is faster. In

addition, there are cases where the local descriptors

approach is not successful (see Fig. 7). If one knows

that the object view does not change drastically,

the invariance of the local descriptors can affect

performance and robustness [17]. In this work we

decided to concentrate on pixel values or simple

relation of pixels as features. Combining the se-

quential sampling algorithm approach with the local

descriptors approach is an interesting extension of

this work.

Recently there have been advances in the field

of fast object detection using a cascade of rejectors

[18]–[21]. Viola and Jones [20] demonstrated the

advantages of such an approach. They achieved real

time frontal face detection using a boosted cascade

of simple features. Avidan and Butman [21] showed

that instead of looking at all the pixels in the image,

one can choose several representative pixels for

fast rejection of non-face images. In this work we

do not deal with classification problems but rather

with a pattern matching approach. Our approach

does not include a learning phase. The learning

phase makes classification techniques impractical

when many different patterns are sought or when

the sought pattern is given online, e.g. in the case of

patch-based texture synthesis [22], pattern matching

in motion estimation, etc.

Hel-Or and Hel-Or [23] used a rejection scheme

for fast pattern matching with projection kernels.

Their method is applicable to any norm distance,

and was demonstrated on the Euclidean distance.

They compute the Walsh-Hadamard basis projec-

tions in a certain order. For the method to work fast

the first Walsh-Hadamard basis projections (accord-

ing to the specific order) need to contain enough

information to discriminate most images. Ben-Artzi

et al. [24] proposed a faster projection scheme

called “Gray-Code Kernels”. Ben-Yehuda et al. [25]

extended the Hel-Or pattern matching method to

handle non-rectangular patterns by decomposition

of the pattern into several dyadic components.

Cha [26] uses functions that are lower bounds

to the sum of absolute differences, and are fast

to compute. They are designed to eliminate non-

similar images fast. The first function he suggests is

the h-distance:
∑r−1

k=0 |
∑k

l=0(Gl(Im1) − Gl(Im2))|,
where Gl(Im) is the number of pixels with gray

level l in the intensity histogram of the image, Im,

and r is the number of gray levels, usually 256. The

time complexity is O(r). The second function he

suggests is the absolute value of difference between

sums of pixels: |
∑

Im1(x, y) −
∑

Im2(x, y)|. The

method is restricted to the l1 norm and assumes that

these functions can reject most of the images fast.

One of the first rejection schemes was proposed

by Barnea and Silverman [2]. They suggested the

Sequential Similarity Detection Algorithms - SSDA.

The method accumulates the sum of absolute dif-

ferences of the intensity values in both images and

applies a threshold criterion - if the accumulated

sum exceeds a threshold, which can increase with

the number of pixels, they stop and return non-

similar. The order of the pixels is chosen randomly.

After n iterations, the algorithm stops and returns

similar. They suggested three heuristics for finding

the thresholds for the l1 norm. This method is very

efficient but has one main drawback. None of the

heuristics for choosing the thresholds guarantees a

bound on the error rate. As a result the SSDA was

said to be inaccurate [27]. Our work is a variation of

the SSDA. We use a member of the Image Hamming

Distance Family instead of the l1 norm. We also

design a sampling scheme with proven error bounds

and optimal running time. As the SSDA uses the l1
norm, in each figure where the l1 norm yields poor

results (see Figs. 1, 4, 5 and 6) the SSDA also yields

poor results.

5

(a)

(b) (c)

(a-zoom)

(d)

Fig. 3. Real time detection of a specific face in a noisy image of a crowd.

(a) A rectangular pattern of 1089 pixels. (b) A noisy version of the original 640x480 pixel image. The pattern that was taken from the original

image was sought in this image. The noise is Gaussian with a mean of zero and a standard deviation of 25.5. (c) The result image. The single

similar masked window is marked in white. (d) The occurrence of the pattern in the zoomed in image. The SEQUENTIAL algorithm proceeds

at only 0.019 seconds per frame. Offline running time - time spent on the parameterization of the SEQUENTIAL algorithm (with P-SPRT,

see Section IV-D) was 0.018 seconds. Note that although the Hamming distance is not specific to Gaussian noise as the l2 norm, it is robust

to Gaussian noise. The image is copyright by Ben Schumin and was downloaded from: http://en.wikipedia.org/wiki/Image:
July 4 crowd at Vienna Metro station.jpg. Full size images are available at: http://www.cs.huji.ac.il/∼ofirpele/
hs/all images.zip

Mascarenhas et al. [28], [29] used Wald’s Se-

quential Probability Ratio Test (SPRT) [1] as the

sampling scheme. Two models were suggested for

the random variable of the distance of the sample

k. The first converts the images to binary and then

P (k) is binomially distributed. The second assumes

that the images are Gaussian distributed; hence P (k)
is also Gaussian distributed. The likelihood ratio is

defined as: λ(k) = P (k|images are non-similar)
P (k|images are similar)

. The SPRT

samples both images as long as: A < λ(k) < B.

When λ(k) ≤ A the SPRT stops and returns similar.

When λ(k) ≥ B the SPRT stops and returns non-

similar. Let the bounds on the allowable error rates

be P (false positive) = β, P (false negative) = α.

Wald’s [1] approximation for A and B is A = β

1−α

, B = 1−β

α
.

There are several problems with their method.

Converting images to binary results in a loss of

information. In addition, gray levels are far from

being Gaussian distributed [30]–[33]. Our method

does not assume any prior on the images. Mas-

carenhas et al. assume that all similar images have

exactly the same pairwise small distance, whereas

any two non-similar images have exactly the same

large distance, an assumption that is faulty. Our

framework gets a prior on the distribution of image

distances as input. The classical SPRT can go on

infinitely. There are ways to truncate it [34], but

they are not optimal. By contrast, we designed an

optimal rejection/acceptance sampling scheme with

a restricted number of samples.

B. Hamming Distance in computer vision

Hamming Distance in computer vision [35]–[41]

has usually been applied to a binary image, ordinar-

ily a binary transform of a gray level image. Ionescu

and Ralescu’s crisp version of the “fuzzy Hamming

distance” [39] is an exception, where a threshold

function is applied to decide whether two colors are

similar.

A comprehensive review of local binary features

of images and their usage for 2D Object detection

and recognition can be found in Amit’s book [35].

Amit suggests using the Hough transform [42] to

find arrangements of the local binary features. In

Appendix II we show how the Hough transform

can be used to compute the Hamming distance of

a pattern with all windows of an image. We also

show that the expected time complexity for each

window is O(|A|−E[D]), where |A| is the number

of pixels in the pattern’s set of pixels and D is the

random variable of the Hamming distance between

a random window and a random pattern. For the

pattern matching in Fig. 1, E[D] = 1736.64, |A| =
2197. Thus, the average work for each window

using the Hough transform is 460.36, much higher

than the 19.70 needed using our approach, but much

less than comparing all the corresponding pixels.

6

Bookstein et al. [40] proposed the “Generalized

Hamming Distance” for object recognition on bi-

nary images. The distance extends the Hamming

concept to give partial credit for near misses.

They suggest a dynamic programming algorithm

to compute it. The time complexity is O(|A| +∑
Im1

∑
Im2), where |A| is the number of pixels

and
∑

Im is the number of ones in the binary

image, Im. Our method is sub-linear. Another dis-

advantage is that their method only copes with near

misses in the horizontal direction. We suggest using

the Local Deformations method (see Section III) to

handle near misses in all directions.

C. Sequential Hypothesis Testing

Sequential tests are hypothesis tests in which the

number of samples is not fixed but rather is a

random variable. This area has been an active field

of research in statistics since its initial development

by Wald [1]. A mathematical review can be found

in Siegmund [34].
There have been many applications of sampling

in computer vision to reduce time complexity that

is caused by the size of the image data. However,

most have been applied with a sample of fixed size.

Exceptions are [2]–[4], [28], [29], [43]–[45]. The

sampling schemes that were used are Wald’s SPRT

[1] for simple hypotheses, or a truncated version of

the SPRT (which is not optimal) or estimation of

the thresholds. The Matas and Chum method [3]

for reducing the running time of RANSAC [46] is

an excellent example of the importance of optimal

design of sampling algorithms.
There are several differences between the above

methods and the one presented here. The first is that

in the pattern matching problem, the hypotheses are

composite and not simple. Let D be the random

variable of the Hamming distance between a random

window and a random pattern. Instead of testing

the simple hypothesis D = d1 against the simple

hypothesis D = d2, we need to test the composite

hypothesis D ≤ t against the composite hypothesis

D > t. This problem is solved by using a prior

on the distribution of the Hamming distance and

developing a framework that designs an optimal

sampling algorithm with respect to the prior. The

second difference is that the efficiency of the design

of the optimal sampling algorithm is also taken into

consideration. In addition, we present a fast algo-

rithm that designs a near-optimal sampling scheme.

Finally, as a by-product, our approach returns the

expected running time and the expected error rate.

III. IMAGE HAMMING DISTANCE FAMILY

A distance measure from the Image Hamming

Distance Family is the number of non-similar cor-

responding features between two images, where the

definition of a feature and similarity vary between

members of the family. Below is a formal definition

and several examples.

A. Formal Definition

sim(Im1, Im2, (x, y)m) → {0, 1} is the similar-

ity function, 1 is for non-similar, 0 is for similar,

where Im1, Im2 are images and (x, y)m are the

spatial coordinates of a feature. In all our examples

m is 1 or 2. If m = 1 we are testing for similarity

between pixels. If m = 2 we are testing for

similarity between pairs of pixels (see “Monotonic

Relations” in Section. III-B for an example). We

usually omit m for simplicity.

HammingDistanceA(Im1, Im2) =∑
(x,y)m∈A sim(Im1, Im2, (x, y)m) is the Hamming

distance between the set of spatial coordinates A

applied to the images Im1, Im2. Note that the

spatial coordinates in A do not need to form a

rectangular window in the image. In fact they do

not need to form a connected region.

B. Examples

In all following examples the δ function returns

1 for true and 0 for false.

“Thresholded Absolute Difference”

sim(Im1, Im2, (x, y)) =

δ(|(Im1(x, y)) − (Im2(x, y))| > p)

The distance is similar to Gharavi and Mills’s

PDC distance [47].

“Thresholded l2 norm in L*a*b color space”

sim(Im1, Im2, (x, y)) =

δ(||L*a*b*(Im1(x, y)) − L*a*b*(Im2(x, y))||2 > p)

The L*a*b* color space was shown to be ap-

proximately perceptually uniform [48]. This means

that colors which appear similar to an observer are

located close to each other in the L*a*b* coordinate

system. i.e. by thresholding the Euclidean distance

between the two 〈L∗, a∗, b∗〉 vectors, the function

7

tests whether two color pixels are perceptually sim-

ilar. Note that if the color is more important, we can

multiply the L∗ channel with a coefficient smaller

than one.

“Monotonic Relations”

The features used in this distance are pairs of

pixels. The pair [Im1(x1, y1), Im1(x2, y2)] is con-

sidered similar to [Im2(x1, y1), Im2(x2, y2)] if the

same relation holds between them. For example,

assuming WLOG that Im1(x1, y1) > Im1(x2, y2)
for all pairs of coordinates [(x1, y1), (x2, y2)] in A,

the similarity function can be:
sim(Im1, Im2, [(x1, y1), (x2, y2)]) =

δ(Im2(x1, y1) ≤ Im2(x2, y2))

This distance is invariant to noises that pre-

serve monotonic relations. Thus it is robust to

light changes (see Figs. 4 and 5). The distance is

equivalent to the Hamming distance on the Zabih

and Woodfill census transform [36]. We suggest

that for a specific pattern, a reasonable choice for

A = {[(x1, y1), (x2, y2)]} are pairs of indices that

correspond to edges; i.e. points that are spatially

proximal with large intensity difference. Such pairs

are discriminative because of image smoothness.

“Local Deformations”

Local Deformations is an extension to distance

measures of the Image Hamming Distance Fam-

ily which makes them invariant to local deforma-

tions, e.g. non-rigid deformations (see Fig. 6). Let

sim(Im1, Im2, (x, y)m) be the similarity function

of the original Hamming distance measure. Let ε =
(εx, εy) be a shift. Let (Im)ε(x, y) = Im(x+εx, y+
εy). We denote by Γ the set of allowable shifts. The

Local Deformations variant similarity function of

this Hamming distance measure is:
ŝim(Im1, Im2, (x, y)m) =

minε∈Γ sim(Im1, (Im2)ε, (x, y)m)

Brunelli and Poggio [49] used a similar technique

to make CC more robust.

C. Advantages

Members of the Image Hamming Distance Fam-

ily can be invariant to light changes, small deforma-

tions, etc. Invariance is achieved by “plugging in”

the appropriate similarity function.

Members of the Image Hamming Distance Fam-

ily have an inherent robustness to outlier noise, for

example, out of plane rotation, shading, spectral

reflectance, occlusion, etc. Using the Hamming dis-

tance, outliers up to the image similarity threshold

t are disregarded. Norms such as the Euclidean

add irrelevant information; namely, the difference

between the intensity values of such pixels and the

image.

The Euclidean norm is most suited to deal with

Gaussian noise. The difference between images of

the same object often results from occlusion, ge-

ometrical transforms, light changes and non-rigid

deformations. None of these can be modeled well

with a Gaussian distribution.

Although it might seem that members of the

Image Hamming Distance Family are not robust

because the similarity function of a feature sim is

a threshold function, it is in fact robust because it

is a sum of such functions.

Finally, the simplicity of the Image Hamming

Distance Family allows us to develop a tractable

Bayesian framework that is used to design an opti-

mal rejection/acceptance sampling algorithm. After

we design the sampling algorithm offline, it can

quickly determine whether two images are similar.

IV. SEQUENTIAL FRAMEWORK

We first present the SEQUENTIAL algorithm that

assesses similarity by a sequential test. Then we

evaluate its performance and show how to find the

optimal parameters for the SEQUENTIAL algorithm.

Finally we illustrate how to quickly find near-

optimal parameters for the SEQUENTIAL algorithm.

A. The SEQUENTIAL algorithm

The SEQUENTIAL algorithm, Alg. 1, uses a de-

cision matrix M . M [k, n] is the decision after

sampling k non-similar corresponding features out

of a total of n sampled corresponding features. The

decision can be NS=return non-similar, S=return

similar or C=continue sampling. The last column

|A| cannot be C as the test has to end there, see the

diagram in Fig. 8. We random sample uniformly as

we do not want to make any assumptions about the

noise. Note that as we sample without replacement,

the algorithm always returns similar or non-similar

8

(a)

(b) (c) (d)

Fig. 4. Monotonic Relations Hamming distance is robust to light changes and small out of plane and in plane rotations.

(a) A non-rectangular pattern of 7569 pixels (631 edge pixel pairs). Pixels not belonging to the mask are in black. (b) A 640x480 pixel image

in which the pattern was sought. (c) The result image. All similar masked windows are marked in white. (d) The two found occurrences of

the pattern in the image. Pixels not belonging to the mask are in black. The SEQUENTIAL algorithm proceeds at only 0.021 seconds. Offline

running time - time spent on the parameterization of the SEQUENTIAL algorithm (with P-SPRT, see Section IV-D) and finding the edge

pixels was 0.009 seconds. Note the substantial differences in shading between the pattern and its two occurrences in the image. Also note

the out of plane (mostly the head) and in plane rotations of the maras (the animals in the picture). Using other distances such as CC, NCC,

l2, l1 yielded poor results. In particular the closest window using CC, l2, l1 was far from the maras. Using NCC the closest window was

near the right mara but it found many false positives before finding the left mara. The pairs that were used are pairs of pixels belonging to

edges, i.e. pixels that have a neighbor pixel, where the absolute intensity value difference is greater than 80. Two pixels, (x2, y2), (x1, y1)
are considered neighbors if their l∞ distance: max(|x1 − x2|, |y1 − y2|) is smaller or equal to 2. There are 631 such pairs in the pattern.

Similar windows are windows where at least 25% of their pairs exhibit the same relation as in the pattern. Full size images are available at:

http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip

(a)

(b) (c) (d)

(a-zoom)

Fig. 5. Monotonic Relations Hamming distance is robust to light changes and occlusion.

(a) A non-rectangular pattern of 2270 pixels (9409 edge pixel pairs). Pixels not belonging to the mask are in black. (b) A 640x480 pixel

image in which the pattern was sought. (c) The result image. The single similar masked window is marked in white. (d) The occurrences

of the pattern in the image zoomed in. Pixels not belonging to the mask are in black. The SEQUENTIAL algorithm proceeds at only 0.037

seconds. Offline running time - time spent on the parameterization of the SEQUENTIAL algorithm (with P-SPRT, see Section IV-D) and

finding the edge pixels was 1.219 seconds. Note the considerable differences in the light between the pattern and the occurrences of the

pattern in the image, especially the specular reflection in the pattern. Also note the difference in the spotting of the frogs and the difference

in the pose of the legs (the top right leg is not visible in the image). Using other distances such as CC, NCC, l2, l1 yielded poor results.

In particular the closest window using CC, NCC, l2, l1 was far from the frog. The pairs that were used are pairs of pixels belonging to

edges, i.e. pixels that have a neighbor pixel, where the absolute intensity value difference is greater than 80. Two pixels, (x2, y2), (x1, y1)
are considered neighbors if their l∞ distance: max(|x1 − x2|, |y1 − y2|) is smaller or equal to 5. There are 9409 such pairs in the pattern.

Similar windows are windows where at least 25% of their pairs exhibit the same relation as in the pattern. Full size images are available at:

http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip

9

(a)

(b) (c)

(a-zoom)

(d)

Fig. 6. Local Deformations is robust to non-rigid deformations.

(a) A non-rectangular pattern (snake skin) of 714 pixels. Pixels not belonging to the mask are in black. (b) A 640x480 pixel image in which

the pattern was sought. (c) The result image. All similar masked (adjacent) windows are marked in white. (d) Most similar occurrence of

the pattern in the zoomed-in image. Pixels not belonging to the mask are in black. The SEQUENTIAL algorithm proceeds at only 0.064

seconds. Offline running time - time spent on the parameterization of the SEQUENTIAL algorithm (with P-SPRT, see Section IV-D) was

0.007 seconds. Using other distances such as CC, NCC, l2, l1 yielded poor results. In particular the closest window using CC, NCC, l2, l1
was far from the snake skin. SIFT descriptor matching [13], also yielded poor results (see Fig. 7). The distance that was used is the Local

Deformations variant of the Thresholded Absolute Difference distance with a threshold of 20. The group of shifts is Γ = {±1,±1}, i.e.

8-neighbors. Similar windows are windows where at least 5% of their pixels (or neighbors) have an l1 distance smaller or equal to 20. Full

size images are available at: http://www.cs.huji.ac.il/∼ofirpele/hs/all images.zip

(SIFT-1) (SIFT-5)

Fig. 7. SIFT descriptor matching [13] on the pattern matching in Fig. 6. The pattern in the left part of each figure is zoomed. (SIFT-1)

The correspondences between the eleven SIFT descriptors in the pattern and the most similar SIFT descriptors in the image. Note that all

correspondences are false. (SIFT-5) The correspondences between the eleven SIFT descriptors in the pattern and the five most similar SIFT

descriptors in the image (each one to five correspondence groups has a different symbol). Note that only one correspondence is true. It is

the fifth most similar correspondence of the descriptor and is marked with a circle.

after at most |A| samples. Bear in mind that it is

possible to add more kinds of decisions1.

The framework computes the optimal decision

matrix offline. Then, the algorithm can quickly de-

cide whether a pattern and a window are similar, i.e.

if their Hamming distance is smaller or equal to the

1e.g. the computation of the exact distance that reduces the running

time overhead of the checks on the decision matrix entries (the ifs

in the algorithm). However, in practice this did not improve results.

image similarity threshold, t. Note that the optimal

decision matrix does not have to be computed for

each new pattern. It should be computed once for

a given prior on the distribution of the distances,

desired error bounds and the size of patterns. For

example, if the task is finding 30×30 patterns, then

it is enough to compute the decision matrix once.

10

C C C C C C C CC C

NS SC C C C C CNS NS C S

NS C C C C CNS CC S S

NS C C C C CNS CC S

NS C C C CNS CC S

NS C C CNS CNS S

C C SNS NS NS

NS NS NS

2119181711 12 13 14 15 16 200 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

1
0

SC C C C C

SC C C CC C

SC C C C C C C CC C

S

NS C C C

CC C C

C

n = #corresponding features sampled

k
=

#
n

o
n

-s
im

il
ar

co
rr

es
p

o
n

d
in

g
fe

at
u

re
s

sa
m

p
le

d

Fig. 8. Graphical representation of the decision matrix M which is used in the SEQUENTIAL algorithm (Alg. 1). In each step the algorithm

samples corresponding features and goes right if they are similar or right and up if they are non-similar. If the algorithm touches a red

NS point, it returns non-similar, with the risk of a false negative error. If the algorithm touches a green S point, it returns similar, with

the risk of a false positive error. In this example, the size of the pattern, |A| is 21 and the threshold for image similarity, t is 9. Note

that the SEQUENTIAL algorithm parameterized with this decision matrix requires at least three non-similar corresponding features to return

non-similar and at least ten similar corresponding features to return similar.

Algorithm 1 SEQUENTIALM (pattern, window, A)

k ⇐ 0
for n = 0 to |A| do

if M [k, n] = NS then

return non-similar

if M [k, n] = S then

return similar

random sample uniformly and without replace-

ment (x, y)m from A

\\ add 1 if features are non-similar

k ⇐ k + sim(pattern, window, (x, y)m)

B. Evaluating performance of a fixed decision ma-

trix

In order to find the optimal decision matrix for

the SEQUENTIAL algorithm, we first evaluate the

performance of the algorithm for a fixed decision

matrix. The performance of the algorithm is defined

by its expected number of samples and its error

probabilities:

EM(#samples) = Expected number of

samples (proportional to running time).

PM(false negative) = Probability of re-

turning non-similar on similar windows.

PM(false positive) = Probability of return-

ing similar on non-similar windows.

We denote by ek,n the event of sampling k non-

similar corresponding features out of a total of

n sampled corresponding features, in any specific

order (for example, where the non-similar corre-

sponding features are sampled first). Note that all

orders of sampling have the same probability. As

we sample without replacement we get:

P (ek,n|D = d) =

(∏k−1
i=0

d−i
|A|−i

)(∏n−k−1
i=0

|A|−d−i

|A|−k−i

)
if (d ≥ k)&

(|A| − d ≥ n − k)

0 otherwise

(1)

The naive computation of P (ek,n|D = d) for each

k, n and d runs in O(|A|4). In order to reduce

time complexity to O(|A|3), we use a dynamic

11

programming algorithm to compute the intermediate

sums, ΩS[k, n] and ΩNS [k, n] (see Eq. 2) for each

k and n where P (D = d) is the prior on the

distribution of the Hamming distance (see Section

V).

ΩS[k, n] =
t∑

d=0

P (ek,n|D = d)P (D = d)

ΩNS [k, n] =
|A|∑

d=t+1

P (ek,n|D = d)P (D = d)

(2)

In each step the SEQUENTIAL algorithm sam-

ples spatial coordinates of a feature (x, y)m and

adds sim(pattern, window, (x, y)m) to the sample

dissimilarity sum k. Define a specific run of the

algorithm as a sequence of random variables:

s1, s2, . . . where sn ∈ {0, 1} is the result of

sim(pattern, window, (x, y)m) in iteration number

n. Let ΨM [k, n] be the number of different se-

quences of s1, s2, . . . , sn with k ones and n − k

zeros which will not cause the SEQUENTIAL al-

gorithm that uses the decision matrix M to stop

at an iteration smaller than n. Graphically (see

Fig. 8) ΨM [k, n] is the number of paths from the

point (0, 0) to the point (k, n) that do not touch a

stopping point (S,NS). Alg. 2 computes ΨM with

time complexity of O(|A|2).

Algorithm 2 computeΨM

Ψ[0...|A|, 0...|A|] ⇐ 0
k ⇐ 0 n ⇐ 0
while M [k, n] = C do

Ψ[k, n] ⇐ 1
n ⇐ n + 1

Ψ[k, n] ⇐ 1
for n = 1 to |A| do

for k = n to 1 do

if M [k, n − 1] = C then

Ψ[k, n] ⇐ Ψ[k, n] + Ψ[k, n − 1]
if M [k − 1, n − 1] = C then

Ψ[k, n] ⇐ Ψ[k, n] + Ψ[k − 1, n − 1]
return Ψ

Now we can compute (see full derivation in

Appendix III) the error probabilities and expected

number of samples explicitly using a prior on the

distribution of the Hamming distance , P (D = d)
(see Section V):

PM(false negative) =

∑
(k,n):

M(k,n)=NS

Ψ[k, n]ΩS[k, n]

P (D ≤ t)

(3)

PM(false positive) =

∑
(k,n):

M(k,n)=S

Ψ[k, n]ΩNS [k, n]

P (D > t)
(4)

EM (#samples) = (5)
∑

(k,n):
M(k,n)∈{S,NS}

Ψ[k, n](ΩS [k, n] + ΩNS [k, n])n

(6)

C. Finding the optimal decision matrix

Our goal is to find the decision matrix, M that

minimizes expected number of samples given allow-

able bounds on the error probabilities, α, β:

arg min
M

EM(#samples)

s.t :

PM(false negative) ≤ α

PM(false positive) ≤ β

(7)

Instead of solving Eq. 7 directly we assign two

new weights: w0 for a false negative error event and

w1 for a false positive error event, i.e. we now look

for the decision matrix, M that solves Eq. 8:

arg min
M

loss(M, w0, w1) s.t :

loss(M, w0, w1) = EM (#samples) +

PM (false positive)P (D > t)w1+

PM (false negative)P (D ≤ t)w0

(8)

Following the solution of Eq. 8 we show how

to use it to solve Eq. 7. We solve Eq. 8 using the

backward induction technique [50]. The backward

induction algorithm, Alg. 3 is based on the principle

that the best decision in each step is the one with

the smallest expected addition to the loss function.

In Appendix IV we show how to explicitly compute

the expected additive loss of each decision in each

step.

If we find error weights, w0, w1 such that the

decision matrix, M that solves Eq. 8 has er-

ror probabilities, PM(false negative) = α and

12

Algorithm 3 backward(w0, w1)

for k = 0 to |A| do

M [k, |A|] ⇐ arg mindecision∈{NS,S}

E[addLoss(decision)|k, |A|]
for n = |A| − 1 to 0 do

for k = 0 to n do

M [k, n] ⇐ arg mindecision∈{NS,S,C}

E[addLoss(decision)|k, n]
return M

PM(false positive) = β, then we have also found

the solution to the original minimization problem

Eq. 7. See Appendix V, Theorem 1 for the proof.

In order to find the error weights, w0, w1 which

yield a solution with errors as close as possible to

the requested errors (α for false negative and β

for false positive) we perform a search (Alg. 4).

The search can be done on the 2D rectangle w0 ∈
[0, |A|

αP (D≤t)
] , w1 ∈ [0, |A|

βP (D>t)
] as it is guaranteed

that there is a solution in this rectangle with small

enough errors (see Appendix V, Theorem 2). Note

that increasing the error weights w0 and w1 can only

increase the expected number of samples; thus there

is no need to search beyond this rectangle.

Alg. 4 returns a decision matrix with minimum

expected number of samples compared to all other

decision matrices with fewer or equal error rates

(see Appendix V, Theorem 1). However, as the

search is on two parameters, the search for the

requested errors can fail. In practice, the search

always returns errors which are very close to the

requested errors. In addition, if we restrict one of

the errors to be zero, the search is on one parameter,

hence a binary search returns a solution with errors

as close as possible to the requested errors. If Alg.

4 fails to return a decision matrix with errors close

to the requested errors, an exhaustive search of the

error weights, w0, w1 with high resolution can be

performed.

D. Finding a near-optimal decision matrix using P-

SPRT

Above, we showed how to find the optimal de-

cision matrix. The search is done offline for each

combination of desired error bound, size of pattern

and prior and not for each sought pattern. However,

this process is time consuming. In this section we

describe an algorithm that quickly finds a near-

optimal decision matrix.

Algorithm 4 searchOpt(α, β)

minw0 ⇐ 0 maxw0 ⇐
|A|

αP (D≤t)

minw1 ⇐ 0 maxw1 ⇐
|A|

βP (D>t)
repeat

midw0 ⇐
minw0 +maxw0

2

midw1 ⇐
minw1 +maxw1

2
M ⇐ backward(midw0, midw1)

computeΨM

PM(false negative) ⇐
1

P (D≤t)

∑
(k,n):

M(k,n)=NS

ΨM [k, n]ΩS[k, n]

PM(false positive) ⇐
1

P (D>t)

∑
(k,n):

M(k,n)=S

ΨM [k, n]ΩNS [k, n]

if PM(false negative) > α then

minw0 ⇐ midw0

else

maxw0 ⇐ midw0

if PM(false positive) > β then

minw1 ⇐ midw1

else

maxw1 ⇐ midw1

until |PM (false negative)−α|+ |PM (false positive)−β| < ε

return M

Our goal is again to find the decision matrix that

minimizes the expected running time, given bounds

on the error probabilities (see Eq. 7). We present

a near-optimal solution based on Wald’s Sequential

Probability Ratio Test (SPRT) [1]. We call this test

the “Prior based Sequential Probability Ratio Test”,

P-SPRT.

The classical SPRT [1] is a test between two

simple hypotheses, i.e. hypotheses that specify the

population distribution completely. For example, let

D be the random variable of the Hamming distance

between a random window and a random pattern.

A test of simple hypotheses is D = d1 against

D = d2. However, we need to test the composite

hypothesis D ≤ t against the composite hypothesis

D > t. This problem is solved by using a prior on

the distribution of the Hamming distance, D.

We now define the likelihood ratio. We denote by

ek,n the event of sampling k non-similar correspond-

ing features out of a total of n sampled correspond-

ing features, in any specific order (for example,

13

where the non-similar corresponding features are

sampled first). Note that all orders of sampling have

the same probability. The likelihood ratio, λ(ek,n)
is (see full derivation in Appendix VI):

λ(ek,n) =

(
P (D ≤ t)

P (D > t)

)

∑|A|

d=t+1 P (ek,n, D = d)
∑t

d=0 P (ek,n, D = d)

(9)

The P-SPRT samples both images as long as:

A < λ(ek,n) < B. When λ(ek,n) ≤ A the P-SPRT

stops and returns similar. When λ(ek,n) ≥ B the P-

SPRT stops and returns non-similar. Let the bounds

on the allowable error rates be P (false positive) =
β, P (false negative) = α. Wald’s [1] approximation

for A and B is A = β

1−α
and B = 1−β

α
.

The near-optimal character of the SPRT was

first proved by Wald and Wolfowitz [51]. For an

accessible proof see Lehmann [52]. The proof is

for simple hypotheses. However, replacing the like-

lihood ratio in the Lehmann proof with the prior

based likelihood ratio (see Eq. 9) shows that the

P-SPRT is a near-optimal solution to Eq. 7.

The SPRT and P-SPRT are near-optimal and

not optimal, because of the “overshoot” effect, i.e.

because the sampling is of discrete quantities, and

finding a P-SPRT with the desired error rates may

not be possible. In our experiments Wald’s approxi-

mations gave slightly lower error rates and a slightly

larger expected sample size. An improvement can be

made by searching A and B for an error closer to the

desired error bound. This can be done with O(|A|2)
time complexity and O(|A|) memory complexity for

each step of the search. However, we have no bound

on the number of steps that needs to be made in the

search. In practice, Wald approximations give good

results.

The search for the optimal decision matrix is

equivalent to a search for two monotonic increasing

lines. First is the line of acceptance (see Fig. 8

green S line); i.e. if the SEQUENTIAL algorithm

touches this line it returns similar. Second is the

line of rejection (see Fig. 8 red NS line); i.e. if the

SEQUENTIAL algorithm touches this line it returns

non-similar. Note that unlike the optimal solution,

the P-SPRT solution cannot contain more than two

kinds of complementary decisions (in our case -

returning similar or returning non-similar).

We now describe an algorithm (Alg. 5) that

computes the line of rejection in O(|A|2) time

complexity and O(|A|) memory complexity. The

computation of the line of acceptance is similar.

For each number of samples, n, we test whether

the height of the point of rejection can stay the

same as it was for the last stage, or whether it

should increase by one. For this purpose we need

to compare the likelihood ratio with the threshold

B. In order to compute the likelihood ratio fast,

we keep a cache of the probability of being in

the next rejection point and that the true distance

is equal to d. The cache is stored in the array

P (ek,n, D = d) for each distance d. Thus its size

is |A|+ 1. In Appendix VI we describe the explicit

derivation of the cache initialization and update

rules. For numerical stability, the cache in Alg. 5

can be normalized. In our implementation we store

P (D = d|ek,n) instead of P (D = d, ek,n).

Algorithm 5 computeRejectionLine(|A|, α, β, P [D])

B ⇐ 1−β

α

\\ Never reject after 0 samples

rejectionLine[0] ⇐ 1
\\ Try (1,1) as first rejection point

k ⇐ 1
for d = 0 to |A| do

P (ek,n, D = d) ⇐ d
|A|

P (D = d)

for n = 1 to |A| do

likelihoodRatio ⇐(
P (D≤t)
P (D>t)

) (∑|A|

d=t+1
P (ek,n,D=d)∑t

d=0
P (ek,n,D=d)

)

if likelihoodRatio > B then

for d = 0 to |A| do

P (ek,n, D = d) ⇐
P (ek,n, D = d)P (next 0|ek,n, D = d)

else

for d = 0 to |A| do

P (ek,n, D = d) ⇐
P (ek,n, D = d)P (next 1|ek,n, D = d)

k ⇐ k + 1
rejectionLine[n] ⇐ k

return rejectionLine

E. Implementation note

The fastest version of our algorithm is a version

of the SEQUENTIAL algorithm that does not check

its position in a decision matrix. Instead, it only

checks whether the number of non-similar features

sampled so far is equal to the minimum row number

14

in the appropriate column in the decision matrix

that is equal to NS. In other words, we simply

check whether we have only touch the upper re-

jection line (see Fig. 8 red line of NS). If we

finish sampling all the corresponding features and

we have not touched the upper line, the window is

unquestionably similar. In fact, the exact Hamming

distance is automatically obtained in such cases.

There is a negligible increase in the average number

of samples, as we do not stop on similar windows

as soon as they are definitely similar. However, the

event of similarity is so rare that the reduction in

the running time of processing each sample, reduces

the total running time.

V. PRIOR

The proposed frameworks are Bayesian, i.e. they

use a prior on the distribution of the distances

between two natural images, P (D = d). The prior

can be estimated, offline, by computing the exact

distance between various patterns and windows.

Another option is to use a non-informative prior,

i.e. a uniform prior in which the probability for each

possible distance is equal. Fig. 9 and Fig. 10 show

that the true distribution of distances is not uniform.

Nevertheless, Fig. 17 shows that even though we

use an incorrect (uniform) prior to parameterize

the algorithm, we obtain good results. It should

be stressed that other fast methods assume certain

characteristics of images. For example, Hel-Or and

Hel-Or [23] assume that the first Walsh-Hadamard

basis projections (according to their specific order)

contain enough information to discriminate most

images. Mascarenhas et al. [28], [29] assume that

images are binary or Gaussian distributed. In ad-

dition, they assume that all similar images have

exactly the same pairwise small distance, while all

two non-similar images have exactly the same large

distance. By explicitly using a prior our method is

more general.

For each distance measure and pattern size, we

estimated the prior using a database of 480 natural

images. First, outlier noise was added to each image.

To simulate such noise we chose a different image at

random from the test database and replaced between

0% to 50% (the value was chosen uniformly),

with replacement, of the original image pixels with

pixels from the different image in the same relative

position.

For each image we computed the set of distances

between two patterns (each a not too smooth ran-

domly chosen 2D window from the image before the

addition of the noise) and a sliding window over the

noisy image. The prior that was used is a mixture

model of this histogram and a uniform prior (with

a very small probability for uniformity). We used a

mixture model as we had almost no observations of

small distances.

Fig. 9 shows that priors of the same Hamming

distance for different pattern sizes are similar. Fig.

10 shows that as the distance measure becomes

more invariant, the distances are smaller.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance
P

(D
≤

d
)

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

(a) (b)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

(c) (d)

Fig. 9. Estimated cumulative PDFs of priors of Thresholded Absolute

Difference Hamming distance with pixel similarity threshold equal 20

(pixels with intensity difference greater than 20 are considered non-

similar) for patterns size: (a) 15 × 15 (b) 30 × 30 (c) 45 × 45 (d)

60 × 60. Note that the shapes of the priors are similar.

VI. EXPERIMENTAL RESULTS

The proposed frameworks were tested on real

images and patterns. The results show that the

SEQUENTIAL algorithm is fast and accurate, with

or without noise.

Recall that there are two kinds of errors: false

negative (the event of returning non-similar on a

similar window), and false positive (the event of

returning similar on a non-similar window). A win-

dow is defined as similar to the pattern if and only if

the Hamming distance between the window and the

pattern is smaller or equal to the image similarity

threshold, t. Note that in all the experiments (Figs.

1, 3, 4, 5 and 6) the similar windows are also

visually similar to the pattern.

15

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

(a) (b)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

d=Hamming Distance

P
(D

≤
d
)

(c) (d)

Fig. 10. Estimated cumulative PDFs priors of Thresholded l2 norm

in L*a*b color space Hamming distance for 60 × 60 patterns, with

pixel similarity threshold equal: (a) 100 (b) 300 (c) 500 (d) 1000.

Note that as the distance measure becomes more invariant (with a

higher pixel similarity threshold), the distances are smaller.

We set the false positive error bound to zero in all

experiments. Setting it to a higher value decreases

the running time mostly for similar windows. As

it is assumed that similarity between pattern and

image is a rare event, the speedup caused by a

higher bound on the false positive is negligible. We

set the false negative error bound to 0.1%; i.e. out

of 1000 similar windows, only one is expected to be

classified as non-similar. Note that this small error

rate enables the large reduction in the running time.

A typical pattern matching task is shown in Fig. 1.

A non-rectangular pattern of 2197 pixels was sought

in a sequence of 14, 640x480 pixel frames. We

searched for windows with a Thresholded Absolute

Difference Hamming distance lower or equal to

0.4× 2197, i.e. less than 40% outlier noise such as

out of plane rotation, shading, spectral reflectance,

occlusion, etc. Two pixels were considered non-

similar if their absolute intensity difference was

greater than 20, i.e. p = 20. The SEQUENTIAL

algorithm was parameterized with P-SPRT (see Sec-

tion IV-D), a uniform prior and false negative error

bound of 0.1%. Using the parameterized SEQUEN-

TIAL algorithm, the pattern is found in 9 out of 11

frames in which it was present, with an average of

only 19.70 pixels examined per window instead of

2197 needed for the exact distance computation. On

a Pentium 4 3GHz processor, detection of the pat-

tern proceeds at 0.022 seconds per frame. The false

positive error rate was 0%. The false negative error

rate was 0.28%. Note that due to image smoothness,

there are several similar windows in each frame

near the sought object. The errors were mostly due

to missing one of these windows. Although we

use an incorrect (uniform) prior to parameterize

the algorithm, we obtain excellent results. Other

distances such as cross correlation (CC), normalized

cross correlation (NCC), l1, l2, yielded poor results

even though they were computed exactly (the com-

putation took much longer).

More results are given in Figs. 3, 4, 5 and 6. All

of these results are on 640x480 pixel images and use

the SEQUENTIAL algorithm that was parameterized

with P-SPRT (see Section IV-D), a uniform prior

and false negative error bound of 0.1%. These

results are also summarized in Table II. Comparison

of the results using the estimated prior and the

uniform prior is given in Fig. 11.

2 3 4 5 6
0

10

20

30

40

50

Fig.av
g
(#

fe
at

u
re

s
sa

m
p
le

d
)

2 3 4 5 6
0.0%

0.4%

0.8%

1.2%

1.6%

Fig.

fa
ls

e
n
eg

at
iv

e

(a) (b)

estimated prior uniform prior

Fig. 11. Comparing optimal parameterization of the SEQUENTIAL

algorithm with the estimated prior against optimal parameterization

with a uniform prior in all figure experiments. In (a) the average

number of features sampled per window was slightly smaller with

the uniform prior. However, in (b) the error rate was higher with the

uniform prior. Although higher, the error rate was still usually small.

Thus, the performance using an incorrect (uniform) prior is still quite

good.

Note that the parameters (pixel similarity thresh-

old, p and relative image similarity threshold, t
|A|

)

are the same for each kind of distance. These param-

eters were chosen as they yield good performance

for images experimentally. They do not necessarily

give the best results. For example, on Fig. 3, using

Thresholded Absolute Difference Hamming distance

with pixel similarity threshold, p equal 100 and the

image similarity threshold, t equal 0, the SEQUEN-

TIAL algorithm ran only 0.013 seconds. The average

number of pixels examined per window was only

2.85 instead of 1089 needed for the exact distance

computation. The false negative error rate was 0%.

16

Another parameter that can be tuned is which pairs

of pixels should set A contain when we use the

Monotonic Relations Hamming distance. In all the

experiments that use this distance, the pairs that

were used are pairs of pixels belonging to edges, i.e.

pixels that have a neighbor pixel, where the absolute

intensity value difference is greater than 80. In all

the experiments (except the experiment in Fig. 5)

two pixels are considered neighbors if they are in

the same 5 × 5 neighborhood. In the experiment

in Fig. 5, two pixels are considered neighbors if

they are in the same 11× 11 neighborhood because

pairs in the 5 × 5 neighborhood did not describe

the pattern well. Thus, all parameters can be tuned

for a specific pattern matching task. However, our

work shows that for each of the proposed members

of the Image Hamming Distance Family there is a

standard set of parameters that usually yield good

performance.

To illustrate the performance of Bayesian sequen-

tial sampling, we also conducted extensive random

tests. The random tests were conducted mainly to

illustrate the characteristics of the SEQUENTIAL

algorithm and to compare its parameterization meth-

ods.

A test database (different from the training

database that was used to estimate priors) of 480

natural images was used. We consider similar win-

dows as windows with a Hamming distance smaller

or equal to 50% of their size; e.g. a 60×60 window

is considered similar to a 60 × 60 pattern if the

Hamming distance between them is smaller/equal

to 1800.

For comparison we also developed an optimal

fixed size sampling algorithm, FIXED SIZE (see Ap-

pendix I). Each test of the FIXED SIZE algorithm

or the SEQUENTIAL algorithm in Figs. 15, 16 and

17 was conducted using a different combination of

members of the Image Hamming Distance Fam-

ily and different sizes of patterns. For each such

combination a prior was estimated (see Section

V). In order to parameterize the FIXED SIZE and

the SEQUENTIAL algorithms, we used either the

estimated prior or a uniform prior.

Each test of the parameterized algorithms was

conducted by performing 9600 iterations (20 times

for each image) as follows:

• A random not too smooth 2D window pattern

was chosen from one of the images, Im, from

the test database.

• Outlier noise was added to the image, Im. To

simulate such noise we chose a different image

at random from the test database and replaced

between 0% to 50% (the value was chosen

uniformly), with replacement, of the original

image (i.e. Im) pixels with pixels from the

different image in the same relative position.

• The pattern was sought for in the noisy image,

using the parameterized SEQUENTIAL algo-

rithm or the parameterized FIXED SIZE algo-

rithm.

In each test the false negative error rate and the av-

erage number of pixels examined per window were

calculated. Overall, the results can be summarized

as follows:

1) Even with very noisy images the SEQUEN-

TIAL algorithm is very fast and accurate.

For example, the average number of pixels

sampled for pattern matching on 60 × 60
patterns with additive noise of up to 20 (each

pixel gray value change can range from -20 to

+20) and outlier noise of up to 50% was only

92.9, instead of 3600. The false negative error

rate was only 0.09% (as mentioned above,

the false positive error rate bound was always

0%).

2) The SEQUENTIAL algorithm is much faster

than the FIXED SIZE algorithm, with the same

error rates. In addition, usually the SEQUEN-

TIAL algorithm is less sensitive to incorrect

priors (see Fig. 15).

3) The performance of the near-optimal solution,

P-SPRT, is good (see Fig. 16).

4) The average number of features examined

per window is slightly smaller with the uni-

form prior. However, the error rate is higher

(although still small). Thus, there is not a

substantial difference in performance when

using an incorrect (uniform) prior (see Figs.

11,17).

To further illustrate the robustness of the method

we conducted another kind of experiment. Five im-

age transformations were evaluated: small rotation;

small scale change; image blur; JPEG compression;

and illumination. The names of the datasets used

are rotation; scale; blur; jpeg; and light respectively.

The blur, jpeg and light datasets were from the

Mikolajczyk and Schmid paper [14]. Our method is

robust to small but not large geometrical transforms.

17

TABLE II

SUMMARY OF FIGURE RESULTS

Fig. (a) (b) (c) (d) (e) (f) (g)

Distance |A| = Max False Average Offline Online

type Set Diff Negative Features Time Time

Size (%) (%) Sampled (seconds) (seconds)

1 20TAD(1) 2197 40 0.28 19.70 0.067 0.022

3 20TAD(1) 1089 40 1.68 12.07 0.018 0.019

4 MR(2) 631 25 0.30 35.28 0.009 0.021

5 MR(2) 9409 25 0.45 39.98 1.219 0.037

6 LD-20TAD(3) 714 5 0.20 16.98 0.007 0.064

(a) Distance types:

1) 20TAD - Thresholded Absolute Difference, with threshold(p) of 20.

2) MR - Monotonic Relations.

3) LD-20TAD - Local Deformations variant of Thresholded Absolute Difference, with threshold(p) of 20.

(b) Size of the set of spatial coordinates of features, i.e. number of pixels in Thresholded Absolute Difference distances, or number of pairs

of pixels in Monotonic Relations Hamming distance.

(c) Maximum percentage of pixels, or pairs of pixels, that can be different in similar windows. For example, in Fig. 1, similar windows

Hamming distance is less than (40
100

)2197 = 878.

(d) The false negative error rate (percentage of similar windows that the algorithm returned as non-similar). For example, in Fig. 1, on

average out of 10000 similar windows, 28 were missed. Note that due to image smoothness, there were several similar windows in each

image near each sought object. The errors were mostly due to missing one of these windows.

(e) Average number of pixels sampled in Thresholded Absolute Difference distances, or average number of pairs of pixels sampled in

Monotonic Relations Hamming distances.

(f) Running time of the parameterization of the SEQUENTIAL algorithm. In addition, in Monotonic Relations distances it also includes the

running time of finding the pairs of pixels that belong to edges.

(g) Running time of pattern detection using the SEQUENTIAL algorithm, where each image is 640x480 pixels in size.

Thus, it did not perform well on the geometrical

changes datasets from the Mikolajczyk and Schmid

paper [14]. We created two datasets with small

geometrical transforms: a scale dataset that contains

22 images with an artificial scale change from 0.9

to 1.1 in jumps of 0.01; and a rotation dataset

that contains 22 images with an artificial in-plane

rotation from -10◦ to 10◦ in jumps of 1◦ (see for

example Fig. 14).

For each collection, ten rectangular patterns were

chosen from the image with no transformation. The

pairs that were used in the set of each pattern were

pairs of pixels belonging to edges, i.e. pixels that

had a neighbor pixel, where the absolute intensity

value difference was greater than 80. Two pixels,

(x2, y2), (x1, y1) are considered neighbors if their

l∞ distance: max(|x1 − x2|, |y1 − y2|) is smaller

or equal to 2. We searched for windows with a

Monotonic Relations Hamming distance lower or

equal to 0.25 × |A|. In each image we considered

only the window with the minimum distance as

similar, because we knew that the pattern occurred

only once in the image. The SEQUENTIAL algorithm

was parameterized using P-SPRT (see Section IV-

D) with input of a uniform prior and a false negative

error bound of 0.1%. We repeated each search of a

pattern in an image 1000 times.

We defined two new notions of performance: miss

detection error rate and false detection error rate.

As we know the true homographies between the

images, we know where the pattern pixels are in

the transformed image. We denote a correct match

as one that covers at least 80% of the transformed

pattern pixels. A false match is one that covers

less than 80% of the transformed pattern pixels.

Note that there is also an event of no detection

at all if the SEQUENTIAL algorithm does not find

any window with a Monotonic Relations Hamming

distance lower or equal to 0.25 × |A|. The miss

detection error rate is the percentage of searches

18

of a pattern in an image that does not yield a

correct match. The false detection error rate is the

percentage of searches of a pattern in an image

that yields a false match. Note that in the random

tests that illustrated the performance of the Bayesian

sequential sampling, it was not possible to use these

error notions. In these tests we used a large number

of patterns that were chosen randomly, thus we

could not guarantee that the patterns did not occur

more than once in these test images.

In the light and jpeg tests, the performance was

perfect; i.e. 0% miss detection rate and 0% false

detection rate. In the blur test, only one pattern

was not found correctly in the most blurred image

(see Fig. 14). The miss detection rate and false

detection rate for this specific case was 99.6%. In all

other patterns and images in the blur test, the miss

detection rate and false detection rate was 0%. In

the scale test, there was only one pattern with false

detection in two images with scale 0.9 and 0.91. In

the rotation test, there was only one pattern with

false detection in images with rotation smaller than

-2◦ or larger than +2◦. Miss detection rates in the

scale and rotation tests (see Fig. 12) were dependent

on the pattern. If the scale change or rotation was

not too big, the pattern was found correctly.

The average number of pair of pixels that the

SEQUENTIAL algorithm sampled per window was

not larger than 45 in all of the above tests. The

average was 29.38 and the standard deviation was

4.22. In general, the number of samples decreased

with image smoothness; e.g. it decreased with image

blur, lack of light and JPEG compression (see

for example Fig. 13). Note that the SEQUENTIAL

algorithm using the Monotonic Relations Hamming

distance stops as soon as there are not enough edge

pairs of pixels in the same spatial position as in

the pattern. Smoothness decreases the number of

edge pairs of pixels; thus it decreases the average

number of samples that the SEQUENTIAL algorithm

samples.

Finally, Table III compares the running time of

the two kinds of offline phases. i.e. it compares the

running time of finding the optimal decision matrix

(see Section IV-C) with the running time of find-

ing the P-SPRT (near-optimal) decision matrix (see

Section IV-D). Thus finding the P-SPRT decision

matrix is an order of magnitude faster. All runs were

conducted on a Pentium 4 3GHz processor.

Miss Detection Rate 100% <1% 0%

scale

p
at

te
rn

n
u

m
b

er

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

1

2

3

4

5

6

7

8

9

10

0.4

0.2

(a)

rotation

p
at

te
rn

n
u

m
b

er

-10◦ -8◦ -6◦ -4◦ -2◦ 0◦ 2◦ 4◦ 6◦ 8◦ 10◦

1

2

3

4

5

6

7

8

9

10

0.5

0.3

(b)

Fig. 12. (a) Miss detection error rates on the scale test. (b) Miss

detection error rates on the rotation test.

1
2
3
4
5
6
7
8
9
10

JPEG compression level

#
av

g
sa

m
p

le
s

0 1 2 3 4 5
5

10

15

20

25

30

35

Fig. 13. Average number of pairs of pixels that the SEQUENTIAL

algorithm sampled per window in the jpeg test.

VII. CONCLUSIONS

This paper introduced the “Image Hamming

Distance Family”. We also presented a Bayesian

framework for sequential hypothesis testing on fi-

nite populations that designs optimal sampling al-

gorithms. Finally, we detailed a framework that

quickly designs a near-optimal sampling algorithm.

We showed that the combination of an optimal or

a near-optimal sampling algorithm and members of

the Image Hamming Distance Family gives a robust,

real time, pattern matching method.

Extensive random tests show that the SEQUEN-

TIAL algorithm performance is excellent. The SE-

QUENTIAL algorithm is much faster than the

FIXED SIZE algorithm with the same error rates. In

addition, the SEQUENTIAL algorithm is less sensi-

19

TABLE III

OFFLINE RUNNING TIME COMPARISON

|A| - features’ coordinates set size 500 1000 1500 2000 2500 3000

Offline P-SPRT (seconds) 0.005 0.018 0.042 0.075 0.14 0.17

Offline optimal (seconds) 7.510 49.220 154.520 653.890 2012.40 3504.97

(a)

(b)

Fig. 14. (a) The single false detection event on the blur test. (b) An

example of detection on the rotation test. The image is 5◦ artificially

in-plane rotated.

tive to incorrect priors. The performance of the near-

optimal solution, P-SPRT, is good. It is noteworthy

that performance using an incorrect (uniform) prior

to parameterize the SEQUENTIAL algorithm is still

quite good.

The technique explained in this paper was de-

scribed in an image pattern matching context. How-

ever we emphasize that this is an example appli-

cation. Sequential hypothesis tests on finite popula-

tions are used in quality control (e.g. [53]) , sequen-

tial mastery testing (e.g. [54], [55]) and possibly

more fields. Thus the method can be used as is to

produce optimal sampling schemes in these fields.

The project homepage is at: http://www.cs.
huji.ac.il/∼ofirpele/hs

ACKNOWLEDGMENT

We thank Professor Ester Samuel-Cahn for an en-

lightening discussion, Refael Vivanti for optimiza-

tion and coding assistance and to Liat Pele, Amichai

Zisken, Ori Maoz, Amit Gruber, Amnon Aaronsohn,

Aviv Hurvitz, Eran Maryuma and Refael Vivanti for

proofreading.

REFERENCES

[1] A. Wald, Sequential Analysis. Wiley, New York, 1947.

[2] D. I. Barnea and H. F. Silverman, “A class of algorithms for

fast digital image registration,” IEEE Trans. Computer, vol. 21,

no. 2, pp. 179–186, Feb. 1972.

[3] J. Matas and O. Chum, “Randomized ransac with sequential

probability ratio test,” in Proc. IEEE International Conference

on Computer Vision (ICCV), vol. 2, October 2005, pp. 1727–

1732.

[4] J. Šochman and J. Matas, “Waldboost - learning for time

constrained sequential detection,” in Proc. of Conference on

Computer Vision and Pattern Recognition (CVPR), vol. 2, June

2005, pp. 150–157.

[5] P. E. Anuta, “Spatial registration of multispectral and multitem-

poral digital imagery using fast fourier transform,” IEEE Trans.

Geoscience Electronics, vol. 8, pp. 353–368, 1970.

[6] J. P. Lewis, “Fast normalized cross-correlation,” Sept. 02

1995. [Online]. Available: http://www.idiom.com/∼zilla/Work/

nvisionInterface/nip.pdf

[7] A. J. Ahumada, “Computational image quality metrics: A

review.” Society for Information Display International Sympo-

sium, vol. 24, pp. 305–308, 1998.

[8] B. Girod, Digital Images and Human Vision, ”Whats wrong

with the mean-squared error?”. MIT press, 1993, ch. 15.

[9] A. M. Eskicioglu and P. S. Fisher, “Image quality measures

and their performance,” IEEE Trans. Communications, vol. 43,

no. 12, pp. 2959–2965, 1995.

[10] S. Santini and R. C. Jain, “Similarity measures,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 21, no. 9, pp.

871–883, Sept. 1999.

[11] B. D. Lucas and T. Kanade, “An iterative image registration

technique with an application to stereo vision,” in Image

Understanding Workshop, 1981, pp. 121–130.

[12] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide

baseline stereo from maximally stable extremal regions,” in

Proceedings of the British Machine Vision Conference, vol. 1,

London, UK, September 2002, pp. 384–393.

[13] D. G. Lowe, “Distinctive image features from scale-invariant

keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110,

2004.

[14] K. Mikolajczyk and C. Schmid, “A performance evaluation of

local descriptors,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

20

30 × 30 patterns 60 × 60 patterns

estimated prior uniform prior estimated prior uniform prior

0 3 5 10 15 20 25 30
0

100

200

300

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0

100

200

300

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0

200

400

600

800

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0

200

400

600

800

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0.0%

0.1%

0.2%

p

fa
ls

e
n
eg

at
iv

e

0 3 5 10 15 20 25 30
0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

p

fa
ls

e
n
eg

at
iv

e

0 3 5 10 15 20 25 30
0.0%

0.1%

0.2%

p

fa
ls

e
n
eg

at
iv

e

0 3 5 10 15 20 25 30
0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

p

fa
ls

e
n
eg

at
iv

e

FIXED SIZE algorithm SEQUENTIAL algorithm

Fig. 15. Comparing the FIXED SIZE algorithm with the SEQUENTIAL algorithm. Both algorithms were parametrized using the estimated

or the uniform prior. The SEQUENTIAL algorithm is much faster than the FIXED SIZE algorithm, with the same error rates. In addition, the

SEQUENTIAL algorithm is less sensitive to incorrect (uniform) priors. In the top row we see that the average number of pixels examined per

window was smaller using the SEQUENTIAL algorithm. In the bottom row we see that the error rate was the same in both algorithms. We

can also see that the SEQUENTIAL algorithm is less sensitive to incorrect (uniform) priors (note that when the pixel similarity threshold is

equal to 0, 3 and 5 the number of samples using the FIXED SIZE algorithm increases when using the uniform prior). All tests were conducted

using the Thresholded Absolute Difference Hamming distance with various pixel similarity thresholds p.

30 × 30 patterns 60 × 60 patterns

TAD L*a*b* TAD L*a*b*

0 3 5 10 15 20 25 30
0

50

100

150

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

100 300 500 1000
0

20

40

60

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0

100

200

300

400

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

100 300 500 1000
0

50

100

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0.0%

0.1%

0.2%

0.3%

p

fa
ls

e
n
eg

at
iv

e

100 300 500 1000
0.0%

0.1%

0.2%

0.3%

p

fa
ls

e
n
eg

at
iv

e

0 3 5 10 15 20 25 30
0.0%

0.1%

0.2%

0.3%

p

fa
ls

e
n
eg

at
iv

e

100 300 500 1000
0.0%

0.1%

0.2%

0.3%

p

fa
ls

e
n
eg

at
iv

e

P-SPRT OPT

Fig. 16. Comparing the two parameterizations of the SEQUENTIAL algorithm: optimal and P-SPRT. The Thresholded Absolute Difference

Hamming distance (TAD) or the Thresholded Ratio Hamming distance (L*a*b*) are used in the experiments with various pixel similarity

thresholds p. All parameterizations were done with the estimated prior. P-SPRT samples a little more, with slightly smaller error rates.

21

30 × 30 patterns 60 × 60 patterns

TAD L*a*b* TAD L*a*b*

0 3 5 10 15 20 25 30
0

50

100

150

200

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

100 300 500 1000
0

20

40

60

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0

100

200

300

400

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

100 300 500 1000
0

50

100

150

pav
g
(#

p
ix

el
s

ex
am

in
ed

)

0 3 5 10 15 20 25 30
0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

2.4%

p

fa
ls

e
n
eg

at
iv

e

100 300 500 1000
0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

2.4%

p

fa
ls

e
n
eg

at
iv

e

0 3 5 10 15 20 25 30
0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

2.4%

p

fa
ls

e
n
eg

at
iv

e

100 300 500 1000
0.0%

0.4%

0.8%

1.2%

1.6%

2.0%

2.4%

p

fa
ls

e
n
eg

at
iv

e

estimated prior uniform prior

Fig. 17. Comparing optimal parameterization of the SEQUENTIAL algorithm with the estimated prior against optimal parameterization with

a uniform prior. The Thresholded Absolute Difference Hamming distance (TAD) or the Thresholded Ratio Hamming distance (L*a*b*) are

used in the experiments with various pixel similarity thresholds p. In the top row we see that the average number of pixels examined per

window was slightly smaller with the uniform prior. However, in the bottom row we see that the error rate was higher with the uniform

prior. Although higher, the error rate is still small. To conclude, the performance using an incorrect (uniform) prior is still quite good.

[15] H. Bay, T. Tuytelaars, and L. J. V. Gool, “Surf: Speeded up

robust features.” in ECCV (1), 2006, pp. 404–417.

[16] V. Lepetit and P. Fua, “Keypoint recognition using randomized

trees.” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 28, no. 9, pp. 1465–1479, 2006.

[17] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local

features and kernels for classification of texture and object

categories: A comprehensive study,” Int. J. Comput. Vision,

vol. 73, no. 2, pp. 213–238, 2007.

[18] D. Keren, M. Osadchy, and C. Gotsman, “Antifaces: A novel,

fast method for image detection,” IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 23, no. 7, pp. 747–761, 2001.

[19] S. Romdhani, P. H. S. Torr, B. Scholkopf, and A. Blake,

“Computationally efficient face detection,” in International

Conference on Computer Vision, 2001, pp. II: 695–

700. [Online]. Available: http://dx.doi.org/10.1109/ICCV.2001.

937694

[20] P. Viola and M. J. Jones, “Rapid object detection using a

boosted cascade of simple features,” in IEEE Computer Vision

and Pattern Recognition or CVPR, 2001, pp. I:511–518.

[21] S. Avidan and M. Butman, “The power of feature clustering:

An application to object detection,” Neural Information

Processing Systems (NIPS), Dec. 2004. [Online]. Available:

http://www.nips.cc/

[22] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-

time texture synthesis by patch-based sampling,” ACM Trans.

Graph., vol. 20, no. 3, pp. 127–150, 2001.

[23] Y. Hel-Or and H. Hel-Or, “Real-time pattern matching using

projection kernels,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 27, no. 9, pp. 1430–1445, Sept. 2005.

[Online]. Available: http://dx.doi.org/10.1109/TPAMI.2005.184

[24] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “The gray-code filter

kernels.” IEEE Trans. Pattern Analysis and Machine Intelli-

gence., vol. 29, no. 3, pp. 382–393, 2007.

[25] M. Ben-Yehuda, L. Cadany, and H. Hel-Or, “Irregular pattern

matching using projections.” in ICIP (2), 2005, pp. 834–837.

[26] S.-H. Cha, “Efficient algorithms for image template and dic-

tionary matching,” J. Math. Imaging Vis., vol. 12, no. 1, pp.

81–90, 2000.

[27] B. Zitova and J. Flusser, “Image registration methods: a survey,”

Image and Vision Computing, vol. 21, no. 11, pp. 977–1000,

Oct. 2003.

[28] J. A. G. Pereira and N. D. A. Mascarenhas, “Digital image

registration by sequential analysis,” Computers and Graphics,

vol. 8, pp. 247–253, 1984.

[29] N. D. A. Mascarenhas and G. J. Erthal, “Image registration by

sequential tests of hypotheses: The relationship between gaus-

sian and binomial models,” Computers and Graphics, vol. 16,

no. 3, pp. 259–264, 1992.

[30] A. B. Lee, D. Mumford, and J. Huang, “Occlusion models

for natural images: A statistical study of a scale-invariant

dead leaves model,” International Journal of Computer Vision,

vol. 41, no. 1/2, pp. 35–59, 2001.

[31] E. Simoncelli and B. Olshausen, “Natural image statistics and

neural representation,” Annual Review of Neuroscience, vol. 24,

pp. 1193–1216, May 2001.

[32] D. J. Field, “Relations between the statistics of natural images

and the response properties of cortical cells,” J.Opt.Soc. Am.

A,, vol. 4, no. 12, pp. 2379–2394, 1987.

[33] J. G. Daugman, “Entropy reduction and decorrelation in vi-

sual coding by oriented neural receptive fields,” IEEE Trans.

Biomedical Engineering, vol. 36, no. 1, pp. 107–114, 1989.

[34] D. Siegmund, Sequential Analysis, Test and Confidence Inter-

vals. Springer-Verlag, 1985.

[35] Y. Amit, 2D Object Detection and Recognition: Models, Algo-

rithms, and Networks. MIT Press, 2002.

[36] R. Zabih and J. Woodfill, “Non-parametric local transforms for

22

computing visual correspondence,” in ECCV, 1994, pp. 151–

158.

[37] B. Cyganek, “Comparison of nonparametric transformations

and bit vector matching for stereo correlation.” in IWCIA, 2004,

pp. 534–547.

[38] Q. Lv, M. Charikar, and K. Li, “Image similarity search with

compact data structures,” in CIKM. New York, NY, USA:

ACM Press, 2004, pp. 208–217.

[39] M. Ionescu and A. Ralescu, “Fuzzy hamming distance in a

content-based image retrieval system,” in FUZZ-IEEE, 2004.

[40] A. Bookstein, V. A. Kulyukin, and T. Raita, “Generalized

hamming distance,” Inf. Retr., vol. 5, no. 4, pp. 353–375, 2002.

[41] A. Abhyankar, L. A. Hornak, and S. Schuckers, “Biorthogonal-

wavelets-based iris recognition,” A. K. Jain and N. K. Ratha,

Eds., vol. 5779, no. 1. SPIE, 2005, pp. 59–67. [Online].

Available: http://link.aip.org/link/?PSI/5779/59/1

[42] P. Hough, “A method and means for recognizing complex

patterens,” U.S. Patent 3,069,654, 1962.

[43] S. D. Blostein and T. S. Huang, “Detecting small, moving

objects in image sequences using sequential hypothesis testing,”

IEEE Trans. Signal Processing, vol. 39, no. 7, pp. 1611–1629,

1991.

[44] D. Shaked, O. Yaron, and N. Kiryati, “Deriving stopping rules

for the probabilistic hough transform by sequential analysis,”

Comput. Vis. Image Underst., vol. 63, no. 3, pp. 512–526, 1996.

[45] A. Amir and M. Lindenbaum, “A generic grouping algorithm

and its quantitative analysis.” IEEE Trans. Pattern Analysis and

Machine Intelligence., vol. 20, no. 2, pp. 168–185, 1998.

[46] M. A. Fischler and R. C. Bolles, “Random sample consensus: a

paradigm for model fitting with applications to image analysis

and automated cartography,” Commun. ACM, vol. 24, no. 6, pp.

381–395, 1981.

[47] H. Gharavi and M. Mills, “Blockmatching motion estima-

tion algorithms-new results,” IEEE Trans. Circuits Syst. Video

Techn., vol. 37, no. 5, pp. 649–651, 1990.

[48] G. Wyszecki and W. S. Stiles, Color Science: Concepts and

Methods, Quantitative Data and Formulae. Wiley, 1982.

[49] R. Brunelli and T. Poggio, “Face recognition: Features versus

templates,” IEEE Trans. Pattern Analysis and Machine Intelli-

gence., vol. 15, no. 10, pp. 1042–1052, 1993.

[50] Z. Govindarajulu, Sequential Statistical Procedures. Academic

Press, 1975, pp. 534–536.

[51] A. Wald and J. Wolfowitz, “Optimum character of the sequen-

tial probability ratio test,” Ann. Math. Stat., vol. 19, pp. 326–

339, 1948.

[52] E. L. Lehmann, Testing Statistical Hypotheses. John Wiley &

Sons, 1959, pp. 104–110.

[53] H.-J. Mittag and H. Rinne, Statistical Methods of Quality

Assurance. Chapman and Hall, 1993.

[54] H. J. Vos, “A bayesian sequential procedure for determining

the optimal number of interrogatory examples for concept-

learning,” Computers in Human Behavior, vol. 23, no. 1, pp.

609–627, January 2007.

[55] C. Lewis and K. Sheehan, “Using bayesian decision theory

to design a computerized mastery test,” Applied Psychological

Measurement, vol. 14, no. 4, pp. 367–386, 1990.

Ofir Pele received the BSc degree in computer

science and life science and the MSc degree

in computer science from the Hebrew Univer-

sity of Jerusalem, Israel, in 2003 and 2005,

respectively. He is currently a PhD student in

computer science at the Hebrew University of

Jerusalem. His research interests include com-

puter vision, sequential analysis and Bayesian

statistics.

Michael Werman Ph.D. 1986, The Hebrew

University, currently professor of computer

science at The Hebrew University. His research

has is mainly in designing computer algo-

rithms and mathematical tools for analyzing,

understanding and synthesizing pictures.

23

APPENDIX I

FIXED SIZE FRAMEWORK

We first present the FIXED SIZE algorithm that

tests for similarity using a fixed size sample. Then

we evaluate its performance. Finally we show how

to find the optimal parameters for the FIXED SIZE

algorithm.

A. The FIXED SIZE algorithm

The FIXED SIZE algorithm has threshold param-

eters l, u and a fixed sample size n. The framework

computes optimal l, u and n offline. Then, the

algorithm can quickly decide whether a pattern and

a window are similar; i.e. if their Hamming distance

is smaller or equal to the image similarity threshold,

t.

The algorithm samples n corresponding features

from the pattern and the window, computes their

Hamming distance and decides according to the

result whether to return similar, non-similar or to

compute the exact distance.

Algorithm 6 FIXED SIZEl,u,n,t(pattern,window, A)

k ⇐ 0
for i = 1 to n do

random sample uniformly and without replace-

ment (x, y)m from A

k ⇐ k + sim(pattern, window, (x, y)m)
if k ≤ l then

return similar

if k ≥ u then

return non-similar

return (HammingDistanceA(pattern, window)) ≤ t

B. Evaluating performance for fixed parameters

l, u, n

The performance of the algorithm is defined by its

expected number of examined features and its error

probabilities. The computation is similar to the one

in the SEQUENTIAL algorithm (see Section IV):

Pl,u,n(false negative) =

∑n
k=u

(
n

k

)
ΩS[k, n]

P (D ≤ t)
(10)

Pl,u,n(false positive) =

∑l
k=0

(
n

k

)
ΩNS [k, n]

P (D > t)
(11)

El,u,n(#examined features) =

n + P (compute exact)(|A| − n) =

n +
u−1∑

k=l+1

(
n

k

)
(ΩS[k, n] + ΩNS [k, n])(|A| − n)

(12)

C. Finding optimal parameters l, u, n for the algo-

rithm

We first find optimal thresholds l, u for a given

sample size, n. Our goal is to minimize the expected

number of examined features given bounds on the

error probabilities, α, β:

arg min
l,u

El,u(#examined features)

s.t :

Pl,u(false negative) ≤ α

Pl,u(false positive) ≤ β

Fixed number of samples n

(13)

Pl,u(false negative) (Eq. 10) monotonically de-

creases with the threshold u (the number of non-

negative summands decreases). Pl,u(false positive)
(Eq. 11) monotonically increases with the threshold

l (the number of non-negative summands increases).

El,u(#examined features) (Eq. 12) monotonically

decreases with the threshold u and monotonically

increases with the threshold l. Thus, we want l to

be as large as possible, and u to be as small as

possible.

The algorithm that chooses the optimal u, Alg.

7, starts by taking u = n + 1 and decreases it until

Pl,u(false negative) is too high. The algorithm that

chooses optimal l, Alg. 8 starts by taking l = −1
and increases it until Pl,u(false positive) is too high.

Algorithm 7 opt u(n, t, α, P)

err ⇐ 0
nCk ⇐ 1 {The current n choose k}
for k = n to 0 do

err ⇐ err + nCk × ΩS [k,n]
P (D≤t)

if err > α then

return k + 1
nCk ⇐ nCk ×

(
k

n−k+1

)

return k

24

Algorithm 8 otp l(n, t, β, P)

err ⇐ 0
nCk ⇐ 1 {The current n choose k}
for k = 0 to n do

err ⇐ err + nCk × ΩNS [k,n]
P (D>t)

if err > β then

return k − 1
nCk ⇐ nCk ×

(
n−k
k+1

)

return k

In order to find the optimal n we compute optimal

l, u and the expected number of examined features

for each n = 1 . . . |A|. Finally, we choose the n

that minimizes the expected number of examined

features. Note that the search can be terminated

as soon as the current minimum of the expected

number of examined features is smaller than n.

The intermediate sums ΩS [k, n] and ΩNS [k, n]
(see Eq. 2) are computed for all possible k and

n with a dynamic programming algorithm with a

time complexity of O(|A|3). The algorithms that

compute optimal l, u for each n (Algs. 8, 7) have

a time complexity of O(|A|). These algorithms run

a maximum of |A| times. Thus, finding optimal

n, l, u has a time complexity of O(|A|3). It should be

noted that the search for the optimal parameters is

done offline. The user can employ the FIXED SIZE

algorithm parameterized with the optimal l, u, n, to

quickly detect patterns in images.

APPENDIX II

HOUGH TRANSFORM COMPUTATION OF

HAMMING DISTANCE

For simplicity we show how to use the Hough

transform [42] to compute the Thresholded Absolute

Difference Hamming Distance (see Section III-B)

between a pattern and all windows in a 256 gray

level image. The generalization to other members

of the Image Hamming Distance Family is easy. We

also analyze its time complexity.

List of symbols:

A = Set that contains spatial coordinates

of pixels. |A| is the size of this set.

RIm = Number of rows in large image.

CIm = Number of columns in large image.

L = A 256 array that contains lists of all

pixel coordinates in the pattern that are

similar to a specific gray value.

p = Pixel similarity threshold of the

Thresholded Absolute Difference Ham-

ming Distance.

H = The Thresholded Absolute Difference

Hamming Distance Map, i.e. H[r, c] is

the Thresholded Absolute Difference Ham-

ming Distance between the pattern and the

window of the image Im whose top left

pixel is [r, c].

Algorithm 9 HoughTAD(pattern,image,p)

L[0 . . . 255] ⇐ empty list of indices.

for (x, y) ∈ A do

for g = (pattern[x, y]−p) to (pattern[x, y]+p)
do

L[g].insert([x, y])
H[0 . . . RIm, 0 . . . CIm] ⇐ |A|
for r = 1 to RIm do

for c = 1 to CIm do

for it = (L[image[r, c]].begin) to

(L[image[r, c]].end) do

H[r−it.r, c−it.c] ⇐ H[r−it.r, c−it.c]−1

The first stage of Algorithm 9 which computes

the array of lists, L has a time complexity of

O(|A|p). The second stage which computes the

Hamming distance map, H has an expected time

complexity of O(RImCIm(|A| − E[D])), where

D is the random variable of the Hamming dis-

tance. Total expected time complexity is O(|A|p +
RImCIm(|A|−E[D])). Average expected time com-

plexity per window is O(|A|p
CImRIm

+ |A| − E[D]).

Since usually
|A|p

CImRIm
is negligible the average

expected time complexity per window is O(|A| −
E[D])

APPENDIX III

COMPUTATION OF PROBABILITIES OF THE

SEQUENTIAL ALGORITHM

List of symbols:

• M = SEQUENTIAL algorithm decision matrix.

M [k, n] is the algorithm decision after sam-

pling k non-similar corresponding features out

of a total of n sampled corresponding features.

The decision can be NS=return non-similar,

S=return similar or C=continue sampling. See

the graphical representation in Fig. 8.

• D = Random variable of the Hamming dis-

tance.

25

• t = Image similarity threshold, i.e. if the Ham-

ming distance of two images is smaller or

equal to t, then the images are considered

similar. Otherwise, the images are considered

non-similar.

• ΨM [k, n] = Number of paths from the point

(0, 0) to the point (k, n) that do not touch a

stopping point (S, NS) in Fig. 8 on page 10.

• ek,n= The event of sampling k non-similar

corresponding features out of a total of n

sampled corresponding features, in any spe-

cific order (for example, where the non-similar

corresponding features are sampled first). Note

that all orders of sampling have the same

probability. See Eq. 1 on page 10.

• ΩS[k, n], ΩNS [k, n] = Intermediate sums de-

fined in Eq. 2 on page 11.

PM (false negative) (14)

= PM (return non-similar|images are similar) (15)

= PM (return non-similar|D ≤ t) (16)

=

|A|∑

d=0

PM (return non-similar, D = d|D ≤ t) (17)

=
1

P (D ≤ t)

t∑

d=0

PM (return non-similar, D = d) (18)

=
1

P (D ≤ t)

t∑

d=0

∑

(k,n):
M(k,n)=NS

Ψ[k, n]P (ek,n, D = d)

(19)

=
1

P (D ≤ t)

∑

(k,n):
M(k,n)=NS

Ψ[k, n]

t∑

d=0

P (ek,n, D = d)

(20)

=
1

P (D ≤ t)

∑

(k,n):
M(k,n)=NS

Ψ[k, n]ΩS[k, n] (21)

PM (false positive) (22)

= PM (return similar|images are non-similar) (23)

= PM (return similar|D > t) (24)

=

|A|∑

d=0

PM (return similar, D = d|D > t) (25)

=
1

P (D > t)

|A|∑

d=t+1

PM (return similar, D = d) (26)

=
1

P (D > t)

|A|∑

d=t+1

∑

(k,n):
M(k,n)=S

Ψ[k, n]P (ek,n, D = d)

(27)

=
1

P (D > t)

∑

(k,n):
M(k,n)=S

Ψ[k, n]

|A|∑

d=t+1

P (ek,n, D = d)

(28)

=
1

P (D > t)

∑

(k,n):
M(k,n)=S

Ψ[k, n]ΩNS [k, n] (29)

EM [#samples] (30)

=

|A|∑

d=0

EM [#samples, D = d] (31)

=

|A|∑

d=0

∑

(k,n):
M(k,n)∈{S,NS}

Ψ[k, n]P (ek,n, D = d)n (32)

=
∑

(k,n):
M(k,n)∈{S,NS}

Ψ[k, n](ΩS [k, n] + ΩNS [k, n])n (33)

APPENDIX IV

COMPUTATION OF EXPECTED ADDITIVE LOSS IN

THE BACKWARD INDUCTION ALGORITHM

Let w1 and w0 be the loss weights for false

positive error and false negative error respectively.

The expected additive loss for each decision given

that we sampled n samples, out of which k were

non-similar is:

E[addLoss(S)|k, n] = P (D > t|ek,n)w1 (34)

=
P (D > t, ek,n)

P (ek,n)
w1 (35)

=

∑|A|
d=t+1 P (D = d, ek,n)
∑|A|

d=0 P (D = d, ek,n)
w1 (36)

=
ΩNS [k, n]

ΩS [k, n] + ΩNS [k, n]
w1 (37)

E[addLoss(NS)|k, n] = P (D ≤ t|ek,n)w0 (38)

=
P (D ≤ t, ek,n)

P (ek,n)
w0 (39)

=

∑t

d=0 P (D = d, ek,n)
∑|A|

d=0 P (D = d, ek,n)
w0 (40)

=
ΩS [k, n]

ΩS [k, n] + ΩNS [k, n]
w0 (41)

26

E[addLoss(C)|k, n] = (42)

=1 + P (next feature similar|ek,n)addLossOpt(k, n + 1)+
(43)

P (next feature non-similar|ek,n)addLossOpt(k + 1, n + 1)
(44)

=1 +
P (next feature similar, ek,n)

P (ek,n)
addLossOpt(k, n + 1)+

(45)

P (next feature non-similar, ek,n)

P (ek,n)
addLossOpt(k + 1, n + 1)

(46)

=1 +
P (ek,n+1)

P (ek,n)
addLossOpt(k, n + 1)+ (47)

P (ek+1,n+1)

P (ek,n)
addLossOpt(k + 1, n + 1) (48)

=1 +
ΩS [k, n + 1] + ΩNS[k, n + 1]

ΩS [k, n] + ΩNS[k, n]
addLossOpt(k, n + 1)+

(49)

ΩS [k + 1, n + 1] + ΩNS[k + 1, n + 1]

ΩS [k, n] + ΩNS[k, n]
× (50)

addLossOpt(k + 1, n + 1) (51)

APPENDIX V

BACKWARD INDUCTION SOLUTION THEOREMS

Theorem 1: Let M∗ be a decision matrix which

is the solution to Eq. 8. Then it is the solution to

the original minimization problem Eq. 7 with α =
PM∗(false negative) and β = PM∗(false positive).

Proof: Let M ′ be another decision matrix of

the same size and smaller/equal error probabilities.

Then:

loss(M∗, w0, w1)

= PM∗(false negative)P (D ≤ t)w0+ (52)

PM∗(false positive)P (D > t)w1+

EM∗ [#samples]

≤ PM ′ (false negative)P (D ≤ t)w0+ (53)

PM ′ (false positive)P (D > t)w1+

EM ′ [#samples]

≤ PM∗(false negative)P (D ≤ t)w0+ (54)

PM∗(false positive)P (D > t)w1+ (55)

EM ′ [#samples]

m

EM∗ [#samples] ≤ EM ′ [#samples]

Explanations:
(52) Definition of the loss function (Eq. 8)

(53) M∗ is optimal (Eq. 8)

(54) PM ′(false negative) ≤ PM∗(false negative)

(55) PM ′(false positive) ≤ PM∗(false positive)

Theorem 2: Let M∗ be the optimal decision ma-

trix returned by Alg. 3 for some w0, w1. If w0 =
|A|

αP (D≤t)
then PM∗(false negative) ≤ α. If w1 =

|A|
βP (D>t)

then PM∗(false positive) ≤ β

Proof: Let M ′ be a decision matrix such that
the SEQUENTIAL algorithm parametrized with it
always returns the true answer by sampling all the
corresponding features. Then:

|A| = Loss(M ′, w0, w1) (56)

≥ Loss(M∗, w0, w1) (57)

≥ PM∗(false negative)P (D ≤ t)w0 (58)

= PM∗(false negative)P (D ≤ t)
|A|

αP (D ≤ t)
(59)

m

PM∗(false negative) ≤ α

Explanations:
(56) loss for taking all samples

(57) M∗ is optimal

(58) part of sum of non-negatives

(59) w0 = |A|
αP (D≤t)

The proof of if w1 = |A|
βP (D>t)

then

PM∗(false positive) ≤ β is similar.

APPENDIX VI

COMPUTATION OF PROBABILITIES FOR THE

P-SPRT FRAMEWORK

The likelihood ratio derivation:

λ(ek,n) =
P (ek,n|D > t)

P (ek,n|D ≤ t)
(60)

=

∑|A|
d=t+1 P (ek,n, D = d|D > t)
∑t

d=0 P (ek,n, D = d|D ≤ t)
(61)

=

∑|A|
d=t+1

P (ek,n,D=d,D>t)
P (D>t)∑t

d=0
P (ek,n,D=d,D<t)

P (D≤t)

(62)

=

(
P (D ≤ t)

P (D > t)

)(∑|A|
d=t+1 P (ek,n, D = d)
∑t

d=0 P (ek,n, D = d)

)

(63)

Explanations:
(61) disjoint and complementary events

27

(62) conditional probability definition

The initialization of the cache (in Alg. 5) is:

P (e1,1, D = d) = P (e1,1|D = d)P (D = d) (64)

=
d

|A|
P (D = d) (65)

The update of the cache (in Alg. 5), where b = 0
or 1, is:

P (ek+b,n+1, D = d) (66)

= P (D = d)P (ek+b,n+1|D = d) (67)

= P (D = d)P (ek,n|D = d)P (next b|ek,n, D = d) (68)

= P (ek,n, D = d)P (next b|ek,n, D = d) (69)

where:

P (next 0|ek,n, D = d) (70)

= min

(
1,

max
(
0, ((|A| − d) − (n − k))

)

|A| − n

)
(71)

P (next 1|ek,n, D = d) (72)

= min

(
1,

max
(
0, (d − k)

)

|A| − n

)
(73)

