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Abstract— Aircraft tracking plays a key and important role
in the Sense-and-Avoid system of Unmanned Aerial Vehicles
(UAVs). This paper presents a novel robust visual tracking
algorithm for UAVs in the midair to track an arbitrary aircraft
at real-time frame rates, together with a unique evaluation
system. This visual algorithm mainly consists of adaptive
discriminative visual tracking method, Multiple-Instance (MI)
learning approach, Multiple-Classifier (MC) voting mechanism
and Multiple-Resolution (MR) representation strategy, that is
called Adaptive M3 tracker, i.e. AM3. In this tracker, the
importance of test sample has been integrated to improve
the tracking stability, accuracy and real-time performances.
The experimental results show that this algorithm is more
robust, efficient and accurate against the existing state-of-art
trackers, overcoming the problems generated by the challenging
situations such as obvious appearance change, variant sur-
rounding illumination, partial aircraft occlusion, blur motion,
rapid pose variation and onboard mechanical vibration, low
computation capacity and delayed information communication
between UAVs and Ground Station (GS). To our best knowledge,
this is the first work to present this tracker for solving online
learning and tracking freewill aircraft/intruder in the UAVs.

I. INTRODUCTION

Visual aircraft tracking has been researched and devel-

oped fruitfully in the robot community recently. However,

real-time robust visual tracking for arbitrary aircraft (also

referred to visual aircraft model-free tracking), especially in

Unmanned Aerial Vehicle (UAV), remains a challenging task

due to significant appearance change, variant surrounding

illumination, partial aircraft occlusion, blur motion, rapid

pose variation, and onboard mechanical vibration, low com-

putation capacity and delayed information communication

between UAVs and Ground Station (GS).

In the literatures, many visual trackers have obtained

the promising tracking performances for arbitrary aircrafts,

where, the morphological filtering technology as the most

popular method has been applied in many vision-based

Sense-and-Avoid (i.e. See-and-Avoid) systems, e.g. A. Wain-

wright et al [1], T. Gandhi et al [2], R. Carnie et al [3]

and J. S. Lai et al [4]. However, a big number of false

positives will be generated by this approach, and it requires

the reliable morphological operators to adaptively detect the
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aircraft under different backgrounds. Although D. Dey et

al [5] utilize shape descriptor and SVM-based classifier to

reduce false positives, however, it should be trained offline

with hand-labeled samples in large amounts of image data.

Fig. 1: Vision-based aircraft inspection on UAV, where, the

monocular camera sensor is fixed on the tail of UAV.

J. W. McCandless [6] presented an optical flow method for

aircraft detection, and A. Mian [7] proposes a modified KLT

tracking algorithm to track aircrafts, which uses a feature

clustering criterion to track aircraft based on its multiple

local features, and this local features are continuously up-

dated to make the tracker robust to appearance changing of

the aircraft. However, all these methods can be generally

categorized as the generative-based method, and they did

not use the valuable background information to improve the

tracking performances [8].

In this paper, we apply the discriminative-based algorithm

(also called visual tracking-by-detection method) to track

aircraft/intruder in the midair using UAVs, which employ an

adaptive binary classifier to separate the aircraft from back-

ground during frame-to-frame tracking, and online Multiple-

Instance Learning (MIL) method [9] has been used to handle

the ambiguity problem, which put the positive samples and

negative ones into positive and negative bags, respectively,

and then trains a classifier in an online manner using bag

likelihood function. This method has demonstrated good

performance to handle drift, and can even solve significant

appearance changes in the cluttered background.

Moreover, we adopt Multi-Resolution (MR) strategy to

cope with the problems of strong motions (e.g. onboard me-

chanical vibration) or large displacements over time. Addi-

tionally, this strategy can help to deal with the problems that

are the onboard low computational capacity and information

communication delays between UAVs and Ground Station
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(GS). Using this strategy, especially in the Multi-Classifier

voting mechanism, the importances of test samples have been

used to reject samples, i.e. the lower resolution features are

initially applied in rejecting the majority of samples (called

Rejected Samples (RS)) at relatively low cost, leaving a

relatively small number of samples to be processed in higher

resolutions, thereby ensuring the real-time performance and

higher accuracy.

To the author’s best knowledge, this visual tracker has not

been presented for solving the online learning and tracking

arbitrary aircraft problems in the UAVs. The proposed AM3

tracker runs at real-time frame rates and also performs

favorably in the midair collision warning and avoidance

evalutaion system for UAVs in terms of efficiency, accuracy

and robustness.

II. DISCRIMINATIVE VISUAL TRACKING

A. Preliminaries

Discriminative Visual Tracking (DVT) takes the tracking

problem as a binary classification task to separate target from

its surrounding background. A generic process of the DVT

is presented in the Algorithm 1.

Algorithm 1 DVT.

Input: the kth frame

1. Extract a set of image samples:

Sα={S|‖l(S)− lk−1‖ < α}, where, lk−1 is the target loca-

tion at (k-1)th frame, and online select feature vectors.

2. Use classifier trained in the (k-1)th frame to these feature

vectors and find the target location lk with the maximum

classifier score.

3. Extract two sets of image samples:

Sβ={S|‖l(S)− lk‖ < β} and Sγ,δ={S|γ < ‖l(S)− lk‖ <
δ}, where, β < γ < δ.

4. Online select the feature using these two sets of samples,

and update the classifier.

Output: (1) Target location lk
(2) Classifier trained in the k-th frame

In the Algorithm 1, the parameter α is called search radius,

which is used to extract the test samples in the kth frame, the

parameter β is the radius applied for extracting the positive

samples, while the parameter γ and δ are the inner and outer

radii, which are used to extract the negative samples.

However, the ambiguity problem can confuse the classifier.

P. Viola et al [10] used a Multiple-Instance Learning (MIL)

[11] approach to solve this ambiguity problem in face

detection task successfully.

B. Tracking with Online Multiple-Instance Learning

Recently, B. Babenko et al [9] also presented an on-

line Multiple-Instance Learning (MIL) algorithm, i.e. MIL

tracker, to track the targets robustly. In this paper, we adopted

this method for visual aircraft tracking, as shown in Figure 2.

And the Algorithm 2 shows the pseudo code of this tracker.

In the Algorithm 2, the posterior probability of sample

Sij to be positive, i.e. p(y = 1|Sij), is computed by the

Algorithm 2 MIL.

Input: Dataset {Si, yi}
1

i=0
, where Si = {Si1, Si2, ...} is the

ith bag, and yi ∈ {0, 1} is a binary label of sample Sij

1. Update weak classifier pool Φ={h1, h2, ..., hM} with data

{Sij , yi}
2. Initialize Hij = 0 for all i, j
3. for k=1 to K do

4. Set Lm =0, m=1, ...,M
5. for m=1 to M do

6. for i=0 to 1 do

7. for j=0 to N+L-1 do

8. pmij=σ(Hij + hm(Sij))
9. end for

10. pmi =1-
∏

j(1− pmij )
11. Lm ← Lm+yilog(p

m
i )+(1−yi)log(1−pmi )

12. end for

13. end for

14. m∗=argmaxm(Lm)
15. hk(Sij)← hm∗(Sij)
16. Hij = Hij + hk(Sij)
17. end for

Output: Classifer HK(Sij) =
∑

k hk(Sij), and

p(y = 1|Sij)=σ(HK(Sij))

Bayesian theorem, σ(z) = 1/(1+e−z) is a sigmoid function,

the strong classifier HK is constructed by selected K weak

classifiers, i.e. HK=
∑K

k=1
hk. And L is the bag log-likehood

function: L =
∑

i(yilogpi + (1− yi)log(1− pi)) .

For each image sample, it is represented as a vector

of Haar-like features [12], which is denoted by function

f(Sij) = (f1(Sij), f2(Sij), ..., fK(Sij))
T . Each feature con-

sists of 2 to 4 rectangles, and each rectangle has a real valued

weight. The feature value is then a weighted sum of the pixels

in all the rectangles.

We assume that Haar-like features in f(Sij) are indepen-

dently distributed and assume uniform prior p(y = 0) =
p(y = 1). Then, the classifier HK(Sij) is described with the

Haar-like feature f(Sij) as

HK(Sij) = ln

(

p(f(Sij)|y = 1)p(y = 1)

p(f(Sij)|y = 0)p(y = 0)

)

=

K
∑

k=1

hk(Sij)

(1)

where,

hk(Sij) = ln

(

p(fk(Sij)|y = 1)

p(fk(Sij)|y = 0)

)

(2)

and

p(fk(Sij)|yi = 1) ∼ N(µ1, σ1),

p(fk(Sij)|yi = 0) ∼ N(µ0, σ0) (3)

The update schemes for the parameters µ1 and σ1 are:

µ1 ← ηµ1 + (1− η)
1

N

∑

j|yi=1

fk(Sij)

σ1 ← ησ1 + (1− η)

√

√

√

√

1

N

∑

j|yi=1

(fk(Sij)− µ1)2 (4)
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Fig. 2: Visual aircraft tracking via Multiple-Instance Learning (MIL). The adaptive MIL classifier is updated with online

boosting features in the (k-1)th frame, and then applied to estimate the aircraft location in the kth frame.

where, N is the number of positive samples and η is a

learning rate parameter. The update schemes for µ0 and σ0

have similar formulas.

TABLE I: Relationship between Search Radius (α) and

Number of Extracted Test Samples (NS)

Radius α Sample NS Radius α Sample NS

30 2809 17 889
29 2617 16 793
28 2449 15 697
27 2285 14 609
26 2109 13 517
25 1941 12 437
24 1789 11 373
23 1649 10 305
22 1513 9 249
21 1369 8 193
20 1245 7 145
19 1125 6 109
18 1005 5 69

III. HIERARCHY-BASED TRACKING STRATEGY

A. Hierarchy-based Tracking

Although the discriminative-based approaches often

achieve superior tracking results, and tolerate the motions

in the range of search radius, but for the tracking on-board

UAV, we have observed that discriminative visual tracking

algorithms are sensitive to the strong motions or large

displacements. The search radius for extracting test samples

can be set to be larger, as shown in Algorithm 1, to get more

tolerance for these problems, however, more test samples

(including noises) will be generated, which influence the

real-time and accuracy performances, as shown in TABLE I.

Therefore, Multiple Resolution (MR) approach was proposed

to deal with these problems, as shown in Figure 3, which

also can help to deal with the problems that are the onboard

low computational capacity and information communication

delays between UAVs and Ground Station (GS).

B. Configurations

1) Number of Pyramid Levels (NPL): Considering the

images are downsampled by a ratio factor 2, the Pyramid

Levels of the MR structure are defined as a function below:

NPL = ⌊log2
min{TW ,TH}

minSizes
⌋ (5)

where, ⌊∗⌋ is the largest integer not greater than value ∗,
TW , TH represent the width and height of target T in the

highest resolution image (i.e. the lowest-level of pyramid: 0
level), respectively. And minSizes is the minimum size of

target in the lowest resolution image (i.e. the highest-level

of pyramid: pmax level, pmax = NPL-1), in order to have

enough information to estimate the motion model in that

level. Thus, if the minSizes is set in advanced, the NPL

directly depends on the width/height of tracking target T.

2) Motion Model (l) Propagation: Taking into account

that the motion model estimated in each level is used as the

initial estimation of motion for the next higher resolution

image, therefore, the motion model propagation is defined

as follows:

l
p−1

k = 2l
p
k (6)

where, p represents the pth level of the pyramid, p =
{pmax, pmax − 1, ..., 0} = {NPL − 1, NPL − 2, ..., 0}, and

k is the kth frame.

3) Number of Rejected Sample (NR) : Since the MR

approach provides the computational advantage to analyze

features and update classifiers in low resolution images, the

majority of samples will be rejected based on their classifier

scores (i.e. sample importances) in the lower resolution

image, leaving a fewer number of samples to be processed

in the higher resolution image. Thus, the tracker obtains

higher tracking speed, better accuracy than a single full

(high) resolution-based adaptive tracker, the rejected sample

number is defined as:

Np
R = ξpNp

S (7)
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Fig. 3: AM3 visual tracker. The kth frame is downsampled to create MR structure. The lower resolution features are initially

used to reject the majority of samples at relatively low cost, leaving a relatively small number of samples to be processed

in higher resolutions. The Cp
k−1

represents the adaptive classifier updated in the pth level of pyramid of (k-1)th frame.

where, p represents the pth level in the pyramid, ξp is the

reject ratio (0 < ξp < 1), and Np
S is the number of test

samples. Especially, the sample with maximum score in the

rejected samples is the Boundry Sample (Bp
k).

4) Search Radius Propagation: The euclidean distance

between the location of Bp
k and l

p
k is the Recursive Distance

(Rp
k), which will be propagated to next higher resolution

image as the search radius:

αp−1

k = 2Rp
k (8)

where, p represents the pth level in the pyramid, and k is

the kth frame.

Figure 4 and TABLE I show the details of our pre-

sented tracker, which are the confidence maps constructed

by importances of test samples from non-hierarchical (a)

and hierarchical (b,c,d) tracking results in the kth frame. We

assume that the tracker requires radius 20 (in pixels) to search

the aircraft in the full (high) resolution frame, then 1245

samples will be extracted to test with classifier, however,

with our tracker just need a small number of samples (371 in

total) within different resolution frames, and obtains higher

accuracy, as shown in Figure 5.

IV. VISION-BASED AIRCRAFT TRACKING

A. Midair Collision Visual Warning and Avoidance Evalua-

tion System

Vision-based aircraft detection and avoidance algorithms

demand real scenario images to be tested. These images

sometimes are difficult or dangerous to obtain, especially

for detecting collision course. For this reason, a new midair

collision visual warning and avoidance evaluation system

has been developed, this system allows the user to define

any flight trajectories and backgrounds using different air-

crafts/intruders, where real world images took from some

UAVs are fused with virtual images containing 3D aircraft

model. These virtual images are obtained taking into account
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Fig. 5: Comparision of Center Location Errors in the kth

frame. Red and Blue Bars represent the hierarchical and non-

hierarchical tracking results, respectively.

scene illumination, camera vibrations and lens distortions,

thereby producing the very realistic video stream.

The 3D pose and attitude of aircraft are pre-defined frame-

by-frame, therefore, the performances of different tracking

algorithms can be evaluated and compared. The main part of

system in software is accomplished with three steps. Firstly,

image vibration information is collected from the real world

images. Secondly, the virtual image of an aircraft/intruder 3D

model is constructed. Finally, both real frames and vitrual

images are fused.

1) Real Image Vibration Information Collection: Due to

the existence of vibrations in the real world images, this

image vibration effects should be reproducted in the virtual

images in order to obtain the most realistic results. The

virtual image is transformed according to the homography

transformation, which is a (3 × 3) matrix that links coordi-
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Fig. 4: Confidence Maps. They are constructed by the importances of test samples (Blue Circle) in the kth frame, where, the

Green Circle represents the Ground Truth (GT), the White Circle is the tracking result. And (a) is the non-hierarchical tracking

result, (b)(c)(d) are the hierarchical tracking results in different resolution frames, i.e. low, middle and high resolutions.

nates between two views of the same scene, i.e.:

x′
i = Hxi (9)

The homography matrices that map the relationship be-

tween the first and the other consecutive frames are obtained

with below processes:

• Corner feature extraction from the first frame

• Optical flow calculation on the new frame

• Homography matrix collection using RANSAC

2) Virtual Image Construction: In order to obtain a vir-

tual image displaying an aircraft, a 3D virtual scenario is

generated using OpenGL. A virtual camera system and a

virtual 3D aircraft are placed and orientated, where, the

virtual camera system is configured with the same angle of

view in the on-board real camera system, and the virtual 3D

aircraft is constructed using a 3D geometry model of the

aircraft and a texture, which allows the 3D model to have a

realistic appearance.

Additionally, the 3D secene is rendered with a green back-

ground, which allows to easily distinguish the aircraft pixels

from the background pixels, i.e. chroma key technique1.

3) Real and Virtual Image Fusion: The original back-

ground image is undistorted and backwarped so that the

subsequent warping and distortion applied to both the aircraft

and the background will help to generate an unaltered

background. Performing the fusion with this way, the in-

terpolation during the warping and distortion processes will

produce a more realistic result. The fusion results are shown

in the Figure 1, 2, 3, 6a and 7a with a common commercial

plane: Boeing 727.

B. Comparisions in Evaluation System

In this section, we compared our AM3 tracker with 3

latest state-of-art trackers (Frag2 [13], TLD3 and MIL4) on

two different types of challenging situations: (I) Cloudy;

(II) Strong light. The performances of these trackers were

evaluated with the Ground Truth (GT), as shown in the

Figure 6b, 6c, 7b and 7c. And the Center Location Error

1http://en.wikipedia.org/wiki/Chroma key
2http://www.cs.technion.ac.il/∼amita/fragtrack/fragtrack.htm
3http://gnebehay.github.io/OpenTLD/
4http://vision.ucsd.edu/∼bbabenko/project miltrack.shtml

(CLE) is used to be the evaluation measurement [14], which

is defined as the Euclidean distance from the detected aircraft

center to its ground truth center at each frame, as shown in

the Figure 6d and 7d.

1) Test 1: Comparision under the cloudy background:

This situation contains four main challenging factors: (I)

Strong motions (e.g. onboard mechanical vibration and wind

influence) or large displacements; (II) Scale change; (III)

Illumination Variation; (IV) Background Clutters.

For the tracking performances, as shown in Figure 6b, 6c

and 6d, Frag tracker lost its target firstly when the aircraft

was flying from the non-cloud area to the cloud area. While

the TLD tracker also lost its target when the illumination

of aircraft is similar to the edge of cloud. MIL can track

its aircraft well at the beginning, however, it also lost the

aircraft when the target was flying from cloud area to non-

cloud area. Our new proposed AM3 can locate the aircraft in

all evaluation processes, and the performances of these four

trackers have been shown in the TABLE II.

2) Test 2: Comparision under the strong light background:

This situation also contains three main challenging factors:

(I) Strong motions (e.g. onboard mechanical vibration and

wind influence) or large displacements; (II) Scale change;

(III) Illumination Variation.

During the tracking process, as shown in Figure 7b, 7c

and 7d, the Frag tracker lost its target when a small cloud

confused it, as the yellow 1 shown in Figure 7a. For TLD

tracker, it is able to relocate on the target at the beginning,

but it lost the aircraft completely from the 85th frame. For

the MIL tracker, it prones to locate the tail of aircraft, but

it also lost the aircraft when the aircraft was flying from

the non-strong light area to the strong light area. Our new

presented visual tracker AM3 can track the aircraft all the

time until the aircraft flow out of the FOV.

The Center Location Error (CLE) (in pixels) for these two

evaluations in this paper is shown in below Table:

TABLE II: Center Location Error (in pixels)

Situations-Trackers Frag TLD MIL AM3

Cloudy 275 172 48 7

Strong Light 425 NaN 154 10
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(c) Y Position Errors.
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Fig. 6: Visual aircraft/intruder tracking on-board UAV under Cloudy background (Frame Size: 1280×960), where, No.1

(Yellow) represents the lost location tracked by Frag tracker. For TLD and MIL trackers, their lost locations are marked

with No.2 (Pink) and No.3 (Blue), respectively. Their tracking performances are evaluated with Ground Truth (Green).
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(b) X Position Errors.
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(c) Y Position Errors.

0 50 100 150 200
0

200

400

600

800

1000

Frames #

C
en

te
r 

L
o
ca

ti
o
n
 E

rr
o
r 

(P
ix

el
s)

 

 

Frag
TLD
MIL
Ours

(d) Center Location Errors.

Fig. 7: Visual aircraft/intruder tracking on-board UAV under the Strong Light background (Frame Size: 1280×720), where,

the Grey Shadows show that the TLD tracker lost the aircraft/intruder completely.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposed a new real-time visual tracker named

AM3 to track an arbitrary aircraft/intruder in the midair, and

test results in the evaluation system show that it outperforms

the existing state-of-art trackers in different kind of challeng-

ing situations in terms of robustness, efficiency and accuracy.

In the future works, we will compare with more existing

state-of-art trackers in the midair collision warning and

avoidance evalutaion system using different backgrounds,

aircrafts and trajectories, and IMU/GPS data also will be

used to compare with these visual trackers. Finally, the mul-

tiple aircrafts/intruders tracking algorithm will be developed.
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