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Abstract

The increasing demand for real-time high-precision Visual Odometry systems as part

of navigation and localization tasks has recently been driving research towards more ver-

satile and scalable solutions. In this paper, we present a novel framework for combining

the merits of inertial and visual data from a monocular camera to accumulate estimates of

local motion incrementally and reliably reconstruct the trajectory traversed. We demon-

strate the robustness and efficiency of our methodology in a scenario with challenging

camera dynamics, and present a comprehensive evaluation against ground-truth data.

1 Introduction

Good local estimation of egomotion forms the back-

bone of any modern high performance localiza-

tion/navigation system. While approaches to Simul-

taneous Localization And Mapping (SLAM) – as

for example [5, 10] – aim to build a global map of all

visited locations, for autonomous local navigation it

is usually enough to obtain good estimates of the lo-

cal trajectory – similar to the way humans employ

to navigate in their environment. Even SLAM tech-

niques however, have a critical dependency on accu-

rate and timely estimates of frame-to-frame motion

for a successful end result [4].
Figure 1: Map created by our VO

implementation.

The term Visual Odometry (VO) has been introduced and investigated in both the com-

puter vision and robotics communities for a few years now, referring to the problem of esti-

mating the position and orientation of a camera-carrying platform by analyzing images taken

from consecutive poses. Without any assumptions on prior knowledge about the camera’s

workspace, approaches to VO promise general applicability to incrementally reconstruct the

trajectory of the camera with the only requirement of visual input data.
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Approaches to VO range from super-dense optical flow to matching sparser, salient im-

age regions from one image to the next. Back in 1981, Lucas and Kanade [16] assumed

constant flow in local pixel regions which has been applied in [3] for VO estimation in

various types of terrain. More recently, the computer vision literature has seen some very

powerful, yet computationally demanding methods for optical flow as for example [24]. In

navigation/localization tasks however, pose estimation has to be performed on a per-frame

basis hence real-time is a requirement, thus sparser correspondence-based methods able to

run on general platforms have seen great popularity for such tasks.

The seminal work in [19] presented a framework for both monocular and stereo VO

which has been subsequently used as a basis for many successful systems. In [8, 12] we have

seen impressive setups for real-time VO from stereo images, while more recently, Konolige

et al. [13] demonstrated results over long trajectories on off-road terrain, following the trend

for lightweight high-precision algorithms performing in the presence of challenging camera

dynamics. The inherent difficulty there lies in robustly resolving data association as feature

tracks become highly jerky and mismatches are far more likely. The aforementioned algo-

rithms apply classical Structure From Motion (SFM) principles, and thus return triangulated

structure alongside the estimated camera trajectory. Figure 1 depicts an example of a point

cloud which has been successively triangulated by our VO setup, recovering both the camera

motion and the depth of sparse feature correspondences in parallel.

It has long been acknowledged that the use of inertial sensors together with cameras

can complement each other in challenging scenarios, aiding the resolution of ambiguities in

motion estimation arising when using each modality alone [23]. Here, we employ a monoc-

ular camera and an Inertial Measurement Unit (IMU) to recover relative camera motion,

in a sensor setup available in practically most modern smart phones (e.g. iPhone, Google

phones). We use a RANSAC based [6] hypothesize-and-test procedure as in [19], only here

we specifically address the efficiency and robustness of monocular VO, presenting an elegant

framework which exploits the additional benefits of the available rotation information.

As shown in several recent works [7, 9, 14], knowledge about the vertical direction can

for instance be used for reducing the minimum number of points for instantiating a hypoth-

esis about the relative camera pose down to three or even only two in the perspective pose

computation case. However, even though the vertical direction can be obtained from inertial

data, it only works reasonably well in the static case. In this work, we propose an alternative

tightly coupled SFM approach, that incorporates short-term full 3D relative rotation infor-

mation from inertial data in order to support the geometric computation. We demonstrate the

successful application of our pose estimation methodology on data obtained using a Micro

Aerial Vehicle (MAV) exhibiting full 3D motion with notably much more challenging dy-

namics than hand-held cameras or ground vehicles. The performance of the proposed system

is assessed in terms of both speed and accuracy with respect to ground truth.

2 Framework

The proposed strategy for robust, continuous pose computation of the camera operates in two

modes: firstly, a local point cloud is initialized from two views exhibiting sufficient disparity

among them, while for subsequent poses where the computed disparity is not big enough to

triangulate a new point cloud, the method switches to a perspective pose estimation algorithm

in order to derive the relative camera pose (following the paradigm of [20]). We follow

a keyframe-based methodology such that whenever the median-filtered disparity exceeds a
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Figure 2: Overall scheme and execution flowchart of the proposed VO. The blue boxes highlight the

key-contributions of this paper.

certain threshold in the number of pixels, we triangulate a new point cloud and the two frames

used for this process serve as keyframes. In subsequent frames, the current pose is estimated

with respect to the scene model constructed from the most recent keyframe-pair until a new

keyframe is added to the system. Figure 2 illustrates all the steps of the overall scheme and

the execution flowchart of the algorithm. The algorithm is based on a static scene model,

meaning that it is able to cope with moving parts in the structure up to a limited extend only.

Both the initial relative frame-to-frame transformation and the perspective pose compu-

tation are performed within robust RANSAC outlier-rejection schemes. Each perspective

pose as well as the initialization of a new point cloud get refined by an iterative non-linear

optimization step on the inlier subset. Note that the initialization of a new point cloud is

preceded by a simple outlier rejection based on the reprojection error. Finally, relative scale

propagation is performed by considering the subset of features present in all three views: the

current keyframe and the two keyframes from the previous point cloud. The relative scale is

preserved by imposing the constraint that the newly triangulated features occur at the same

depth they occur in the previous point cloud. Even though the relative scale is in principle

preserved via initializing the relative transformation in between the keyframes from the per-

spective pose computation, the final scale propagation step is still required since this is not

necessarily preserved during the 6D non-linear refinement of the relative transformation (the

optimization is invariant against variations of the norm of the translation vector).

The scheme has some similarities with the state-of-the-art monocular scheme presented
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in [19]. However, the novel methodology presented here has been specifically designed to

increase both the efficiency and the robustness of monocular VO estimation by exploiting

priors about the relative rotations from an additional IMU. Therefore, the main difference

here is that in our framework, except for the scale propagation step, we only need to consider

two-frame matches. The second major difference and also the key-contribution of this paper,

is that this allows for a reduction in the number of points used in the RANSAC-hypotheses

down to a minimum of two, for both the 2D-to-2D correspondence estimation during initial-

ization and the 3D-to-2D correspondence problem upon perspective pose computation. It is

important to note that these two-point algorithms do not suffer from any geometric degen-

eracies and always return a unique solution.

Knowledge of the relative camera rotation also provides great benefit during initialization

of the algorithm since disparities due to rotation can be compensated for, and as a result,

the method can guarantee that there is enough translation between the first two keyframes

(boosting robustness of triangulation) despite that there is no prior information about the

structure of the scene that the camera is exploring. Finally, it is worth noting that all per-

feature error measures are realized on the unit sphere, avoiding frequent projections back

and forth between the camera frame and the image plane.

3 Geometric Pose Computation

After a brief introduction to notation, here we detail the individual modules of our framework

that elegantly combine visual and inertial information to provide VO estimates.

3.1 Conventions

Figure 3: Notation.

Figure 3 indicates the notation used throughout this

paper. The intrinsic parameters of the camera are as-

sumed to be known. Here, we use the omnidirec-

tional camera model presented in [22] which pro-

vides the generality to allow this framework to op-

erate on any type of optical system (e.g. catadiop-

tric, dioptric cameras). The rotation from the camera

frame to the IMU frame is also assumed to be known

and given by RIMU
cam . This can be obtained by off-the-

shelf toolboxes as for instance [15].

The position of the camera with respect to the vision reference frame is given by C. The

rotation from the camera to the reference frame is expressed with R, while the rotation from

the IMU frame to the inertial reference frame is given by RIMU . Unit feature vectors pointing

from C to a certain world point P are expressed with
→
f and can always be obtained using the

camera calibration parameters to project features from the image plane onto the unit sphere.

3.2 Rotation Priors from the IMU

The relative rotation priors from the IMU are obtained by a fast integration of the high-

frequency gyroscopic measurements. Typically, common low-cost IMUs already accom-

plish this integration internally using a complementary filter along with the gravity direction
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obtained from the acceleration signals. Experience has shown that the resulting orientation

of the IMU is only affected by a slowly changing drift term and that short-term relative ori-

entation of the system can hence be recovered safely, directly from consecutive orientation

information delivered by the IMU. The relative rotation of the current camera frame with

respect to a keyframe is given by

R
key
current = RIMUT

cam ·RT
IMUkey

·RIMUcurrent ·R
IMU
cam . (1)

The necessary condition for obtaining good relative orientation information is that the

system should be in motion so that the temporal difference between different keyframes can

be bounded. This way, the angular errors of the priors about the relative rotation remain

small and can be easily compensated for in the non-linear refinement steps. If the system

enters an approximately static phase, there still exists the option of switching back to vision-

only based RANSAC-algorithms without affecting the overall scheme or the computational

efficiency of the algorithm (the major part of the processing resources is used for other tasks

than the RANSAC-iterations).

3.3 Frame-to-Frame Initialization

Figure 4: Two point correspondences between

consecutive frames.

Figure 5: Translation as an intersection of the re-

sulting epipolar planes.

The derivation of the frame-to-frame translation based on a relative rotation information

obtained from the IMU follows a relatively easy strategy. The relative orientation between

the current frame and the previous keyframe is given by (1). As indicated in Figure 4, the

unit feature vectors of the current frame can then be unrotated on the unit sphere using
→
f i,current unrotated= R

key
current ·

→
f i,current . The feature vectors expressed in frames with iden-

tical orientation, the normal vector of the epipolar plane of each feature correspondence
→
f i,key↔

→
f i,current is then simply given by

→
n i=

→
f i,key ×(Rkey

current ·
→
f i,current). (2)

The magnitude of the normal vector
→
n i resulting from the cross-product can be used

as a degeneracy measure of the determined epipolar plane normal. As shown in Figure 5,

two feature correspondences which result in distinct epipolar planes can then be used for

intersecting the direction of the translation vector. This is given by

→
d

current
key =

→
n 1 ×

→
n 2 . (3)
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If the plane normal vectors are normalized to one before the cross-product computation,

the magnitude of the result can again be used in order to determine the degeneracy of the

result. Since the scale of the problem is anyway not determinable, the final 3D translation

vector is found to be
→
t current

key =±

→
d

current
key

||
→
d current

key
||

. In order to determine the sign, we need to impose

that (
→
f i,key −R

key
current ·

→
f i,current)·

→
t current

key > 0.

This two-point algorithm returns a unique solution and is executed in a robust RANSAC-

scheme. During each iteration, samples with too small cross-product magnitudes are re-

jected. The error function simply consists of the reprojection error of the triangulated fea-

tures. However, as mentioned previously, the points are not transformed back into image

space. For the sake of computational efficiency, the error function simply uses dot-products

between normalized feature vectors on the unit sphere.

3.4 Perspective Pose Computation

In order to derive an IMU-supported pose computation of the camera with respect to a 3D

point-cloud, we use as basis the classical P3P-problem (Perspective-3-Point-problem). The

P3P-problem consists of finding a minimal solution for the position of the camera inside

the world reference frame under the knowledge of three 3D-to-2D point correspondences.

We draw inspiration from the novel parametrization presented in [11], which introduces a

direct computation of the absolute camera position and orientation. As opposed to classical

solutions, it allows to compute the position of the camera in a single stage, without the

intermediate derivation of the considered points for the hypothesis inside the camera frame

or the subsequent point alignment step. Since the method presented here is largely based on

this parametrization, we give a brief overview below.

The goal here is to find the exact position Ccurrent and orientation matrix Rcurrent of a

camera with respect to the world frame (O,X ,Y,Z), under the condition that the absolute

spatial coordinates of two observed feature points P1 and P2 are given. Since the intrinsic

camera parameters are known, we can assume that the unit vectors
→
f1 and

→
f2 pointing towards

the two feature points considered in the camera frame are given. Furthermore, we assume

that the position Ckey and orientation Rkey of the most recent keyframe are known. The

relative orientation between the two camera frames is given by (1). Hence, by incorporating

the known absolute orientation of the keyframe Rkey, the prior for the absolute orientation of

the current frame is obtained by

Rcurrent = Rkey ·R
key
current = Rkey ·R

IMUT

cam ·RT
IMUkey

·RIMUcurrent ·R
IMU
cam . (4)

Again, since the short-term integral of gyroscopic signals are only affected by very low

drift terms, this enables a reasonable prior on the absolute orientation of the current camera

frame. Let us denote the current camera frame with ν . We define a new, intermediate camera

frame τ from the feature vectors ~f1 and ~f2 inside ν . As shown in Figure 6, the new camera

frame is defined as τ = (C,~tx,~ty,~tz), where

~tx = ~f1, ~tz =
~f1 ×~f2

||~f1 ×~f2||
, and ~ty =~tz ×~tx. (5)

T = [~tx,~ty,~tz]
T then represents the rotation matrix from ν into τ , and feature vectors can

be transformed by ~f τ
i = T~f ν

i . The next step involves the definition of a new world frame
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Figure 6: Illustration of the intermediate camera

frame τ = (C,~tx,~ty,~tz) and the intermediate world

frame η = (P1,~nx,~ny,~nz).

Figure 7: Novel parametrization of the P3P-

problem as presented in [11].

η from the world points P1, P2, and an additional virtual control point P3. The new spatial

frame is defined as η = (P1,~nx,~ny,~nz), where

~nx =

−→
P1P2

||
−→

P1P2 ||
, ~nz =

~nx×
−→

P1P3

||~nx×
−→

P1P3 ||
, and ~ny =~nz ×~nx. (6)

Via the transformation matrix N = [~nx,~ny,~nz]
T , world points can finally be transformed

into η using P
η
i = N · (Pi −P1). The resulting situation is illustrated in Figure 6. The condi-

tion of existence of η is that P1, P2, and P3 are not colinear. This can be easily avoided by

choosing P3 such that
−→

P1P2 ×
−→

P1P3 is not zero.

In the following, we focus on the transformation between η and τ . We define the semi-

plane Π that contains points P1, P2, and C, and hence also the unit vectors ~nx,~tx,~ty, ~f1, and
~f2. Points P1, P2, and C form a triangle of which two parameters are known, namely the

distance d12 between P1 and P2, and the angle β between ~f1 and ~f2. As shown in detail in

[11], the transformation between η and τ is depending only on the two angular parameters

α and θ indicated in Figure 7. The camera center C inside η and the transformation matrix

Q from η to τ are given by

Cη (α,θ) =




d12 cosα(sinα · cotβ + cosα)
d12 sinα cosθ(sinα · cotβ + cosα)
d12 sinα sinθ(sinα · cotβ + cosα)



 ,

(7)

Q(α,θ) =




−cosα −sinα cosθ −sinα sinθ

sinα −cosα cosθ −cosα sinθ

0 −sinθ cosθ



 ,

(8)

Following the chain of rotations and substituting with (4), we obtain

Rcurrent = NT ·QT ·T

⇒ Q = T ·RT
current ·N

T

⇒ Q = T ·RIMUT

cam ·RT
IMUcurrent

·RIMUkey
·RIMU

cam ·RT
key ·N

T (9)

Hence, via comparing the obtained result with the symbolic notation in (8), we can easily

obtain the values for α and θ . By replacing them in (7), we obtain the current camera position

inside η . Using Ccurrent = P1 +NT ·Cη , we finally obtain the absolute position of the camera.

The two-point algorithm presented delivers a unique solution and is executed in a ro-

bust RANSAC-scheme within the VO framework. The cost-function simply consists of the

reprojection-error of all matched 3D points from the local cloud. As in Section 3.3, the error

function simply uses dot-products between normalized feature vectors on the unit sphere.
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(a) (b) (c)

Figure 8: In (a) is a typical image as captured by the MAV. The red (outliers) and yellow (inliers)

lines denote matches between the current frame and the last keyframe. The magenta lines represent

inlier matches between the last two keyframes. In (b) is the result of the VO for different combinations

of feature detector/descriptor, and (c) depicts an intermediate, local point cloud obtained using FAST

corners [21] triangulated during VO estimation.

4 Experimental Results

In an attempt to demonstrate the robustness of our method on a challenging scenario, we

validated our approach on a dataset captured using a quadrotor MAV (Micro Aerial Vehicle)

exhibiting full 6DOF motion with high dynamics. The MAV is typically equipped with

an IMU, so we installed an additional downward-looking camera with a field of view of

100◦, capturing images at a resolution of 752×480. Compared to handheld camera motion

sequences or images taken from a ground or fixed wing aerial vehicle, this setup provides

very challenging datasets since the horizontal acceleration of the vehicle can directly be

translated into roll and pitch rotations only. Since the methodology presented obtains relative

rotation priors from the IMU, our framework is able to robustly cope with such critical

motion sequences in contrast to classical vision-only based solutions. In fact, a quantitative

comparison between our and a vision-only approach cannot be done due to the fact that the

vision-only approach is not able to successfully process the entire dataset. This is not only

due to the motion characteristics, but also to structural degeneracies (mostly planar). If a

vision-only iteration succeeds, it is in the best case as good as our approach and converging

to the same local minimum through the non-linear refinement.

The entire framework has been integrated into ROS (Robotic Operating System) and the

interest point detectors/descriptors used for the image processing can seamlessly be config-

ured to any combination. Here, we present results using state-of-the-art methods, namely

we use SURF [1], AGAST [18] with subpixel refinement and FAST [21] for the detection

in conjunction with the SURF or BRIEF [2] descriptors. In the case where the perspective

pose computation fails to find enough inliers, the algorithm is able to switch back automat-

ically to the reinitialization case, avoiding the introduction of inconsistencies/errors in the

VO estimation. The experiments have been carried out on a standard 2.8 GHz core.

The dataset we analyze has been captured in a large room (10×10×10m3) equipped with

a Vicon motion capture system for ground truth data. We enriched the scene with sparse nat-

ural features since the textureless environment is unsuitable for any vision algorithm. Figure

8(a) shows a typical image captured by the flying MAV, demonstrating that the distribution

of the extracted features in the image can be very inhomogeneous. However, since the visual
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Figure 9: Results for the indoor trajectory.

information is mainly used for estimating the translation, the algorithm is able to robustly

work even with such uneven distributions. Figure 8(b) shows the spatial result over the entire

dataset for different combinations of feature extraction and description.

Since the VO results are not in metric scale, they have been multiplied by an appropriate

factor such that they can be compared to the metric ground truth trajectory. In order to avoid

any compensation of scale-drifts – which would disturb the fairness of the comparison –, this

factor is derived once, at the beginning of the trajectory. The absolute error at the end of the

22.59m long trajectory amounts to 1.28m for the combination FAST+BRIEF (5.7%), 0.57m

for AGAST+BRIEF (2.5%), 0.67m for AGAST+SURF (3%), and 0.26m for SURF+SURF

(1.2%). Figure 9 shows the translation and rotation of the camera. As a result, we conclude

that the choice of feature detector has the biggest impact on the overall success of operation.

In particular, using SURF or AGAST for detection with subpixel accuracy greatly reduces

the amount of drift accumulated along the trajectory. The reason for this can also be observed

in Figure 8(c), which shows the discretized appearance of the local point cloud when using

the FAST keypoint detector. Comparatively, the SURF detector yields much more points

than the others, yielding best results in terms of quality.

The ranking of combinations in

terms of quality of results is evi-

dently in contrast to the ranking in

terms of computational efficiency.

As shown in Figure 10, only the

FAST or AGAST based solutions are

able to run in real-time. The best

trade-off between accuracy and effi-

ciency is given by using the AGAST

extractor with subpixel refinement

in combination with the efficient

BRIEF descriptor.
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Figure 10: Timings of the different combinations of fea-

ture detectors and descriptors.

5 Conclusion

In this paper, we presented a real-time framework for robust Visual Odometry over trajecto-

ries with challenging dynamics. Using the relative orientation information from an additional
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IMU, the number of points for establishing hypotheses for the relative transformation in be-

tween consecutive frames can be reduced to two in any case. The framework selects frames

to serve as keyframes, used to triangulate point clouds for perspective pose computation

whenever there is sufficient disparity. Disparity measures are always preceded by an unrota-

tion of the normalized feature vectors on the unit sphere, thus avoiding triangulation in the

presence of mostly rotational displacement. Our results demonstrate minimal accumulated

drift in estimates, presenting a relative assessment of different state-of-the-art feature types.

6 Acknowledgments

This research was supported by the EC’s 7th Framework Programe (FP7/2001-2013) under

grant agreement no. 231855 (sFly), and by the Swiss National Science Foundation under

grant agreement n. 200021 125017/1. We are grateful to Prof. R. D’Andrea and S. Lupashin

for providing access and support for the “Flying Machine Arena” [17].

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features.

Computer Vision and Image Understanding (CVIU), 110(3):346–359, 2008.

[2] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary Robust Independent

Elementary Features. In Proceedings of the European Conference on Computer Vision

(ECCV), 2010.

[3] J. Campbell, R. Sukthankar, and I. Nourbakhsh. Techniques for evaluating optical flow

for visual odometry in extreme terrain. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS), 2004.

[4] M. Chli. Applying Information Theory to Efficient SLAM. PhD thesis, Imperial College

London, 2009.

[5] A. J. Davison, N. D. Molton, I. Reid, and O. Stasse. MonoSLAM: Real-time sin-

gle camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 29(6):1052–1067, 2007.

[6] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981.

[7] F. Fraundorfer, P. Tanskanen, and M. Pollefeys. A minimal case solution to the cali-

brated relative pose problem for the case of two known orientation angles. In Proceed-

ings of the European Conference on Computer Vision (ECCV), 2010.

[8] A. Howard. Real-time stereo visual odometry for autonomous ground vehicles. In

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS),

2008.

[9] M. Kalantari, A. Hashemi, and F. Jung J.-P. Guedon. A new solution to the relative

orientation problem using only 3 points and the vertical direction. Journal of Mathe-

matical Imaging and Vision (JMIV), 39:259–268, 2011.



KNEIP, CHLI, SIEGWART: ROBUST REAL-TIME VISUAL ODOMETRY 11

[10] G. Klein and D. W. Murray. Parallel tracking and mapping for small AR workspaces.

In Proceedings of the International Symposium on Mixed and Augmented Reality (IS-

MAR), 2007.

[11] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the perspective-

three-point problem for a direct computation of absolute camera position and orienta-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2011.

[12] K. Konolige, M. Agrawal, and J. Solà. Large scale visual odometry for rough terrain.

In Proceedings of the International Symposium on Robotics Research (ISRR), 2007.

[13] K. Konolige, M. Agrawal, and J. Solá. Large-scale visual odometry for rough terrain.

In Robotics Research, volume 66 of Springer Tracts in Advanced Robotics, pages 201–

212. 2011.

[14] Z. Kukelova, M. Bujnak, and T. Pajdla. Closed-form solutions to the minimal absolute

pose problems with known vertical direction. In Proceedings of the Asian Conference

on Computer Vision (ACCV), 2010.

[15] J. Lobo and J. Dias. Relative pose calibration between visual and inertial sensors.

International Journal of Robotics Research (IJRR), 26(6):561–575, 2007.

[16] B. D. Lucas and T. Kanade. An iterative image registration technique with an applica-

tion to stereo vision. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 1981.

[17] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea. A simple learning strat-

egy for high-speed quadrocopter multi-flips. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2010.

[18] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and generic

corner detection based on the accelerated segment test. In Proceedings of the European

Conference on Computer Vision (ECCV), 2010.

[19] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2004.

[20] M. Pollefeys, R. Koch, M. Vergauwen, B. Deknuydt, and L. Van Gool. Three-

dimensional scene reconstruction from images, volume 3958, pages 215–226. Pro-

ceedings of SPIE Electronic Imaging, 2000.

[21] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In

Proceedings of the European Conference on Computer Vision (ECCV), 2006.

[22] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox for easily calibrating omni-

directional cameras. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots

and Systems (IROS), 2006.

[23] D. Strelow and S. Singh. Motion estimation from image and inertial measurements.

International Journal of Robotics Research (IJRR), 23(12):1157, 2004.

[24] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime TV-L1 optical

flow. In Proceedings of the DAGM Symposium on Pattern Recognition, 2007.


