
IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, April 2005

Robust Real-Time Visual Tracking:
Comparison, Theoretical Analysis and Performance Evaluation

Andrew I. Comport∗, Danica Kragic§, Éric Marchand∗, François Chaumette∗

∗IRISA - INRIA §NADA - CAS/CVAP
Campus de Beaulieu, Rennes, France Royal Institute of Technology, Stockholm, Sweden

Abstract— In this paper, two real-time pose tracking
algorithms for rigid objects are compared. Both methods
are 3D-model based and are capable of calculating the
pose between the camera and an object with a monocular
vision system. Here, special consideration has been put into
defining and evaluating different performance criteria such
as computational efficiency, accuracy and robustness. Both
methods are described and a unifying framework is derived.
The main advantage of both algorithms lie in their real-time
capabilities (on standard hardware) whilst being robust to
miss-tracking, occlusion and changes in illumination.

Index Terms— Model-based tracking, real-time, robust-
ness.

I. INTRODUCTION

Methods for real-time 3D tracking of objects using
vision sensors have recently matured to the point where
they are rapidly becoming good enough to be used in
real-world applications ranging from robotics to aug-
mented reality and medical applications [12], [5], [10],
[13], [3]. In this paper, the problem will be restricted
to model-based 3D tracking algorithms where the track-
ing is considered as a 3D localization issue, handled
using Full-scale non-linear optimization techniques as
proposed more than 10 years ago by David Lowe [12].
Such approaches have proved to be very efficient and can
now operate in real-time. Although a number of different
techniques exist, most of the reported results are similar.

This paper addresses two recent formulations of such
algorithms. The first method considered has been pro-
posed by Drummond and Cipolla [5] and is based on Lie
Algebra. The second method has been proposed in [3]
and is based on the virtual visual servoing technique
(VVS). The two methods are based on optimization and
have been demonstrated as robust in real-time settings.
It should be noted that even though the formulations
are very different, they remain full scale non-linear pose
computation algorithms with a 1D search along the
projected edge normal in subsequent frames, as well as
robust M-estimation.

Since an image stream contains a practically infinite
amount of information it is necessary to further sample
the image measures so as to obtain pertinent information
about the position and orientation of a target object. In
computer vision literature geometric primitives consid-
ered for the estimation are often points [7], [4], contours
or points on the contours [12], [3], [5], segments, straight
lines, conics, cylindrical objects, or a combination of
these. The methods compared in this paper consider a
redundant set of distance measures resulting from an
efficient 1D search path. Non-linear minimization is then

performed over a set of redundant distance measures. The
methods are accurate since distances are considered in
a many-to-one mapping between the distances and the
object’s pose thus allowing averaging of inherent noise
across the object evenly.

Real world tracking systems need to be robust to
occlusion, miss-tracking and image noise. The main
advantage of the model-based methods is that the knowl-
edge about the scene (the implicit 3D information) allows
improvement of robustness and performance by estimat-
ing the 3D movement of the object and acts to reduce
the effects of outlier data introduced in the tracking
process. Both methods implement outlier rejection using
M-estimators [8] by considering iteratively re-weighted
least square(IRLS) minimization techniques.

Let it be noted that the Jacobians or interaction ma-
trices that link the estimated camera velocity to the
variation of a distance in the image are derived using
different methods and a set of unifying equations are
presented in this paper. From now on, Drummond and
Cipola’s method [5] will be referred to as Method 1
and the VVS method will be referred to as Method 2.
In the remainder of this paper, Section II presents an
overview of both approaches. Section III presents the
Lie Algebra-based tracking approach while Section IV
presents Virtual visual servoing one. In Section V, a
unification of both approaches as well as the main differ-
ences are presented. Finally, in Section VI, experimental
results are demonstrated.

II. ROBUST TRACKING BASED ON NON-LINEAR

OPTIMIZATION TECHNIQUES

Full-scale non-linear optimization techniques consist
of minimizing the error between the observation and the
forward-projection of the model. In this case, minimiza-
tion is handled using numerical iterative algorithms such
as Newton-Raphson or Levenberg-Marquardt. The main
advantage of these approaches is their accuracy. The main
drawback is that they may be subject to local minima
and, worse, divergence. Both approaches considered in
this paper rely on a non-linear optimization approach.

To illustrate the principle, consider the case of an
object with various 3D features S (oS represents the
3D parameters of these features in the object frame). A
camera reference frame is defined with its pose relative
to the object frame defined by r representing the position
and orientation of the camera relative to the object.
The homogeneous transformation matrix representing

this pose is denoted:

cMo =

[
cRo

cto
03 1

]
, (1)

where cRo and cto are the rotation matrix and translation
vector between the camera frame c and the object frame
o. These homogeneous transformations belong to the 6-
dimensional Lie Group of rigid body motions in SE(3).

The goal of the pose computation problem is to esti-
mate the extrinsic parameters r by minimizing the error
∆ between the observed data sd (usually the position of
a set of features in the image) and the position s of the
same features computed by forward-projection according
to the current extrinsic and intrinsic parameters:

∆ = s(r) − sd = prξ(r,
o S) − sd, (2)

where prξ(r,
o S) is the projection model according to

the camera pose r and the intrinsic parameters ξ. It is
supposed here that intrinsic parameters ξ are available but
it is also possible, using the same approach, to estimate
these parameters.

Considering that sd is computed (from the image)
with sufficient precision is an important assumption.
Robust M-estimation is used in both methods to re-
duce the effect of miss-tracking and occlusion in the
image. M-estimators can be considered as a more general
form of maximum likelihood estimators [8]. They are
more general because they permit the use of different
minimization functions not necessarily corresponding to
normally distributed data. Many functions have been
proposed in the literature which allow uncertain measures
to be less likely considered and in some cases completely
rejected. The objective function is therefore modified to
reduce the sensitivity to outliers. The robust optimization
problem is then given by:

∆R = ρ
(
s(r) − sd

)
, (3)

where ρ(u) is a robust function [8] that grows sub-
quadratically and is monotonically nondecreasing with
increasing |u|. Both approaches consider a robust mini-
mization.

III. LIE GROUP FORMULATION OF THE TRACKING

The derivation of the image Jacobian for Method 1 is
based on simple point features in 3D and distances to
the projection of these points in 2D. The velocity field is
defined from Lie Group generators which are projected
in the direction of the contour normal so as to represent
different rigid motion parameters as components of a
distance (see Figure 1).

A. Interaction Matrix - Distance to Point

For the case of a point in 3D, a projection matrix is
defined as P = KM in the coordinate system of the
structure, where K is composed of the intrinsic camera
parameters and M is composed of the extrinsic pose
parameters. The projective coordinates of a point are then
given by:




u
v
w


 = P




x
y
z
1


 , (4)

where the 2D point p = (x,y), corresponding to a 3D
point, in image pixel coordinates coordinates is given by
x = (u/w) and y = (v/w)

L2 L1

pd

L3

d⊥

p

v

u

Fig. 1. Distance of a point to a point

In order to perform pose estimation, the derivative of
SE(3) corresponding to the tangent velocity vector space
or Lie Algebra is considered. In this first method, the
4×4 basis matrices of the Lie Algebra are used explicitly.
These basis matrices are called generators and are chosen
in a standard way to represent translations in the x, y and
z directions along with rotations around the x, y and z
axes. These six generators are given in [5].

The Lie Group of displacements is related to the Lie
Algebra of velocities via the exponential map, so that:

M = exp(αiGi), (5)

where each αi corresponds to an element of the kinemat-
ic screw or twist representing the inter-frame transforma-
tions. The motion in the image is related to the twist in
3D by taking the partial derivative of projective image
coordinates with respect to the ith generating motion:




u
′

i

v
′

i

w
′

i


 = PGi




x
y
z
1


 , (6)

with the motion in pixels being equivalent to the well
known optical flow equation as:

li =

[
ẋi

ẏi

]
=




u
′

i

wi
−

uiw
′

i

w2

i

v
′

i

wi
−

viw
′

i

w2

i


 , (7)

giving the motion in image coordinates.
Continuing with the determination of the inter-frame

movement, the different generating motions are projected
in the direction of the normal of the contour as:

fi = li.n̂, (8)

where n̂ is the normal direction.

B. Robust Minimization

Computing the motion is performed by solving a
weighted least-squares algorithm as follows:

vi =
∑

ξ

s(dξ)dξf ξ
i , (9)

Cij =
∑

ξ

s(dξ)f ξ
i f ξ

j , (10)

αi = C−1
ij vj , (11)

where dξ is a distance measured normal to a contour in
the image and αi is an estimated velocity corresponding

to one of the six basis generators Gi. Here, the fi

represent elements of the interaction matrix for a distance
to a point and s(dξ) is a robust weighting function [8][5].

Rodrigues’ formula is then used to map, exponentially,
the estimated velocities αi to the corresponding instanta-
neous displacement allowing the pose to be updated. To
apply the update to the displacement between the object
and camera, the exponential map is applied using pose
matrices resulting in:

cMo,t+1 =c Mo,texp

(∑

i

αiGi

)
(12)

IV. VIRTUAL VISUAL SERVOING FORMULATION

The derivation of the interaction matrix for Method 2
is based on the distance between projected 3D features
such as lines, circles, cylinders, etc..and 2D points. The
velocity of a virtual camera is then related to the velocity
of these distances in the image.

A. Interaction Matrix - Distance to Line

In [6] a general technique is given for determining the
interaction matrix of any geometric feature, including the
projection of the feature’s contour in the image along
with its differential relation to the kinematic screw of
the camera. Following this general methodology a simple
line feature has been considered.

The derivation of the interaction matrix for the velocity
parameters linking the variation of the distance between
a fixed point and a moving line to the virtual camera
motion is modeled by first considering the distance in
2D between a point and a line. In Figure 2, p is the
tracked point feature position and l(r) is the current line
feature position.

p
ρ

ρd

d⊥

l(r)

y

x

θ

Fig. 2. Distance of a point to a line

The distance feature from a line is given by:

dl = d⊥(p, l(r)) = ρ(l(r)) − ρd, (13)

where
ρd = xd cos θ + ydsinθ, (14)

with xd and yd being the coordinates of the tracked point.
Thus,

ḋl = ρ̇ − ρ̇d = ρ̇ + αθ̇, (15)

where α = xd sin θ−yd cos θ. Introducing the respective
interaction vectors for a line into (15) gives Ldl

= Lρ +
αLθ. The interaction vector related to dl can be thus
derived from the interaction matrix related to a straight
line given by (see [6] for its complete derivation):

Lθ=
[
λθcosθ λθsinθ −λθρ ρcos θ −ρsin θ −1

]

Lρ=
[
λρcosθ λρsinθ −λρρ (1+ρ2) sinθ −(1+ρ2) cosθ 0

]
(16)

where λθ = (A2 sin θ−B2 cos θ)/D2, λρ = (A2ρ cos θ+
B2ρ sin θ + C2)/D2, and A2X + B2Y +C2Z +D2 = 0
is the equation of a 3D plane which the line belongs to.

From (15) and (16) the following is obtained:

Ldl
=




λdl
cos θ

λdl
sin θ

−λdl
ρ

(1 + ρ2) sin θ − αρ cos θ
−(1 + ρ2) cos θ − αρ sin θ

−α




T

, (17)

where λdl
= λρ + αλθ.

Let it be noted that the case of a distance between a
point and the projection of an ellipse has been considered
in [3] and the case of a distance to a cylinder is very
similar to the case of a line.

B. Robust minimization

In Method 2, minimization of the distances is consid-
ered as a dual problem of 2D visual servoing [6], [9]. In
visual servoing, the goal is to move a camera in order to
observe an object at a given position in the image. This is
achieved by minimizing the error between a desired state
of the image features sd and the current state s. If the
vector of visual features is well chosen, there is only one
final position of the camera that allows this minimization
to be achieved. Alternatively for pose computation, a
virtual camera is moved (initially at ri) using a visual
servoing control law in order to minimize this error ∆.
This virtual camera finally reaches the position rd which
minimizes this error (rd will be the real camera pose).

The objective of the control scheme is to minimize
the objective function given in (3). This new objective is
incorporated into the control law in the form of a weight
which is given to specify a confidence in each feature
location. Thus, the error to be regulated to 0 is defined
as:

e = D(s(r) − sd), (18)

where D is a diagonal weighting matrix given by D =
diag(w1, . . . ,wk).

A simple control law can be designed to try to ensure
an exponential decoupled decrease of e around the de-
sired position s∗ (see [3] for more details). The control
law is given by:

v = −λ(D̂L̂s)
+D
(
s(r) − s∗

)
, (19)

where v is the virtual camera velocity.
A classical approach in visual servoing considers D̂L̂s

to be constant and it is calculated from the desired depth
Z∗ and the desired value of the features s∗. In the
VVS case, the desired depth is unknown but the initial
value of Zi is available, thus (D̂L̂s)

+ can be defined as:
(D̂L̂s)

+ = L+(si,Zi).
As is done in Method 1, Rodrigues’ formula is then

used to map the velocity vector v to its corresponding
instantaneous displacement allowing the pose to be up-
dated. To apply the update to the displacement between
the object and camera, the exponential map is applied
using homogeneous matrices resulting in:

cM
t+1
o = cM

t
oexp(v) (20)

V. ALGORITHMS UNIFICATION AND COMPARISON

In this section it will be demonstrated that although
the formulation of each method is very different, both
algorithms can be unified in a common mathematical
framework. This common framework, in turn, provides a
basis from which various differences may be explained.
Following the unification, these differences are described.

A. Notations

First of all, the equivalence between the notation
of Method 1 and the matrix notation of Method 2 is
established. The velocities αi to be estimated in the first
method are elements of the kinematic screw and can be
written as v = (α1 . . . α6). The index i is chosen to
index a feature in place of ξ in the first method. The
distances are defined similarly giving dl = dξ with error
vector defined as s = (d1, . . . ,dn), where n is the
number of features. The weights s(dξ) are considered
equivalent to the weights wi. As will be demonstrated in
Section V-B, the fi from (8) are equivalent to elements
of the interaction matrix given in (17).

B. Interaction Matrices Derivation

In this section it is shown that the principle difference
between the first approach and the second is in the
method for deriving the interaction matrix or image
Jacobian. Since the second method is centered around
the modeling of the interaction matrix it is easily adapted
to be used as a unifying framework.

In Method 1 components of the interaction matrix
were determined individually by the use of Lie Group
generators and homogeneous point projection matrices.
In this case points were sampled along the contours in
3D. Alternatively, in Method 2 the interaction matrix
was calculated via a direct projection of higher level 3D
features onto the image. In this case the sampling of the
contours occurs along the 2D projection of the contour in
the image. Therefore, if the first method is considered in
this common framework, the 3D model can be considered
as a collection of 3D points.

The derivation of the interaction matrix of a point in
the first method can be written in its matrix form by
considering each li from (7) to correspond to a column
of the interaction matrix for a point so that the interaction
matrix for a point is equivalent to Lp = [l1, . . . , l6],
equivalent to the well known interaction matrix for a
point given as:

Lp=

[
−Z−1 0 xZ−1 xy −(1 + x2) y

0 −Z−1 yZ−1 1 + y2 −xy −x

]

The dot product operator that appears in (9) is equiv-
alent to projecting each point coordinate’s interaction
vector in the direction of the normal as:

Ldp = cos θLx + sin θLy (21)

giving the interaction matrix of a distance to a projected

point as:

Ldp
=




−Z−1 cos θ
−Z−1 sin θ

Z−1x cos θ + Z−1y sin θ
xy cos θ + (1 + y2) sin θ
−(1 + x2) cos θ − xy sin θ

y cos θ − x sin θ




T

, (22)

where the subscript dp refers to a distance to a point as
opposed to a distance to a line in equation (17).

This can be proven as being mathematically equivalent
to the distance to line interaction matrix (17) by rewriting
equation (15) to eliminate ρ by using the equation of a
line (14).

dl = (x − x∗) cos θ + (y − y∗) sin θ. (23)

Deriving (23) with respect to time gives the same
as (21):

ḋl = ẋ cos θ + ẏ sin θ, (24)

Therefore both methods can be considered as equiv-
alent mathematically yet slightly different in terms of
modeling the interaction matrix. Furthermore, it has been
shown that the two methods can be considered within a
unifying framework.

The notable difference in the two derivations, although,
lies in the computational complexity of the algorithm.
This is due to the fact that for Method 1 sampling of
the contour occurs in 3D whereas in Method 2 this is
done in 2D. Furthermore, each method does a conversion
from meters to pixels in a different way. In Method 1 the
3D points are sampled, projected and then converted to
pixels, whereas, in Method 2 the projected contours are
both converted to pixels and sampled in 2D. It can be
shown that the computational complexity of Method 1
for the projection for all sampled points onto the image
is order O(n) and for the intrinsic parameter conversion
from meters to pixels is also O(n) where n is the
number of tracked points along the contour. In Method
2 both extrinsic projection and intrinsic conversion are
performed in order O(m), where m is the number of
higher level features and where m << n.

C. Robust Minimization

Finally, the linearized least squares minimization in (9)
of Method 1 can be rewritten in the common form:

v = (DL)+D(s(r) − sd), (25)

with the pseudo-inverse (DL)+ being equivalent to the
computation of the individual terms Cij in equation (9).
It can be noted in this case that the gain λ = 1.

It can be seen that the second method includes an
iterative calculation, in equation (19), with a time con-
stant determined by the gain λ, whereas in Method 1
only a single iteration is performed for each frame of
the video. It can be noted that the iterative process is
slightly more time consuming, however, it allows greater
convergence upon the global minimum which ensures
greater precision.

For the implementation of a robust M-estimator, an
iterative re-weighted least squares (IRLS) approach is

used in both approaches to handle outliers, however, at
this point the effect of the differences is more significant.
In Method 1, since a single iteration is performed for
each frame, IRLS is performed over sequential frames.
Since the weights for each distance are calculated itera-
tively it is necessary, in this case, to keep a one-to-one
correspondence between sampled points across frames
so as to be always estimating the same weight for the
same point. This implies that edge re-sampling is not
done at each new frame and subsequently that the pose
update using the exponential map is only done after
convergence across frames. In the interpretation of the
algorithm in this paper, tracking was performed at each
step, however, in this case it is easy to show that the
M-estimator does not work without convergence. These
complications could explain why Method 1 considered
other rejection rules to deal with particular problems as
described in [5].

In Method 2, since minimization procedes iteratively
for each frame, weights and scale (standard deviation
of the inliers data) are recomputed iteratively (see [3]
for details). This allows adaptive and precise rejection
of outliers in the data. Furthermore, the edge sampling
across frames can be modified online, due to self-
occlusion for example, without any problem. Dealing
with the implementation of the M-estimator, the two
methods also feature minor differences with the choice
of influence function (McLure in Method 1 and Tukey
in Method 2).

Once again if the complexity is re-considered by
using an iterative approach for both methods (which
improves Method 1’s behavior) the order of complexity
becomes O(2ne−λt) and O(2me−λt) for Method 1 and
2 respectively.

D. Low level issue

When dealing with image processing, the normal
displacements were evaluated along the projection of
the object model contours. Both approaches are similar
and can be implemented with convolution efficiency
leading to real-time computation. The process consists
in searching for the corresponding pt+1 in image It+1

of each point pt. A 1D search interval {Qj , j ∈ [−J, J]}
is determined in the direction δ of the normal to the
contour. For each point pt and for each entire position
Qj lying in the direction δ a criterion ζj is computed.

In Method 1 Q∗
j corresponds to the nearest intensity

discontinuity along the edge normal. In this case ζj =|
It+1
ν(Qj) ∗ M | where M is an edge detection mask. In

this case the search starts at a point pt and tests all the
points Qj along the normal until ζj > ξ (where ξ is a
given threshold). In other words, the closest point above
a certain threshold is selected.

In Method 2, the Moving Edge algorithm [1] is con-
sidered. The new position pt+1 is given by the maximum
likelihood of a contour in the search path:

Qj∗ = arg max
j∈[−J,J]

ζj with ζj =| It
ν(pt)∗Mδ+It+1

ν(Qj)
∗Mδ |

where ν(.) is the neighborhood of the considered pixel
and Mδ are pre-computed mask function of the orien-
tation of the contour. Therefore this method chooses

the maximum likelihood of a contour existing along
a fixed distance to the normal. Method 2 only finds
edges with the same orientation and with similar contrast
which improves accuracy and subsequent efficiency of
the tracking as opposed to choosing any edge in the path
with any orientation.

VI. RESULTS

In the following section several experiments on each
method are presented. The implementation of the code
was made exactly the same for each method except
for essential code in the time-critical inner loop. In
the experiments presented, images are acquired using a
commercial digital camera. The object used in the ex-
periments was an ’Uncle Ben’s’ rice packet. The reason
for choosing this object is that its textural properties give
rise to a number of outliers. Several different movements
were performed including large rotations and translation-
s. In the experiments, tracking is always performed at
below frame rate.

The SIFT point matching method [11] was used along
with reference images of the object and a linear pose
computation method to perform an automatic initializa-
tion of the pose in the first image. An example of the
initialization step can be seen in Figure 3.

Fig. 3. Automatic initialization of the pose in the first image for two
different starting positions. Reference image on the left with matched
point s indicated on each image.

A. Iterative vs non-iterative minimization

The goal of the first experiment was to analyze the
advantages of using a non-iterative (Method 1) versus an
iterative minimization scheme (Method 2). The accuracy
without iterating gives a higher normalized averaged
error across the sequence than when iterations are per-
formed (see Figure 4). Obviously iteratively minimizing
for each frame obtains a more precise minimum of the
objective function. Furthermore the larger deviation of er-
ror seen in the plot for Method 1 can also be explained by
the failure of the M-estimator which does not obtain an
accurate scale estimate (standard deviation of the inliers
data) without iterating. This could be chosen manually
for each sequence, however, automatic determination of
scale is preferred.

B. Low level

In the second experiment, we have compared dif-
ferent low level feature detection algorithms. Taking
the maximum likelihood value in the direction of the
normal (Method 2) worked better than taking the closest
likelihood over a certain threshold (Method 1) due to the
fact that Method 1 is very sensible to the chosen detec-
tion threshold. Furthermore, propagating the weights (as

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Normalised Residue at Each Acquired Image

N
or

m
al

is
ed

 R
es

id
ue

 (
m

m
)

Images

Automatic
Initialization

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Normalised Residue at Each Acquired Image

N
or

m
al

is
ed

 R
es

id
ue

 (
m

m
)

Images

Automatic
Initialization

(a) (b)
Fig. 4. Comparison of error norm over a 500 image sequence. a)
Method 1 without iterating for each image and b) Method 2 using an
iterative scheme with a gain λ = 0.7. The iterative method provides
better minimization along with a better implementation of the IRLS
algorithm for outliers rejection.

considered in [2]) was needed for the Uncle-Ben object
because the inner-contours of the object have a highly
different contrast to the exterior edges meaning that a
fixed threshold would need to be tuned to obtain the
optimal balance between inner and outer contours. In
Figure 5, a failure case is shown for the use of Method
1 compared to the use of Method 2.

a

b

Fig. 5. The same images of a sequence using each method. Projected
model is drawn in blue and the object axes are drawn in red, green
and blue. (a) Method 1 with tracked points drawn in red, miss-tracking
can be observed at the bottom right hand corner of the box as the
M-estimator is not effective without iterating. (b) Method 2 with the
M-estimator rejecting outliers and rejected points in green.

C. Computational Efficiency

The computational efficiency was measured by timing
the critical inner loop for execution time. Since the
two methods are so similar, a direct comparison of
the computational time is not possible and without the
author’s implementation of Method 1’s code this seems
difficult to compare. It is more interesting to present the
computational times for these sorts of algorithms in order
to show where additional computation improvement can
be made. The pie chart in Figure 6 is the result of
an analysis of the computation time occupied by the
different functions. The current graph is for the imple-
mentation of Method 2, however, the graph for Method 1
is practically the same except for some extra computation
time spent on the computation of non-optimized code for
the multiplication of projection matrices and generator
matrices. It can clearly be seen that the major factor for

computational efficiency is the convolution for determin-
ing edge locations. Coming in second is the time required
to compute the pseudo-inverse and multiplication of the
interaction matrix in the control law. Thus it is preferable
to use the interaction matrix in its fully derived form
and not calculate the intermediary steps of projection and
meters-to-pixel for each generator at each iteration.

Percentage Computation Time

1% 7%

38%

1%

1%
9%

21%

1%

21%

Projection
Hidden Edge Removal
1D Search Convolution
Compute Error
Compute Weights
Compute Inte raction Matrix
Compute Velocity Twis t
Update Pose
Other

Fig. 6. Percentage computation time of different parts of the algorithm

VII. CONCLUSION

This paper has presented and compared two real-time
tracking algorithms. A unifying mathematical framework
has been described showing clearly the principle differ-
ences of the algorithms. In particular, a clear formulation
using an interaction matrix representation has been given
to unify the derivation of any distance to contour type
image feature. The criteria of accuracy, efficiency and
robustness have been addressed in theory and confirmed
in practice. It has been shown that it is necessary to
iterate for both improved precision and accurate outlier
rejection. Furthermore, tuning parameters such as a con-
tour detection threshold and a robust scale parameters are
eliminated in this approach.

REFERENCES

[1] P. Bouthemy. A maximum likelihood framework for determining
moving edges. IEEE Trans. on PAMI, 11(5):499–511, May 1989.

[2] A.I. Comport, E. Marchand, and F. Chaumette. A real-time tracker
for markerless augmented reality. In ACM/IEEE Int. Symp. on
Mixed and Augmented Reality, pp. 36–45, Tokyo, Oct. 2003.

[3] A.I. Comport, E. Marchand, and F. Chaumette. Robust model-
based tracking for robot vision. In IEEE/RSJ Int. Conf. on
IROS’04, vol. 1, pp. 692–697, Sendai, Sept. 2004.

[4] D. Dementhon and L. Davis. Model-based object pose in 25 lines
of codes. Int. J. of Computer Vision, 15:123–141, 1995.

[5] T. Drummond and R. Cipolla. Real-time visual tracking of
complex structures. IEEE T.. on PAMI, 27(7):932–946, July 2002.

[6] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE Trans. on Robotics and Automation,
8(3):313–326, June 1992.

[7] R. Haralick, H. Joo, C. Lee, X. Zhuang, V Vaidya, and M. Kim.
Pose estimation from corresponding point data. IEEE Trans on
Systems, Man and Cybernetics, 19(6):1426–1445, Nov. 1989.

[8] P.-J. Huber. Robust Statistics. Wiler, New York, 1981.
[9] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo

control. IEEE Trans. on Robotics and Automation, 12(5):651–
670, Oct. 1996.

[10] D. Kragic and H.I. Christensen. Confluence of parameters in
model based tracking. In IEEE ICRA’03, vol. 4, pp. 3485–3490,
Taipe, Sept. 2003.

[11] D. Lowe. Distinctive image features from scale-invariant key-
points. Int. J. of Computer Vision, 60(2):91–110, 2004.

[12] D.G. Lowe. Fitting parameterized three-dimensional models to
images. IEEE Trans. on PAMI, 13(5):441–450, May 1991.

[13] L. Vacchetti, V. Lepetit, and P. Fua. Stable 3–d tracking in real-
time using integrated context information. In CVPR’03, vol. 2,
pp. 241–248, Madison, WI, June 2003.

