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Abstract

We present an original method for tracking, in an im-

age sequence, complex objects which can be approximately

modeled by a polyhedral shape. The approach relies on the

estimation of the 2D object image motion along with the

computation of the 3D object pose. The proposed method

fulfills real-time constraints along with reliability and ro-

bustness requirements. Real tracking experiments and re-

sults concerning a visual servoing positioning task are pre-

sented.

1 Introduction

Most of the available tracking techniques can be di-

vided into two main classes: feature-based and model-

based. The former approach tracks features such as geo-

metrical primitives (points, segments, circles, ✄☎✄✆✄ ), object

contours [1, 10], regions of interest [8], ✄✆✄☎✄ The latter ex-

plicitly uses a model of the tracked objects. This model can

be a CAD model [4, 6, 13, 16, 14] or a 2D template of the

object [12]. This second class of methods usually provides

with a more robust solution (for example, it can cope with

partial occlusion of the objects). Both approaches may use

Kalman filters to predict and estimate the position of the

tracked primitives over time.

In our case, we aim at designing a tracking algorithm ful-

filling the following properties or constraints: it should be

fast and robust, it should not require any temporal evolution

model, it should not involve any complex feature extraction

(such as contour extraction). Therefore, we have developed

a model-based 2D-3D approach that relies on the estimation

of the 2D object motion and of the 3D pose of the object. It

supplies a fast and robust tracking of complex objects which

can be approximately modeled by a polyhedral shape. More

precisely, in a first step, the object image motion is rep-

resented by a 2D affine motion model, and is estimated,

using a robust statistical method, from the computation of

the normal displacements evaluated along the projected ob-

ject model contours. These normal displacements are deter-

mined with the algorithm described in [3]. The 2D affine

motion model does not always match the real displacement

of the object. A second step that consists in fitting the pro-

jection of the object model on the intensity gradients in the

image is necessary. This is achieved using an iterative min-

imization of a non-linear energy function with respect to

3D pose parameters. The main advantages of this two-step

method can be summarized as follows. The 2D motion es-

timation stage allows us to handle large displacements of

the object, and to avoid a prediction step (that is often a

questionable issue). The result of this stage is exploited to

supply an appropriate initialization to the pose estimation.

Our model-based tracking only requires a coarse calibration

of the camera and a rough model of the object. Both 2D mo-

tion estimation and 3D pose estimation do not involve edge

detection (we only consider gray level images). Both are

robust to partial occlusions of the object. Finally, we can

perform real-time tracking (currently, up to 10Hz on a PC

400MHz).

One of our goals is to use this tracker within visual ser-

voing tasks. Visual servoing [9], that consists in controlling

robot motion with respect to image information, is now used

in industrial environment. However, if most of the control

issues are now well known and robust control laws can be

defined to perform positioning tasks, efficient image pro-

cessing tools seem to be one of the main shortcomings to

a wide use of these techniques. Indeed, to fit visual servo-

ing requirements, image feature extraction must be robust,

accurate, and computed in real-time (at least at the high-

est possible rate). Current techniques exploited in industrial

environment use marked objects. However, in order to in-

crease the versatility of visual servoing techniques, such a

requirement must be alleviated. We will see that the devel-

oped tracking algorithm is perfectly suitable for position-

ing tasks. These systems are of interest for the Research

and Development division of EdF (Électricité de France) to
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achieve maintenance and monitoring tasks in hostile envi-

ronment (nuclear power plant). The paper is organized as

follows. Section 2 describes the 2D motion-based tracking

stage that acts as an initialization to the 3D model-based

tracking presented in Section 3. Experimental tracking re-

sults and real-time visual servoing tasks are reported in Sec-

tion 4.

2 Motion-based tracking

We first consider that the global transformation between

two successive projections of the object in the image plane

can be represented by a 2D affine motion model. The goal

of this first step is to estimate the parameters of this 2D

transformation even in presence of large 2D displacements

of the object image. Contrary to usual Kalman filter meth-

ods, this motion-based method does not require the intro-

duction of a state model evolution (e.g., a constant velocity

model), and consequently the initialization of the variance

of the noise of the state and measurement models.

2.1 Affine transformation model.

Let ✝✟✞✡✠☞☛ ✌✍✞✎✑✏ ✄✆✄✆✄ ✏ ✌✍✞✒✔✓✖✕ be a vector formed by the im-

age coordinates ✌ ✞✗ of points along the boundaries of the

object model projection at time ✘ . The object image shape✝ ✞✚✙ ✎ at time ✘✜✛✣✢ will be given by:✝ ✞✚✙ ✎ ✠✥✤✧✦✩★✪✝ ✞✬✫ (1)

where ✤ ✦ is a 2D affine transformation expressed as:✭✯✮ ✞✚✙ ✎✗✰ ✞✚✙ ✎✗ ✱ ✠ ✭✳✲ ✎ ✲✵✴✲✵✶✷✲✹✸ ✱ ✭✯✮ ✞✗✰ ✞✗ ✱ ✛ ✭✯✺✼✻✺✼✽ ✱ ✠✿✾❀★❁✌ ✞✗ ✫❃❂
(2)

with ❂ ✠ ★ ✲ ✎ ✏ ✲✹✴ ✏ ✲ ✶ ✏ ✲ ✸ ✏ ✺✼✻ ✏ ✺ ✽ ✫ ✕ , ✌ ✞✗ ✠ ★ ✮ ✞ ✗ ✏ ✰ ✞✗ ✫ ✕ ,✌ ✞✚✙ ✎✗ ✠❄✤✧✦✩★❁✌ ✞✗ ✫ , and✾❀★❁✌ ✫ ✠ ✭✯✮ ✰ ❅ ❅ ✢ ❅❅ ❅ ✮ ✰ ❅ ✢ ✱
This transformation is linear wrt. ❂ , and displacement❆ ✗ ★✚✌ ✗ ✫ ✠✿✌ ✞✚✙ ✎✗ ❇ ✌ ✞✗ can be written as:❆ ✗ ★❁✌ ✗ ✫ ✠✣✾❀★✚✌ ✗ ✫❃❂✧❈ (3)

where ❂ ❈ ✠ ❂ ❇ ★✬✢ ✏ ❅ ✏ ❅ ✏ ✢ ✏ ❅ ✏ ❅ ✫ ✕ .
The part of the tracking algorithm concerned with the es-

timation of the 2D affine parameters is articulated into two

sub-steps. The first one computes normal displacements

evaluated along the projection of the object model con-

tours using the so-called Moving Edges algorithm (ME) [3],

while the second one exploits this normal displacement field

to estimate ❉❂ ❈ using an extension of the robust multiresolu-

tion estimation technique introduced in [15]. We now de-

scribe these two sub-steps.

2.2 Computing normal displacements.

One of the advantages of the ME method is that it does

not require any prior edge extraction. We only manipulates

point coordinates and image intensities. Nevertheless, for

convenience, we will still use the word “contour” to refer

to the list of tracked points. The ME algorithm can be

implemented with convolution efficiency, and can lead to

real-time computation [3, 2]. We consider a list ❊❋✞ of pix-

els along the contour of the projection of the object model

(model fitting in the first image is performed in a semi-

automatic mode). The process consists in searching for the

“correspondent” ● ✞✚✙ ✎✗ in image ❍ ✞✚✙ ✎ of each point ● ✞✗❏■ ❊ ✞ .
We determine a 1D search interval ❑▼▲❖◆✗ ✏✪P ■ ☛ ❇❘◗ ✏ ◗ ✓❚❙ in the

direction ❯ of the normal to the contour (see Figure 1). For

each point ● ✞✗ of the list ❊ ✞ , and for each entire position ▲✧◆ ✗
lying in the direction ❯❲❱ (for computational issue, ❯❲❱ is the

closest direction to ❯ in the set ❑ ❅✔❳ ✏✬❨✹❩ ❳ ✏❃❬ ❅✔❳ ✏ ✢☎❭ ❩ ❳ ❙ ), we

compute a criterion corresponding to the square root of a

log-likelihood ratio ❪ ◆ . This ratio is nothing but the abso-

lute sum of the convolution values, computed at ● ✞✗ and ▲❖◆ ✗ ,
using a pre-determined mask ❫❵❴ function of the orientation

of the contour.

New position ● ✞✚✙ ✎✗ is given by:▲❖◆❜❛✗ ✠✥❝❡❞❣❢✐❤❥❝▼❦◆♠❧♦♥q♣sr☎t r▼✉ ❪ ◆ with ❪ ◆ ✠✟✈▼❍ ✞✇✑①③②❲④❁⑤⑦⑥ ❫❵❴❋✛⑧❍ ✞✚✙ ✎✇✑①③⑨⑦⑩④ ⑤ ⑥ ❫❵❴❶✈
providing that ❪ ◆❜❛ is greater than a threshold ❷ . ❸✼★❹✄ ✫ is the

neighborhood of the considered pixel. Then, pixel ● ✞✚✙ ✎✗
given by ▲❖◆❜❛✗ is stored in ❊ ✞✚✙ ✎ .

❺❹❻❼ ❺❽❻ ❾➀❿❼❺ ❻ ❾✖➁❼ ➂q➃➄❹➅❼ ➂ ➁ ➆ ➇➉➈ ➊➌➋ ➇ ➊➍ ➎✹➏➐
➎✹➏ ➑❃➒➐

Figure 1. Determining point positions in the next im-

age using the ME algorithm

At this step, we have a list of ➓ pixels as well as their

displacement component orthogonal to the object model

contour: ★❚● ✞✗ ✏ ❆♦➔✗ ✫ ✗③→ ✎↔➣q➣q➣ ↕ . This is performed for each new

frame, it never requires the extraction of new contours.

Since it is a local approach, it is robust to partial occlusions

of the object and to missing measurements.
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2.3 Affine transformation estimation.

Using ★❁● ✞✗➙✏ ❆♦➔✗ ✫ ✗➛→ ✎↔➣q➣q➣ ↕ , we can estimate the 2D affine

transformation ❂ ❈ . Using equation (3), we have:❆ ➔✗ ✠➝➜ ✕✗➟➞ ★❁● ✗ ✫ ✠✣➜ ✕✗ ✾❀★❚● ✗ ✫❃❂ ❈ (4)

where ➜ ✗ is a unit vector orthogonal to the object model

contour at point ● ✗ . Relying on (4), we can use a robust

estimator (a M-estimator ➠ ) to obtain ❉❂ ❈ as follows [15]:❉❂✧❈ ✠✣❝❲❞❃❢➡❤✟➢③➤✦⑦➥ ✒➦ ✗③→ ✎ ➠➨➧ ❆ ➔✗ ❇ ➜ ✕✗ ✾❀★❚● ✗ ✫❃❂✧❈✖➩ (5)

This robust statistical approach enables not to be affected

by locally incorrect measures (due to shadows, local miss-

matching, occlusions, etc.)

3 Model-based tracking

Knowing the positions ✝ ✞ of the projection of the con-

tours of the tracked object at time ✘ and the estimation ❉❂ ❈ of

the 2D global affine motion parameters between ✘ and ✘✹✛➫✢ ,
we are able to compute the positions of points ✝ ✞✚✙ ✎ at time✘✼✛✣✢ : ✝ ✞✚✙ ✎ ✠✥✤✟➭✦ ★✪✝ ✞ ✫
However, the 2D affine transformation cannot completely

account for the real transformation undergone by the pro-

jection of the object (due to perspective effects, important

rotations, non shallow environment), and after a few iter-

ations tracking may fail. To alleviate this problem the 2D

affine displacement model was first augmented with 2D lo-

cal deformations [7]. However, when adding local deforma-

tions, we cannot ensure 3D rigidity constraints. Moreover,

this was highly time consuming. Therefore, we prefer to ex-

ploit a rough CAD polyhedral model of the object. We have

to find the 3D rotation and the 3D translation (i.e., pose ➯ )

that map the object coordinate system with the camera co-

ordinate system. Once the pose parameters are available,

we can easily determine visible and invisible faces of the

object, which is of particular interest for tracking.

A number of methods to compute perspective from N

points have been proposed. We need to estimate the pose of

the object wrt. the camera from the positions ✝ ✞✚✙ ✎ obtained

after the first step of the algorithm described in Section 2.

We use the method designed by Dementhon and Davis [5]

followed by Lowe’s method [14]. We therefore get a first

estimate of the pose parameters ➯ ✞✚✙ ✎✗ ✒ ✗ ✞ which has to be still

updated to correspond as well as possible to the real new

aspect of the object. This further step consists in fitting the

projection of the object model on the intensity gradients in

the image. This is achieved using an iterative minimization

wrt. ➯ of a non-linear energy function using ➯ ✞✚✙ ✎✗ ✒ ✗ ✞ as ini-

tialization. Pose parameters ❉➯ are given by:❉➯➲✠✣❝❲❞❃❢➡❤✟➢③➤➳➸➵ ★➺➯ ✫ (6)

where the energy function ➵ ★✪➯ ✫ is defined as:➵ ★➺➯ ✫ ✠ ❇➼➻✔➽✔➾❏➚♠➪ ❍♠➶ ➾ ①③➹❽⑤ ★❁✘✼✛✣✢ ✫ ➚ ❆✵➘ (7)

where ➴ ➳ represents the visible part of the 3D object model

contours for the pose ➯ , and ➪ ❍♠➶ ➾ ①③➹❽⑤ denoting the spatial

gradient of the intensity function at image point ➷ ➳ ★ ➘ ✫ along➷ ➳ ★❁➴ ➳ ✫ where ➷ ➳ is the perspective projection function.

The energy term defined in equation (7) is the simplest

solution to this fitting problem. However, we may exploit

other available information than the norm of the image gra-

dient. Indeed, when projecting the object model for a given

pose ➯ , we are able to compute the expected direction of

the projected contour at a 2D site ➬✳✠➮➷ ➳ ★ ➘ ✫ . If we denote➱ a unit vector corresponding to this expected direction, the

dot product ➪ ❍↔✃▼✄ ➱ should be equal to zero. Expression of

the energy function can then be defined as:➵ ★✪➯ ✫ ✠ ➻ ➽ ➾ ✈ ➪ ❍↔✃▼✄ ➱ ✈➚✆➪ ❍ ✃ ➚ ✴ ❆✵➘ (8)

where we only consider the sites ➬ where ➚✆➪ ❍♠✃ ➚❖❐❮❒ . This

energy expression gives similar and even better results

within textured environment.

The projection function ➷ ➳ depends on the camera in-

trinsic parameters ❰ . The minimization of the energy func-

tion (6) requires that the camera calibration is available.

Nevertheless, a rough knowledge of the camera parameters

is sufficient. If calibration is wrong, the resulting estima-

tion of ➯ will be obviously biased, but the projection of the

CAD model in the image, that is of interest here, is still cor-

rect. However, these parameters could also be estimated (or

at least updated) on-line. In that case, the function to be

minimized can be rewritten as follows:Ï ❉➯ ✏ ❉❰❋ÐÑ✠✣❝❲❞❃❢➨❤✟➢➛➤① ➳ t Ò ⑤ ❑ ➵ ★✪➯ ✏ ❰ ✫ ❙ (9)

In the general case, we have 11 parameters to estimate (if

we consider the radial distortion). In practice, we have only

performed experiments dealing with the on-line estimation

of the radial distortion.

Discretization issue. Discretization of ➴ ➳ can be consid-

ered in different ways. If we consider Ó❏Ô visible contours

to be discretized into Ó❘Õ 2D sites ➬✳✠ÖÓ➨Ô↔Ó ÔÕ , equation (7)

can be rewritten as:➵ ★✪➯ ✫ ✠ ❇ ✢Ó➨Ô✍×ÙØ➦ Ô → ✎✟ÚÛ ✢Ó ÔÕ × ØÜ➦Õ → ✎ ➚✆➪ ❍♠✃ ØÜ ➚❜ÝÞ (10)
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We have now to determine the Ó➨Ô➟ß❶Ó ÔÕ 2D sites ➬ . The first

approach is to discretize each contour into Ó ÔÕ sites
➘

in the

3D space, and then, to project these sites in the image plane

( ➬à✠✣➷ ➳ ★ ➘ ✫ ). ➬ ÔÕ is thus computed as:➬ ÔÕ ✠➝➷ ➳âá ➘ Ôã ✛åäÓ ÔÕ ★ ➘ Ô ✎ ❇ ➘ Ôã ✫❹æ ✏ ä ✠ ❅ ✄✆✄✆✄❃Ó ÔÕ (11)

where
➘ Ôã and

➘ Ô ✎ are the two 3D extremities of the contourç . A second approach can be considered. The discretization

can be performed after the projection of the extremities of

the visible object contour in the image. Indeed, as the con-

sidered objects are polyhedral, the projection of their con-

tours are also segments and ➬ ÔÕ can be computed as:➬ ÔÕ ✠ ➷ ➳ ★ ➘ Ôã ✫ ✛ äÓ ÔÕ ★❁➷ ➳ ★ ➘ Ô ✎ ✫ ❇ ➷ ➳ ★ ➘ Ôã ✫✬✫ ✏ ä ✠ ❅ ✄✆✄☎✄✬Ó ÔÕ✠ ➬ Ôã ✛✷äÓ ÔÕ ★✚➬ Ô✎ ❇ ➬ Ôã ✫
This discretization does not include the distortion term, but

knowing èêé , the correct position of the points can be eas-

ily computed. These two approaches are similar in term

of complexity when distortion is significant, but the second

one avoids a discretization step in 3D. However, when we

do not consider radial distortion, the latter approach is in-

deed more efficient, since we perform only two projections

per segment while the former implies Ó ÔÕ projections. Fur-

thermore, there exists efficient algorithms to compute all the

pixels attached to a given segment (e.g., using Bresenham

algorithm).

Optimization algorithm. An important issue in this

problem is the optimization procedure. Indeed, equa-

tions (7) and (8) are non linear, and involve numerous lo-

cal minima. To solve this issue we resort to an explicit

discrete search algorithm. Generalized Hough transform

consisting in building a cumulative histogram in the pose

space presents two main problems which are the size of the

pose space ( ❍ ë❘ì ) and the presence of false peaks. There-

fore, we have considered a recursive search algorithm. The

method is inspired from an algorithm proposed for a fast

block matching algorithm [11]. First, íÑ★❚î ✫ is minimized

using large variation steps of the parameters. When the cur-

rent minimum is found, the process is iterated with smaller

variation steps around this value. In practice, the initial so-

lution ➯ ✞✚✙ ✎✗ ✒ ✗ ✞ is a proper initialization of this search algo-

rithm. Therefore, we can bound the search space. It allows

the algorithm to converge very quickly toward an appropri-

ate minimum.

4 Experimental results

Experiments reported here after mainly involve various

objects. These objects have been chosen since they can be

a b c

Figure 2. Object of interest: the nut, (a) approximate

CAD model of the nut, (b) intensity gradients in a typ-

ical image of the sequence, (c) normal displacement

vectors used to compute the 2D affine motion model

considered as quite representative for the applications EDF

is interested in. Indeed, disassembly and monitoring tasks

are very important in the nuclear power plant context.

4.1 Nut tracking

Let us point out that the tracking of the nut silhouette in

the image must deal with low intensity contrast (as it can

be seen in the intensity gradient image of Figure 2.b), pres-

ence of cast shadows, mirror specularities, ✄☎✄✆✄ Moreover,

the nut is not exactly polyhedral, since it presents no phys-

ically precisely defined ridges. Camera calibration is not

precisely known. Despite these difficulties, the proposed

method have proven its efficiency to track this object along

long image sequences. All the images have been acquired

on our robotics testbed (they have been processed off-line

for results presented in Section 4.1 and 4.2, and on-line for

visual servoing results presented in Section 4.4).

a

b

Figure 3. Nut tracking: (a) tracking with only 2D

motion estimation, (b) tracking with both 2D motion

estimation and 3D pose computation

Figure 3 contains results of the tracking of the nut along

a sequence of 44 images. Figure 3.a shows the results of the

tracking if we consider only the 2D motion estimation step.
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a

b

c

Figure 4. Successful nut tracking experiments fea-

turing various difficulties (see text for details)

In that case, tracking is performed at video rate (25Hz).

However, after a few images, the algorithm is no longer able

to track accurately the object shape. The failure is mainly

due to the fact that a 2D affine motion model cannot com-

pletely account for the projection of the 3D motion of the

object. Figure 3.b reports the results of the tracking using

both 2D motion estimation and 3D pose computation. In

that case, tracking is performed at 10 Hz on a PC 400 Mhz

under Linux OS.

We have also validated the performance of the tracking

algorithm in the presence of various difficulties. In the

experiment of Figure 4.a, a camera motion is performed

around the ✰ axis1. A face of the nut appears while an-

other disappears. In Figure 4.b, the main difficulty is the

very important rotation around the
✮

axis. Furthermore, the

illumination conditions are not constant along the sequence.

In Figure 4.c, the difficulties lie in the occlusions of the nut.

In Figure 7.d, the nut is tracked within a highly textured

environment during a visual servoing experiment (see sub-

section 4.4).

4.2 Tracking a serial connector

We have evaluated our tracking algorithm on a still more

complex object. In the experiments reported in Figure 5,

we consider a serial port connector placed on a newspaper

forming a “cluttered” background. We only built a rough

1 ï axis follows the optical axis, while ð axis is parallel to the image

rows and ñ axis is parallel to image columns.

Figure 6. Box tracking: Distortion is very important

due to the use of a 3.5mm lens

approximate model. Here, we have also to deal with low in-

tensity gradient images, specularities, and no precisely de-

fined contours. The serial connector is successfully tracked

over a 170 frames image sequence. The camera performs a

large displacement around the object. A face of the object

appears while another disappears. Tracking is performed

at 3 Hz (this lower processing rate is mainly due to a the

model of the object comprising more contours and leading

to a higher number of sites ➬ in the evaluation of the energy

function).

4.3 Online estimation of radial distortion

We have also tried to estimate on-line the radial lens dis-

tortion. We have considered a simple object (a box) and

a camera with an important distortion (in that case the fo-

cal lens of the camera was 3.5mm) with initial value set

to 0 (see Figure 6). We estimate on-line the distortion. It

decreases toward the true value when the object projection

moves toward the image border (since a better estimation of

this parameter is then required). In that case, the tracking is

performed at 1 Hz.

4.4 Visual servoing experiments

Image-based visual servoing consists in specifying a task

as the regulation in the image of a set of visual features ò
that have to match a desired value ò❘ó [9].

We have conducted experiments dealing with a position-

ing task wrt. the nut. In that case, visual features are the
✮

and ✰ coordinates of six points of the upper face of the nut.

The complete implementation of the visual servoing task,

including tracking and control, has been carried out on an

experimental testbed involving a CCD camera mounted on

the end effector of a six d.o.f cartesian robot. Tracking is

performed at 3Hz on a Sun Ultra-Sparc 1 (170Mhz).

Figure 7a contains some of the images delivered by the

camera during the positioning task. The current polygo-
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Figure 5. Tracking a connector on a newspaper background
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Figure 7. Positioning on the nut by visual servoing:

(a) images 15, 50 and 95, (b) temporal variation of

the position of the control points in the image, (c) er-

ror between current and desired positions of the con-

trol points considered in the specification of the task,

(d) another tracking experiment with a highly textured

environment

nal object model contours, depicting the tracking of the nut

projection in the image, and the desired final one are drawn

over the image. Figure 7b shows the apparent trajectory in

the image plane of points ò during the achievement of the

task. Figure 7.c presents the temporal evolution of the error★❁ò ❇ ò❘ó ✫ . This demonstrates the stability and the conver-

gence of the control law. The error on each coordinate of the

six points specifying the task converges to zero. The noise

in the plots are mainly due to the fact that image processing

is performed only at 3 Hz.

Robustness. To prove the robustness of our algorithm

we put the nut on a highly textured environment (see Fig-

ure 7.d). As in the previous experiments, our tracking al-

gorithm coupled with the visual servoing scheme correctly

achieved the positioning task wrt. the object. Other experi-

ments have been carried out using a micro-manipulation de-

vice as object of interest (see Figure 8). Multiple occlusions

by various tools have been imposed during the positioning

task.

Accuracy. As the application of this positioning task is

grasping, repeatability is very important. The final posi-

tion of the object in the image must be accurate enough

and, in order to achieve the grasping task, the final 3D po-

sition of the robot end-effector has also to be consistent.

The accuracy (standard deviation) of positioning task wrt.

the nut was computed from 40 experiments using the robot

odometry (which is very precise). We obtain an accuracy of

less that ô ❅ ✄öõ mm in translation and ô ❅ ✄➛✢▼õ ❆ ç☎÷ in rotation,

while the object is located at ❨ ❅❥ø↔ù from the camera. The

mean error ✈▼ò ❇ ò❘ó✍✈ is less than ❅ ✄ ú pixels with a standard

deviation of 0.3 pixels.

4.5 Initialization of the tracking in the first image

In the current version of the system described in this pa-

per, initialization of the tracking in the very first image of

the sequence is performed partly manually. This means that

the user has to click at least four points on both the initial

image and the CAD model of the object. A completely auto-

matic object localization procedure could be implemented,

but this is outside the tracking issue considered in this pa-

per. Let us finally note that, if the user clicks a minimum of

six points, a full camera calibration can be performed. The

obtained intrinsic parameters can be used afterwards in the

pose computation algorithm.

5 Conclusion

We have presented an original method for tracking com-

plex objects in an image sequence at a high processing rate

(but not yet exactly video rate). The tracking is based on the

estimation, between two successive images, of a 2D global

affine transformation and the computation of the object pose
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Figure 8. Positioning wrt. a micro-manipulation device (initial, middle and final position), desired position appears

in dark lines.

formulated as an energy minimization process. To perform

this last step, an approximate polyhedral model of the ob-

ject is sufficient. Appearance and disappearance of hidden

faces of the object can be straightforwardly handled. Both

steps of the tracking algorithm are robust to partial occlu-

sions. The direct extension to non polyhedral object can

be considered provided a 3D description of the object is

available. This tracking algorithm allows us to carry out

a visual servoing task of positioning with respect to real ob-

jects (without any landmarks) in complex situations. Visual

servoing is not the only application of this original and ef-

ficient tracking method. Indeed, if we are able to achieve a

2D tracking, we can also recover a precise estimation of the

position of the camera wrt. the object if the camera is well

calibrated, and then we can also perform a real 3D tracking.
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