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Abstract

Computing camera rotation from image se-
quences can serve many computer vision appli-
cations. One direct application is image sta-
bilization, and when the camera rotation is
known the computation of camera translation
and 3D scene structure are much simpli�ed. A
new approach for recovering camera rotation
is presented in this paper, which proves to be
much more robust than existing methods by
avoiding the computation of the epipole. An-
other bene�t of the new approach is that it does
not assume any speci�c scene structure.

The rotation matrix of the camera is computed
explicitly from three homography matrices, re-
covered using the trilinear tensor which de-
scribes the relations between the projections
of a 3D point into three images. The entire
computation is linear for small angles, and is
therefore fast and stable. Iterating the linear
computation can then be used to recover larger
rotations as well.

1 Introduction

Recovering camera rotation is one of the basic steps in
many image sequence applications, such as electronic im-
age stabilization. Most existing methods take one of the
following two approaches. One approach is to compute
the camera rotation only after computing the camera
translation (the epipole) [18, 4, 8, 12]. The second ap-
proach assumes a speci�c 3D scene structure, e.g. as-
suming the existence and the detection of a 3D plane in
the scene [8, 17, 13, 10].
We propose a new method to recover rotations using

three homography matrices, without using the epipoles
and without assuming any speci�c 3D model. A homog-
raphy is a transformation that maps the image of a 3D
plane in one frame into its image in the second frame,
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and it can be represented as a 3 � 3 matrix (see Sec-
tion 2). The homographies used do not correspond to
any planes that have to be present in the image, and
therefore there is no restriction on the scene structure.
The bene�ts of our method are increased accuracy, as
epipoles are believed to be a source for error [22], and
more general applicability as no speci�c 3D model is as-
sumed.
The theoretical background of this paper includes a re-

cently discovered property of homography matrices be-
tween image pairs, namely that homography matrices
between two images form a linear space of rank 4 (See
[16]). We take this general result further and show that
under small-motion assumptions (which is typically the
case in video sequence processing) the rotational compo-
nent of camera motion (which is the homography due to
the plane at in�nity) is spanned by only three homogra-
phy matrices.
There are several possibilities for �nding the three ho-

mography matrices which are needed to compute the
camera rotation [7, 1, 2, 10, 13, 17]. However, most
methods to compute homographies between two images
assume that each homography corresponds to an actual
planar surface in the scene. Even when several planar
surfaces do exist in the scene, the accuracy of these meth-
ods reduces as more homographies are extracted.
The best method we found for computing the needed

homographies is by using the trilinear tensor between
three images [15, 4, 18, 5]. The trilinear tensor is rela-
tively accurate since it is computed from three frames,
rather than only two, and no 3D scene structure is as-
sumed. We then use the recently discovered contraction
property into three homography matrices [18] to obtain
a closed-form solution for the rotational component of
camera motion from the trilinear tensor. We thereby
obtain linear expressions for the camera rotations that
are clear and simple, and do not su�er from inaccuracies
in epipole's recovery.

2 The Homography Matrix

In this section we will brie
y de�ne the homography ma-
trices, and prove that all homography matrices between
two images form a linear space of rank 4. For more de-
tailed information on homography matrices in 3D-from-
2D geometry see [3, 21, 14, 6, 17, 13, 9, 11, 8], and for
more details on the rank-4 result see [16].



Let P be a point in 3D space projecting onto images
	;	0. Let p 2 	 and p0 2 	0 be the matching points in
the two image planes described by:

p �= M [I; 0]P

p0 �= M 0[R;T ]P

where �= denotes equality up to scale, and M denotes
the transformation from the observed coordinates of the
image plane to the camera coordinate system, of the �rst
camera, and M 0 of the second camera. In the simplest
con�guration, M is of the form:

M =

"
f 0 xo
0 f yo
0 0 1

#

where f denotes the focal length of the camera and xo; yo
is the origin of the image plane (known as the \princi-
ple point"). The rigid camera motion is represented by
the rotation matrix R and translation vector T . Taken
together, P = (x; y; 1; 1=z)>, where x; y are the image
coordinates of the �rst view, z is the depth of the point,
i.e., zM�1p are the Euclidean coordinates of the point
P in the �rst camera frames, and:

p0 �= M 0RM�1p+
1

z
M 0T:

When the points P live on a plane �, then n>(zM�1p) =
d� where n (normal vector) and d� (scalar) are the pa-
rameters of � in the �rst camera coordinate system. We
obtain,

p0 �=M 0RM�1p+
1

z

1

d�
M 0T (zn>M�1p)

=M 0(R+
1

d�
Tn>)M�1p

= H�p:

In other words, the homography matrix associated with
� is

H�
�= M 0(R +

Tn>

d�
)M�1: (1)

Therefore, A homography H� is a transformation as-
sociated with the two images 	 and 	0, and with the
3D plane �. For any point P in �, the homography H�

maps p to p0 (see Fig. 1).
For a �xed pair of cameras (M;M 0; T and R are con-

stant), given a homography matrixH� of some 3D plane
�, all other homography matrices can be described by

�H� + Tn> (2)

for some scale factor � and a normal to some plane n,
since the homographies di�er only in scale and in the
plane parameters.
Consider homography matrices H1;H2; :::;Hk each as

a column vector in a 9�kmatrix. LetHi = �iH�+Tni>.
The following can be veri�ed by inspection:� �

9�k

= [�1H� � � ��kH�]9�k +"
T 0 0
0 T 0
0 0 T

#
9�3

[n1 � � �nk ]3�k =

=

"
T 0 0

H� 0 T 0
0 0 T

#
9�4

�
�1 � � ��k
n1 � � �nk

�
4�k

(3)
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Figure 1: The homography induced by the plane � maps p
to p0. p and p0 are the perspective projections of any point
P in the 3D plane � on the image planes 	 and 	0.

We have thus proven that the space of all homography
matrices between two �xed views is embedded in a 4
dimensional linear subspace of R9.

3 The Rotation Matrix

Given a sequence of images taken by a camera moving
in a static scene, we would like to recover the rotation
parameters of the camera. The rotation matrix R is
an orthonormal matrix (up to scale). The orthonormal-
ity is the only constraint on R, which can generate �ve
non-linear constraints on the elements of R. Note also
that M 0RM�1 is the homography of the plane at in�n-
ity (letting d� go to in�nity in eqn. 1). Since solving
non-linear equations is in general less stable and harder
to compute than linear equations, we will �rst examine
the case of small rotations. In addition we will assume
that M = M 0 = I, i.e., that the internal parameters of
the cameras are known. We will show that in addition to
working with linear constraints, the case of small rota-
tions places a strong constraint on the family of admis-
sible homographies: the only skew-symmetric homogra-
phy matrix corresponds to the plane at in�nity.
When small rotations are involved, the rotation matrix

R can be approximated by a matrix having the following
form (up to scale):

R � R̂ =

"
1 
Z �
Y

�
Z 1 
X


Y �
X 1

#
: (4)

In this representation, the vector 
 = (
X ;
Y ;
Z)
>

is the rotation axis, and the magnitude of the vector is
the magnitude of the rotation around this axis. Likewise,
the family of all approximate homography matrices Ĥ�

is de�ned by:

H� � Ĥ� � R̂+
1

d�
Tn>� ; (5)

where d� is the distance from the origin to the plane �,
n>� is the unit vector perpendicular to the plane toward
the origin, and T = (TX ; TY ; TZ)> is the camera's trans-

lation vector. Note that when d� !1, we have Ĥ� = R̂.
Therefore, the approximate rotation matrix R̂ is also an
approximate homography matrix of the plane at in�nity.



There are two main advantages of this framework. First,
as we shall see next, the non-linear constraints associ-
ated with orthonormal matrices is replaced with a skew-
symmetric condition on the family of approximate ho-
mographies | which, moreover, leads to a unique choice
for the appropriate rotation (unlike the general discrete
case in which the space of homography matrices is rep-
resented by a 4 parameter family). Second, shown later,
is that one can obtain a direct link between the trilin-
ear tensor and the rotation matrix, thereby avoiding the
computation of the translational component of camera
motion (the epipolar geometry).

We show next that the asymmetric form of R̂ is
unique.

Lemma 1 The only approximate homography matrix
that has an asymmetric form

"
r u �s
�u r t
s �t r

#
: (6)

is the one associated with the plane at in�nity.

Proof : if Ĥ� has the asymmetric form (6), then Tn>� =

d�(Ĥ� � R̂) (using Equation 5) also has the asymmetric

form (6), because R̂ has this asymmetric form (Equa-
tion 4). However, the asymmetric form (6) has rank 3
(or rank 2 if r = 0), while the matrix Tn>� has rank 1,
and we got a contradiction.
This Lemma together with the rank 4 result implies

that the matrix R̂ we are looking for is the asymmetric
matrix spanned by four approximate homography ma-
trices. In the following section we will take this result
a step further and show that, �rst, only three homog-
raphy matrices are required, and second, that R̂ has a
closed-form representation in terms of the coe�cients of
the trilinear tensor.

4 From Homographies to Rotations

We have shown (Section 2) that the space of all homog-
raphy matrices between two images is a linear space of
rank 4 (See also [16]). This holds also for the space of
all approximate homographies (Equation 5), using the
same proof. Given the rank-4 property we should �nd
4 linearly independent (approximate) homography ma-

trices Êi; i = 1::4; between the two given images, and
solve the equation:"

1 
Z � 
Y

�
Z 1 
X


Y �
X 1

#
= R̂ = c1Ê1+ c2Ê2 + c3Ê3+ c4Ê4

(7)
where ci; i = 1::4; are scalars. We should actually
compute the ci; i = 1::4; that satisfy the asymmetric
form constraints (six constraints).
We can reduce the need for 4 matrices to 3 by choosing

the fourth matrix to be

Ê4 =

"
Tx 0 0
Ty 0 0
Tz 0 0

#
; (8)

where T = (Tx; Ty; Tz)> is the translation vector from 	
to 	0, which is unknown yet. Furthermore, we can set
c4 = 1 because the translation vector is de�ned up to
scale, and so does Ê4.

Lemma 2 The matrix Ê4 is a valid homography matrix
from 	 to 	0.

Proof : Given the rotation matrix R̂ and a translation
vector T , the homography matrix from 	 to 	0 can be
de�ned by Ĥ� = d�(R̂ + 1

d�
Tn>� ) for any value of the

plane parameters d� and n� (Equation 5). When using
this equation for the plane having n> = (1; 0; 0) at the
limit of d� ! 0 we get

lim
d�!0

Ĥ� = Tn>� =

"
Tx 0 0
Ty 0 0
Tz 0 0

#
; (9)

which is the matrix Ê4.

To solve Equation (7), with Ê4 de�ned in Equa-
tion (8), we need to solve for the six unknowns:
c1; c2; c3; Tx; Ty; Tz, using the six constraints on the

asymmetric form of R̂ :"
1 
Z �
Y

�
Z 1 
X


Y �
X 1

#
= R̂ =

c1Ê1 + c2Ê2 + c3Ê3 +

"
Tx 0 0
Ty 0 0
Tz 0 0

#
: (10)

Any three homography matrices recovered in any
known method can be used to recover the camera ro-
tation (assuming small angle rotations). Our method
of choice, however, is the trilinear tensor computed for
three images from point correspondences [15, 18, 5].
There are two advantages for this choice. First, the
tensor provides directly three homography matrices [18],
hence as a technique for producing homography matri-
ces one is exploiting three instead of two views (thereby
gaining numerical redundancy) and also no assumption
on scene structure is being made (i.e., that the scene con-
tains dominant and distinct physical planes). Second, we

will show that there is a closed-form solution for R̂ as a
function of the tensor coe�cients, thereby obtaining a
linear method that uses all the matching points across
three views (for computing the tensor), does not require
solving for the translational component of camera mo-
tion as an intermediate stage, and is very simple.
The trilinear tensor is described in Appendix A. The

tensor �jki contains 27 entries (coe�cients) as i; j; k =
1; 2; 3. The coe�cients can be recovered linearly from
at least 7 matching points across three views. The con-
nection between the tensor and homography matrices
comes from contraction properties as follows: for any
vector sj = (s1; s2; s3), the matrix sj�

jk
i is a homogra-

phy matrix from view 1 to view 2, where s describes the
orientation of the associated plane (similarly, sk�

jk
i is a

homography matrix from view 1 to view 3). In partic-
ular, when s = (1; 0; 0); (0; 1;0) and (0; 0; 1) we get our
three independent homography matrices [18].



In the case of small rotations we can enforce the con-
straints on the rotation R̂ on the homography matrices
recovered from the tensor. Using Maple for symboli-
cally solving for the system of equations we found that
the translational component Tx; Ty; Tz have been elimi-
nated from the result, and we are left with a very sim-

ple, closed-form, expression relating the tensor �jki and

X ;
Y ;
Z:


X = det

0
@ �j32

�j32 + �j23
�j33 � �j22

1
A =K


Y = det

0
@ ��j31

�j32 + �j23
�j33 � �j22

1
A =K


Z = det

0
@ �j21

�j32 + �j23
�j33 � �j22

1
A =K

K = det

0
@ �j22

�j32 + �j23
�j33 � �j22

1
A (11)

where �j22 stands for (�122 ; �222 ; �322 ), etc. This expres-
sion recovers directly and simply small rotations from the
trilinear tensor.

5 Video Stabilization

In this section we present the algorithm for video sta-
bilization which contains two steps. The �rst step is to
compute the trilinear tensors, and the second step is to
compute the camera rotations and perform derotation
on the frames.

5.1 Trilinear Tensor Computation

Following are the steps we performed to compute the tri-
linear tensor from a set of three images. For computation
stability, all coordinates are normalized to the range of
(-1, 1).

� Selection of corresponding points
Optical 
ow is computed between all three possible
pairs of the three images. As corresponding points
we selects only those points having a high gradi-
ent, and for which all the pairwise optical 
ows are
consistent. This process results in the selection of
several hundred points as corresponding in all three
frames (\corresponding triplets").

� Robust Estimation
From all corresponding triplets computed in the pre-
vious step, several hundred subsets of ten triplets
are randomly selected [20]. For each subset the tri-
linear tensor is computed using Eq. 14. Each com-
puted tensor is then applied to all matching triplets,
and the single tensor for which the maximal number
of triplets satisfy Eq. 14 is selected.

� Least Square Step
As a �nal step we use all the points which satis-
�ed the selected tensor in the previous step to solve

a) b)

c) d)

Figure 2: First sequence - outdoor scene.
a) First original frame.
b) Last (fourth) original frame. The camera was rotating
while moving forward.
c) average of the four original images.
d) average of the four images after rotation cancellation. The
remaining motion is only due to the original translation. The
sequence looks as if it was taken using a stabilized camera.

the tensor again from Eq. 14 using a least squares
method. From this tensor the homography matrices
will be computed.

5.2 Derotation of Video Frames

The image sequence is stabilized with regard to the �rst
image. This is done by selecting an arbitrary image to
serve as the third image and sequentially going through
the images. For each such triplet of images the trilinear
tensor is computed as described above. From the com-
pute tensor we compute 
X ;
Y ;
Z using Eq. 11. The
image is then warped back to cancel the rotation, thus
getting a stable sequence.

6 Experimental Results: Stabilization

Given a sequence of images, a trilinear tensor is recov-
ered from the �rst frame to all other frames, using an
arbitrary frame as the third frame. The rotation from
the �rst frame to all other images is then recovered by
using the the tensor values in Eq. 11. By warping back
every image using the calculated rotation, we obtain a
new sequence of images having no rotation compared to
the �rst image. The remaining motion in the new se-
quence is only due to the original translation, thus the
new sequence is smooth and clear, as can be observed in
the average images.

The method was tested on outdoor scene (Fig. 2), in-
door scene (Fig. 4), and on a scene with objects that are
very close to the camera (Fig. 3). The method proved
to be robust and e�cient.



a) b)

c) d)

Figure 3: Second sequence - close objects.
a) First original frame.
b) Second original frame. The camera was moving and ro-
tating around the objects.
c) average of the two original images.
d) average of the two images after rotation cancelation. The
remaining motion is only due to the original translation.

7 Concluding Remarks

A new robust method to recover the rotation of the
camera was described. The main contribution to the
robustness is the fact that we do not have to recover
the epipoles, and the rotation is computed directly from
three homography matrices assuming small rotations.
The homography matrices are obtained from three im-
ages using the trilinear tensor parameters, and the recov-
ery process does not assume any 3D model. The method
can be extended to handle also the case of general rota-
tions by using iterations.

A Appendix: The Trilinear tensor

In this section we brie
y present the trilinear tensor and
give an example to measure its quality. The trilinear
tensor is an extension of the fundamental matrix to the
case of three images, and it describes the spatial relation
of three cameras. The quality of the tensor can be eval-
uated by reprojecting the third image from the �rst two
images using the trilinear tensor. More details about the
trilinear tensor can be found in [15, 18].
Let P be a point in 3D projective space projecting

onto p; p0; p00 three views 	;	0;	00 represented by the
two dimensional projective space. The relationship be-
tween the 3D and the 2D spaces is represented by the
3� 4 matrices, [I; 0], [A; v0] and [B; v00], i.e.,

p = [I; 0]P

p0 �= [A; v0]P

p00 �= [B; v00]P

We may adopt the convention that p = (x; y; 1)>,
p0 = (x0; y0; 1)> and p00 = (x00; y00; 1)>, and therefore

a) b)

c) d)

Figure 4: Third sequence - indoor scene.
a) First original frame.
b) Second original frame. The unstable camera was moving
towards the man.
c) average of the two original images. The rotations make
the average image unclear.
d) average of the two images after rotation cancellation. The
remaining motion is only due to the original translation. The
sequence looks as if it was taken using a stabilized camera.

P = [x; y; 1; �]. The coordinates (x; y); (x0y0); (x00; y00)
are matching points (with respect to some arbitrary im-
age origin | say the geometric center of each image
plane). The matrices A and B homography matrices
from 	 to 	0 and 	00, respectively, induced by some

plane in space (the plane � = 0). The vectors v0 and v00

are known as epipolar points (the projection of O, the
center of projection of the �rst camera, onto views 	0

and 	00, respectively).
The trilinear tensor is an array of 27 entries:

�jki = v0
k
bji � v00

j
aki : i; j; k = 1; 2; 3 (12)

where superscripts denote contravariant indices (repre-
senting points in the 2D plane, like v0) and subscripts
denote covariant indices (representing lines in the 2D
plane, like the rows of A). Thus, aki is the element of the

k'th row and i'th column of A, and v0
k is the k'th ele-

ment of v0. The tensor �jki forms the set of coe�cients of
certain trilinear forms that vanish on any corresponding
triplet p; p0; p00 (i.e., functions of views that are invariant
to object structure). These functions have the following
form: let slk be the matrix,

s =

�
1 0 �x0

0 1 �y0

�
and, similarly, let rmj be the matrix,

r =

�
1 0 �x00

0 1 �y00

�
Then, the tensorial equations are:

slkr
m
j p

i�jki = 0; (13)



a) b)

c) d)

Figure 5: Reprojection in di�erent methods.
a) Reprojection using epipolar line intersection. Fundamen-
tal Matrices computed with code distributed by INRIA.
b) Reprojection using epipolar line intersection. Fundamen-
tal Matrices computed from tensor.
c) Reprojection using the tensor equations.
d) Original third image. Presented for comparison.

with the standard summation convention that an index
that appears as a subscript and superscript is summed
over (known as a contraction). For details on the deriva-
tion of this equation see Appendix A. Hence, we have
four trilinear equations (note that l;m = 1; 2). In more
explicit form, these functions (referred to as \trilineari-
ties") are:

x00�13i pi � x00x0�33i pi + x0�31i pi � �11i pi = 0;

y00�13i pi � y00x0�33i pi + x0�32i pi � �12i pi = 0;

x00�23i pi � x00y0�33i pi + y0�31i pi � �21i pi = 0;

y00�23i pi � y00y0�33i pi + y0�32i pi � �22i pi = 0:

Since every corresponding triplet p; p0; p00 contributes
four linearly independent equations, then seven corre-
sponding points across the three views uniquely deter-

mine (up to scale) the tensor �jki . More details and
applications can be found in [15]. Also worth noting
is that these trilinear equations are an extension of the
three equations derived by [19] under the context of uni-
fying line and point geometry.
The connection between the tensor and homography

matrices comes from contraction properties described in
Section 4, and from the homography matrices one can
obtain the \fundamental"matrixF (the tensor produces
18 linear equations of rank 8 for F , for details see [18]).
Fig. 5 shows an example of image reprojection (transfer)
using the trilinearities, compared to using the epipolar
geometry (recovered using INRIA code or using F recov-
ered from the tensor). One can see that the best results
are obtained from the trilinearities directly.
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