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Robust Recovery of Temporally Smooth Signals

From Under-Determined Multiple Measurements
Zhaofu Chen, Rafael Molina, Member, IEEE, and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract—In this paper, we consider the problem of recovering

jointly sparse vectors from underdetermined measurements that

are corrupted by both additive noise and outliers. This can be
viewed as the robust extension of theMultipleMeasurement Vector

(MMV) problem. To solve this problem, we propose two general

approaches. As a benchmark, the first approach preprocesses
the input for outlier removal and then employs state-of-the-art

technologies for signal recovery. The second approach, as the

main contribution of this paper, is based on formulation of an
innovative regularized fitting problem. By solving the regularized

fitting problem, we jointly remove outliers and recover the sparse

vectors. Furthermore, by exploiting temporal smoothness among
the sparse vectors, we improve noise robustness of the proposed

approach and avoid the problem of over-fitting. Extensive numer-

ical results are provided to illustrate the excellent performance of
the proposed approach.

Index Terms—Signal reconstruction, iterative methods, opti-

mization.

I. INTRODUCTION

C ONSIDER the measurement system expressed as follows

(1)

where denotes a measurement

vector, is the underlying signal

vector of interest, represents a linear trans-

formation applied on the signal, and

represents additive noise or un-modeled errors. The gen-

eral system in (1) has been applied to model a wide range of

observation or measurement processes. Depending on the appli-

cation, the matrix can be a set of features in machine learning

(e.g., feature selection) [1], a dictionary in sparse signal repre-

sentation problems [2], a measurement system in compressive

sensing [3], a degradation process in image restoration/recovery
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[4], a steering matrix in array signal processing or source local-

ization [5], etc.

Note that in general the matrix is wide, i.e., . For

example, in compressive sensing, the number of measurements

taken is far less than the number of signal samples. In feature se-

lection, a large set of features serve as a pool of candidates from

which the most descriptive ones are selected. In source local-

ization, a dense grid spanning the search region is constructed

such that each grid point corresponds to one column in . In

all such applications, the rectangular shape of renders the in-

verse problem of finding from ill-posed,

i.e., there exist infinitely many solutions.

In order to constrain the solution space, prior information

about the characteristics of must be incorporated. As is

well known, most natural signals are sparse either in their

native domains, or can be sparsely represented under certain

transformations. For example, in source localization problems,

the number of true signal sources is far less than the number

of scanning grid points; hence most of the entries in do not

correspond to source locations and are zeros [5]. As another ex-

ample, most natural images can be sparsely represented under

the Discrete Cosine Transform (DCT) or Discrete Wavelet

Transform (DWT) by retaining a small subset of coefficients.

Without loss of generality, we assume the signal vector is

sparse, i.e., , where the -(pseudo)norm simply

counts the number of nonzeros in .

The estimation of a sparse from a set of under-determined

measurements is commonly referred to sparse signal re-

covery with a single measurement vector. This is a well-studied

problem. Broadly, the algorithms for solving this type of prob-

lems fall into one of the following three categories. Greedy

algorithms, represented by Matching Pursuit [6] and Orthog-

onal Matching Pursuit [7], [8], incrementally seek a subset of

the columns in that are most correlated with the observation

, and determine the corresponding entries in by solving a

series of Least Squares (LS) fitting problems. Relaxation-based

approaches, such as LASSO [9] and FOCUSS [10], replace

the non-convex -(pseudo)norm with convex -norm (with

, and hence the term “relaxation”), and solve a regularized

fitting problem. Last but not least, Bayesian approaches adopt

sparsity-promoting priors on and approximate the posterior

distribution of given [11], [12].

When the measurement process occurs at time instances,

the system in (1) is extended as follows

(2)

where contains the measurement vectors

as its columns, and contains the underlying signal
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vectors as its columns, respectively. Notationally, for a

matrix , we use to denote its th column (i.e., the row index

is irrelevant and hence is denoted by a dot in the subscript).

Given measurement vectors in , various strategies can be

applied depending on the dynamics of . On one end, if

the signals at different time instances are static, i.e.,

, then the columns of are simply re-

peated measurements of the same underlying signal subject

to independent realizations of noise . In this

case, averaging over the measurements yields

with improved Signal-to-Noise-Ratio (SNR), which can then be

considered as a single measurement. On the other end, if the

signals are independent of each other, the problem re-

duces to independent instances of single measurement sparse

recovery problems, each of which can be solved separately.

Between these two ends, it is most often the case that

, though not identical replicas of each other, are cor-

related. In particular, it is common to assume that

share a fixed sparsity profile, i.e., the locations of the nonzeros

in do not change with . This is known as the Multiple

Measurement Vector (MMV) problem, where the goal is to

recover a row-wise sparse from . The MMV problem

is closely related to other research fields, such as Multi-Task

Sparse Learning [13], dynamic compressive sensing [14],

etc. MMV is an actively researched problem, and numerous

algorithmic solutions exist. Representative examples include

greedy algorithm [15], relaxation-based optimization [16],

[17], subspace approaches [18], statistical inference based

method [19]–[21], and sparse support estimation algorithms

[22], [23]. For theoretical analyses of algorithms solving the

MMV problem, we refer the readers to [24] and [25].

While the existing algorithms induce row-wise sparsity in

, they often do not fully exploit the information in , and

in particular, the temporal correlation within the nonzero rows

of had been largely neglected until recently. Utilizing such

intra-row structure of can potentially lead to improved re-

covery accuracy. In [26] and [27], temporal correlation has been

modeled within a block Sparse Bayesian Learning (SBL) frame-

work, and inference based on the Expectation-Maximization

(EM) algorithm has been introduced to determine the poste-

rior distributions. The temporal structure is adaptively learned

from the data, and such structure is in turn used to refine the

signal estimates. Alternatively, [28] has proposed a hierarchical

Bayesian model to characterize the temporal smoothness within

the nonzero rows of , and has adopted both an EM based and a

fixed-point iteration based algorithms for inference. In addition,

we have proposed two deterministic algorithms in [29] to find

temporally smooth and row-wise sparse that fits the measure-

ment well. Experimental results confirm that by taking into

account the temporal structure of , better recovery accuracy

can be obtained.

Note that one assumption with the model in (2) is that the ad-

ditive noise is generally dense and “small”, that is, noise is

present in all measurements and its amplitude is small compared

with that of the measurements. Based on this assumption, most

of the algorithms mentioned above either explicitly (e.g., in re-

laxation-based and Bayesian approaches) or implicitly (e.g., in

greedy approaches) seek that both conforms with the prior

information and also yields small fitting residual, i.e.,

has little energy remaining.

However, this assumption can often be challenged, when

anomalies or outliers are present in the measurements. Such

outliers can be due to various reasons, such as malfunctioning of

the measurement equipments, missing measurement samples,

and so on. As a concrete example, consider the use of elec-

troencephalography (EEG) signals for the study of human brain

activities. In the ideal case the signal acquisition process can be

modeled using (2), where denotes the temporal recordings

over multiple channels and denotes the underlying cerebral

activities, respectively. However, the measurement is very

often corrupted by the presence of artifacts, due to movements

of the subject under study [30]. For example, eye blinks result

in isolated sharp spikes in the channel recordings, which, if

not handled properly, will render the subsequent analysis very

challenging or even impossible.

To account for the possible presence of anomalies/artifacts,

the measurement system is modified as follows

(3)

where and are defined similarly as above in (2), and

is a sparse matrix with arbitrarily large entries. In

the aforementioned EEG example, accounts for the artifacts

due to subject movement, whichmust be identified and removed

to make the analysis of possible and meaningful.

We term the measurement system represented in (3) as the

“Robust Multiple Measurement Vector” model, or the Robust

MMV model for short. Also the problem of finding and

given in (3) is termed the Robust MMV problem. Note that

Robust MMV is a newly formulated problem, and hence there

is no prior solution to it. In the following sections of the paper,

we will develop two types of solutions to the Robust MMV

problem. The first type of solutions, presented in Section II, is

built upon the sequential cascade of a preprocessing module and

an MMV signal recovery module. Depending on the specific

implementations of these two modules, the sequential approach

can have different variations, and hence it essentially repre-

sents a solution family. In particular, when we use the state-of-

the-art algorithms to implement the preprocessing module and

the signal recovery module, the sequential approach can be con-

sidered as a benchmark for performance evaluation. The second

approach, whose details are presented in Section III, simultane-

ously detects/removes outliers and recovers the underlying sig-

nals via regularized minimization. The simultaneous approach,

as will be shown with numerical examples, has superior perfor-

mance compared with the sequential approaches.

The structure of this paper is outlined below with the major

contributions highlighted:

� Section I: formulating Robust MMV problem that is more

general and practical than the original MMV problem;

� Section II: developing a benchmark sequential approach

to the formulated Robust MMV problem utilizing the

state-of-the-art technologies;

� Section III: proposing an innovative simultaneous ap-

proach that has excellent outlier removal and signal

recovery capabilities;

� Section IV: performing extensive numerical evaluation of

both the sequential and simultaneous approaches.

Notation: Throughout this paper, matrices and vectors are de-

noted by uppercase and lowercase boldface letters, respectively.
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Fig. 1. Block diagram for the sequential approach.

For a matrix , its th row, th column, th element are de-

noted by , and , respectively. The all-zeroma-

trix is denoted by , and the identity matrix is de-

noted by , respectively. is the vectorization operator

that stacks the columns of its input matrix into a column vector.

The matrix Kronecker product is denoted by . The trace oper-

ator is denoted by .

II. SEQUENTIAL OUTLIER REMOVAL AND SIGNAL

RECOVERY FOR ROBUST MMV

In this section we present the details of the sequential ap-

proach to solving the RobustMMVproblem. The block diagram

for the sequential approach is shown in Fig. 1. As can be seen,

the raw measurement first undergoes a preprocessing step

to remove the outliers, and then the preprocessed measurement

is fed as input to a core MMV signal recovery module.

One advantage of this sequential approach is the relative inde-

pendence between the two modules in its structure, as shown in

Fig. 1. Thanks to such structural and functional independence,

testing and tuning of the two modules can be done separately,

which makes system maintenance easy.

Note that both the preprocessing module and the signal re-

covery module define general functionality rather than specific

implementations. In the following paragraphs, we discuss the

options of implementing these two modules.

For the outlier-removal preprocessing module, one heuristic

implementation is via thresholding, which is used in the anal-

ysis of EEG data [31]. In addition to the need of choosing the

threshold, one major drawback of simple thresholding is the dif-

ficulty in setting the missing values after the outliers are de-

tected. Typically the entire recording from an outlier-corrupted

channel will be discarded, which clearly results in inefficient use

of data. Alternatively, setting the values at the locations where

outliers have been detected to zeros will potentially incur abrupt

changes in the measurements, hence lead to degraded recovery

accuracy.

Instead of simple thresholding, we present a preprocessing

implementation based on matrix decomposition. Denote by

the number of nonzero rows in , it is clear that

(4)

From the discussion above, we see the removal of outliers from

measurements is essentially a matrix decomposition problem,

where the goal is to decompose into a low-rank component

and a sparse component . This is commonly known

as the Robust Principle Component Analysis (Robust PCA)

problem. Algorithms for the Robust PCA problem usually solve

regularized optimization problems with proper convex relax-

ation to sparsity and rank [32]–[34]. Alternatively, Bayesian

approaches model the sparse and low-rank components with

appropriate prior structures and employ approximate inference

techniques for estimation [35], [36]. In the experiments we

adopt two state-of-the-art Robust PCA solvers, namely the

Augmented Lagrangian Method (ALM) algorithm proposed in

[34] and the Variational Bayesian (VB) algorithm proposed in

[36] to implement the preprocessing module. These two algo-

rithms have demonstrated great outlier-removal capabilities,

and therefore we expect the preprocessed data from them to be

clean enough for the subsequent MMV signal recovery module.

The preprocessed measurement , that is , is then

fed into an MMV signal recovery module that expects outlier-

free input. Candidate implementations of this signal recovery

module include those algorithms introduced in Section I, e.g.,

[16], [17], and [26].

Note that we use the state-of-the-art algorithms to imple-

ment both the preprocessing module and the MMV signal re-

covery module. In this way, we expect the performance of the

overall system to represent the best obtainable from sequential

approaches. Since there is no prior solution to the Robust MMV

problem, we use the sequential approach (with state-of-the-art

algorithms implementing its modules) as a benchmark for per-

formance evaluation. However, we should point out that, due to

the structural simplicity, there is little collaboration between the

two cascadedmodules, which potentially limits the performance

of the sequential approaches. In the next section, we will present

a simultaneous approach, in which outlier-removal and signal

recovery are performed jointly in an iterative fashion. As will

be seen with numerical examples, the simultaneous approach

can have better performance than its sequential counterparts.

III. SIMULTANEOUS OUTLIER REMOVAL AND SIGNAL

RECOVERY FOR ROBUST MMV

In this section we present the development of a simultaneous

approach that iteratively removes outliers and recovers the un-

derlying signals. To reiterate, our goal is to find that

jointly satisfy the following criteria:

1) and conformwell with the measurement , i.e.,

is small, where denotes the matrix Frobe-

nius norm.

2) Most of the rows in are zeros.

3) The nonzero rows in are smooth signals.

4) is sparse, i.e., most of its entries are zeros.

A. Regularized Fitting Problem

In order to find that jointly satisfy the criteria above,

we first formulate a regularized fitting problem, where the reg-

ularization terms enforces the desired properties of and set

forth above. Specifically, consider the following unconstrained

optimization problem

(5)

where

(6)

is a convex relaxation of the -(pseudo)norm that counts the

number of nonzeros in , and and are positive regular-

ization parameters. Via relaxation, minimizing promotes

the sparsity of .
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The (pseudo)norm is defined as

(7)

where is a symmetric positive semidefinite matrix

that models the prior information about the intra-row structure

of . As a concrete example, to enforce smoothness of

can be constructed as

(8)

where with

(9)

implements a second-order difference operator. With defined

as above, the -weighted norm

(10)

extracts the high-frequency components of , the minimiza-

tion of which results in smoothly varying .

Note according to (7), the norm can be viewed as the

-norm of the vector containing the -weighted norms of the

rows of , i.e.,

(11)

Clearly this is a generalization of the matrix -norm defined

as

(12)

which has been used in MMV problems for modeling row-wise

sparsity of . Minimizing leads to that has many

all-zero rows, but has little influence on the smoothness of the

nonzero rows. As a generalization, the norm inherits

from the -norm the capability of enforcing row-wise spar-

sity, and meanwhile promotes intra-row smoothness when is

defined as in (8).

Having introduced the regularized optimization in (5), we

provide a few comments on its connection with related research

fields.

� First of all, we note that the specific form of defined

above is known as a Laplacian matrix in signal processing,

where it is commonly used to extract high-frequency signal

features such as image edges. Since we intend to impose

general prior knowledge about signal smoothness rather

than being specific about the type of signal, we believe

the use of a generic Laplacian high-pass operator is appro-

priate.

� In addition, the weighted-norm regularized minimization

in (5) is formally equivalent to the Maximum A Posteriori

(MAP) inference where is the inverse of the prior co-

variance matrix. As such a result, if it is desirable to restrict

the recovered signals to a specific type (rather than letting

it be smooth in general), it is possible to use a matrix

specific for that type. Note that both the formulation in (5)

and the algorithmic solutions presented below are valid for

any positive semidefinite .

� Last but not least, note that we use a fixed form of in

our algorithm, i.e., we apply a classic data-independent

high-pass filter to the signal . It is also possible to use a

variable , whose value is updated in an iterative manner.

For an example where a variable weighting is used in a

similar context, we refer the readers to [26]–[28]. Both op-

tions have their respective pros and cons. Using a fixed

has computational advantage over iteratively estimating

a variable . As is shown with numerical examples in

Section IV, the fixed is sufficient to yield satisfactory

performance in our case.

From the discussion above, we see that by minimizing the

cost function in (5) we find that jointly satisfy the criteria

set forth at the beginning of this section. In what follows we

will present an efficient algorithm for solving this optimization

problem.

B. Problem Re-Formulation and Augmented Lagrangian

Note that (5) is a convex optimization problem in .

The proof is given in Appendix A. For convex problem, any

local optimum is also a global optimum.

Since (5) is a convex problem, in principle we can apply

generic algorithms such as subgradient method and interior

point method, to find a global minimum. However, the presence

of in both the quadratic fitting term and makes

finding the subgradient challenging. In order to resolve this

issue, we can decouple the first two terms in the cost function

by introducing an auxiliary primal variable and the

associated constraint as follows

(13)

where is the positive-semidefinite square root of . Since

is symmetric and positive-semidefinite by definition, is both

unique and symmetric, i.e., [37].

It is clear by introducing the equality constraint, (13) is equiv-

alent to (5), and hence by solving (13) we are guaranteed to find

a solution to (5). In addition, this decoupling procedure leads to

a more tractable algorithm, as will be explained shortly.

The problem in (13) can be solved using the iterative Dual

Ascent method by forming the Lagrangian. In order to improve

the robustness of the Dual Ascent method and alleviate the con-

dition for convergence, we make the cost function in (13) “more

quadratic” by augmenting it with a penalty term as follows

(14)

where is the penalty parameter whose selection will be

explained shortly.

The augmented constrained problem in (14) is clearly equiv-

alent to (13), and hence to (5), since any feasible and will

make the augmented quadratic penalty equal to 0.
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To solve (14), we associate dual variable with

the constraint. The so-called augmented Lagrangian is formed

as

(15)

where denotes the inner product of and of

the same dimensions. Note that the augmented Lagrangian

can be viewed as the ordinary Lagrangian

of problem (13) augmented with the quadratic

penalty term .

C. Alternating Direction Method of Multipliers

In this section, we apply the Alternating Direction Method of

Multipliers (ADMM) framework to find a solution to (14), and

hence to (5) thanks to their equivalence. ADMM is a generic

primal-dual procedure that is based on augmented Lagrangian,

and has been successfully applied to a wide range of problems.

For a tutorial on ADMM, the readers are referred to [38].

ADMM has its root in the traditional Dual Ascent optimiza-

tion method, and has a few features that make it an increasingly

popular convex optimization framework. In order to provide

motivation for using ADMM, we put it in the context of the

current problem and compare it with the Dual Ascent method.

Given the augmented Lagrangian in (15), the Dual Ascent

method iterates between a primal minimization step and a dual

update step as follows

(16)

(17)

where is the iteration index and is a step size. This pro-

cedure iteratively seeks a saddle point on the augmented La-

grangian, which corresponds to an optimum solution to (14).

Note that the primal minimization step in general involves mul-

tiple variables, which itself often needs to be solved in an itera-

tive manner until convergence. In our case, the minimization in

(16) can be done using the iterative subgradient method as an

inner loop (the outer loop being between (16) and (17)). After

the inner loop for subgradient method converges, the outer loop

moves to the dual update step in (17). Note that the dual update

involves a variable step size , whose choice needs tomeet cer-

tain criteria in order for the Dual Ascent method to converge.

The ADMM approach is “similar” to the Dual Ascent

method, in the sense that it also involves primal minimizations

and dual update. However, there are important differences

which make ADMM more suitable for solving our problem.

Specifically, the ADMM algorithm consists of the following

iterative steps

(18)

(19)

(20)

(21)

Two notable differences between the Dual Ascent iterations

and the ADMM iterations are observed. First of all, the joint

minimization with respect to all primal variables in

(16) is replaced by the sequential or alternating minimizations

from (18) to (20) carried with respect to each primal variable

while the others are held constant. One major advantage of the

alternating minimizations is that they are much more tractable

than the joint minimization. Also note that in ADMM, one pass

from (18) to (20) is carried out in each iteration, instead of mul-

tiple passes until convergence as would be required for the inner

loop of the Dual Ascent method. The second difference between

these two set of iterations is that in (17) is replaced by (and

fixed at) in (21), which eliminates the need of choosing the

step size at each iteration. We will present later that, an optional

update on can be carried out at the end of each ADMM itera-

tion to expedite the convergence.

In the following we present solutions to the alternating mini-

mizations from (18) to (20).

1) Update of : To solve (18), denote , and

it follows from (15) that

(22)

where is a constant that is independent of the variable of cur-

rent interest, that is, in this case. Since is

separable as shown in (22), the problem in (18) reduces to

minimizations in . The solution to each of the mini-

mizations is given by the soft-thresholding operator as follows

(23)

2) Update of : To solve (19), we first note that

, as the sum of quadratic convex

functions in the rows and columns of plus a linear function

in , is quadratic and convex in . Therefore, a solution can

be found by setting the gradient of with

respect to to zero. Regarding the implementation, there are

two options, which we present below.

Utilizing matrix algebra, we see from (15) that

(24)
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where constant independent of has been absorbed in . Set-

ting the gradient of (24) with respect to to , we have

(25)

which is known as a Sylvester equation in the control theory.

The classical method for numerically solving the Sylvester

equation is the Bartels-Stewart algorithm [39], whose compu-

tational complexity is for the general complex-valued

case. Based on the Bartels-Stewart algorithm, there exist

improved Sylvester equation solvers with reduced computa-

tional complexity and memory requirement. For instance, [40]

presents numerical approaches that solve real-valued Sylvester

equations in time.

As an alternative to solving the matrix equation in (25), we

can also work on the vectorized version. Specifically, let

, and be the vectorized versions of , and , re-

spectively. Also define , and

. With the above definitions, it follows that

(26)

where is a constant independent of (or ). Setting the gra-

dient of (26) with respect to to zero leads to the following

system of equations

(27)

Since does not change over iterations, we can

compute it off-line and cache its inverse, such that solving the

system of equations in (27) can be done in .

We have experimentally compared the computational com-

plexities of solving the matrix-version and the vector-version

of update. For the matrix version, the MATLAB implemen-

tation of the classical Bartels-Stewart algorithm (i.e., lyap.m)

was used thanks to its tested stability and availability. For the

vector version, we have programmed the update ourselves. Em-

pirical evidence suggests that solving the matrix-version is com-

putationally preferable than solving the equivalent vector ver-

sion. Additionally, note that for applications where computa-

tional complexity or memory consumption is a concern, more

efficient approaches, e.g., [40], are available.

3) Update of : To find a solution to (20), denote

, and it follows that

(28)

From (28) it is clear that the minimization in (20) is separable

over . For each , it is clear that

(29)

is convex in because it is the sum of its -norm and a

quadratic with positive definite Hessian.

To determine the minimum value of , two cases need

to be considered:

1) If .

2) If is convex and smooth in . Setting

the gradient of with respect to to zero, we have

(30)

from which it follows that and

(31)

The corresponding value of in this case is

.

Comparing the minimum values of in the two cases

above, we can determine the optimal as follows

(32)

From (32) we see that the update rule for is simply soft-

thresholding applied on its rows. This is analogous to the soft-

thresholding applied on the entries of , as is shown in (23).

D. Convergence of ADMM and Optimality Conditions

According to [38], there are two conditions sufficient for the

convergence of the ADMM iterations presented above. The first

condition requires the cost function in (13) to be closed, proper,

and convex, which is clearly satisfied. The second condition

requires that the ordinary Lagrangian of the

problem in (13) has a saddle point. Since (13) is a convex opti-

mization problem and there exists at least one feasible solution,

it follows that strong duality holds for (13). This implies the ex-

istence of a saddle point of , and consequently,

the convergence of the ADMM iterations.

Now we investigate the optimality conditions of the problem

in (13). For to be optimal, they have to satisfy

the following necessary conditions

1) Feasibility, i.e.,

(33)

2) Gradients (Subgradients) with respect to primal variables

vanish (include the origin), i.e.,

(34)

(35)

(36)

At each iteration, since minimizes

, it follows that the corre-

sponding subgradient includes the origin, i.e.,

(37)

Therefore, the condition in (34) is always satisfied at the end of

each iteration.
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Since minimizes , it follows

that the corresponding gradient vanishes, i.e.,

(38)

From (38) we see that the last term denotes

the quantity by which the optimality condition (35) is violated,

and therefore it can be viewed as a residual.

Denote by

(39)

and

(40)

the primal residual and dual residual, respectively. As the it-

erations proceed, both the primal and dual residuals approach

zero, and the ADMM algorithm is guaranteed to converge for

the convex optimization problem as in (13) [38].

Although the ADMM iterations converge for any fixed

penalty parameter , it is in practice possible to adjust the

value of along the iterations, with the goal of improving the

convergence and making the performance less dependent on

the initial choice of . An intuitive and popular strategy for

adjusting is presented as follows [41].

On one hand, note that the update rule (21) suggests that a

larger will enforce the feasibility more strongly,

and hence produce a smaller primal residual . On the other

hand, the definition of in (40) suggests that a smaller will

yield smaller dual residual. Since for convergence we need both

primal and dual residuals to be small, it makes sense that the

value of be adjusted along the iterations. Specifically, the fol-

lowing update rule is commonly used

(41)

where and are parameters. In the numerical exam-

ples below, we use and , which are typical values.

The ADMM algorithm for solving the constrained problem

in (13) is summarized in Algorithm 1.

Algorithm 1: ADMM Solver for the Regularized Fitting

Problem in (13)

1: Inputs: ,

(optional) , (optional)

2: Outputs:

3: Initialize:

4: while not converged do

5: Update using (23)

6: Update by solving either (25) or (27)

7: Update using (32)

8: Update using (21)

9: (Optional) Update using (41)

10:

11: end while

12: Set and .

IV. NUMERICAL EXAMPLES

In this section we demonstrate the performance of the pro-

posed algorithmwith experimental results. Specifically, we con-

sider two scenarios: outlier-free case and outlier-present case. In

both cases, the performance of the proposed algorithm is vali-

dated and compared with that obtained from state-of-the-art ap-

proaches. For all algorithms considered in this paper, their pa-

rameters were empirically tuned to yield the best results. Specif-

ically, we have adopted a greedy search procedure for parameter

tuning, which is implemented as a coarse logarithmic search fol-

lowed by a refined linear search. The empirically optimal pa-

rameters selected via this search were used to generate the re-

sults reported herein. Based on our experiments, the various al-

gorithms considered in the numerical examples are robust to the

selection of the parameters.

A. Outlier-Free Case

When outliers are not present, the measurement model in

(3) reduces to the conventional Multiple Measurement Vector

model in (2). Specifically, in this experiment, we considered

problems with measurement size varying from 30 to 100 in

the increment of 5, while the dimensions of the latent signal

were fixed at . Denote by the number

of nonzero rows in . Two sparsity levels of were consid-

ered, i.e., either or . Each nonzero row of

was generated as a Hanning-window tapered sinusoid, where

the number of periods was uniformly drawn among 1, 2, and 3,

and the phase was uniformly distributed between 0 and . The

transformation was generated according to a uniform spher-

ical ensemble, i.e., each was independently drawn from a

uniform distribution on the -sphere with radius 1. Indepen-

dent and identically distributed Gaussian noise was added to

the measurement, resulting in an SNR at 10 dB.

The proposed algorithm, termed “ADMM” herein, can be

adapted in a straightforward manner to this model by setting

(or a large value such as in practice), which en-

forces in the result. To model the smoothness of the

nonzero rows of , we used with defined as in

(9).

For comparison, we also include in this case the following

algorithms: MFOCUSS [16] (with ), MBP [17], MSBL

[19], and TMSBL [26]. Among these existing algorithms,

TMSBL is the only one that takes temporal correlation into

account to the best of our knowledge, while MFOCUSS is usu-

ally reported to yield the best recovery performance among the

techniques that do not utilize temporal correlation. For MFO-

CUSS and MBP, implementations from the Multiple-Spars

Toolbox [42] were used, and for MSBL and TMSBL the

implementations obtained from the authors’ website was used.

Denote by and the ground truth and the reconstructed

signal, respectively. The reconstruction error is quantified as

(42)

Results averaged over 100 random runs are shown in Fig. 2,

where the lines show the average reconstruction errors while the

vertical bars indicate the standard deviations. As we see, the pro-

posed ADMM algorithm outperforms the existing approaches

by a margin. By penalizing non-smoothness in the reconstructed
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Fig. 2. Reconstruction error versus the number of measurements in the out-

lier-free case. (a) Results for 5 nonzero rows in , (b) results for 10 nonzero

rows in .

signals, the proposed algorithm is less susceptible to the pres-

ence of noise.

B. Outlier-Present Case

In this subsection we consider the case where the measure-

ments are contaminated by both outliers and noise. The sequen-

tial benchmark approach presented in Section II and the simul-

taneous approach presented in Section III will be investigated

in terms of their capabilities to remove outliers and recover

the underlying signal .

As has been explained in Section II, the preprocessingmodule

in the sequential approach solves a Robust PCA problem. To

this end, we consider two state-of-the-art Robust PCA solvers,

namely, the Augmented Lagrangian Method presented in [34],

and the Variational Bayesian method presented in [36]. The

output from the ALM or VB preprocessing module is consid-

ered outlier-free and therefore can be used as input to the sub-

sequent signal recovery module. For signal recovery, we con-

sider two options: MFOCUSS and TMSBL. These two algo-

rithms yield the best results as is shown in the previous subsec-

tion. Moreover, TMSBL is a representative approach that takes

into account temporal correlation, while MFOCUSS is a rep-

resentative that does not take such information into account.

Combining the preprocessing and the signal recovery modules,

we have four configurations, termed as “ALM_MFOCUSS”,

“ALM_TMSBL”, “VB_MFOCUSS”, and “VB_TMSBL”, re-

spectively, which we believe are among the best in terms of re-

construction accuracy.

1) Proof of Concept: Before providing details on the numer-

ical analysis of the various approaches to solving the Robust

MMV problem, we first present a simple example to demon-

strate the need of special algorithms, such as those developed

in this paper, in order to recovery signals from outlier-corrupted

measurement. In this experiment, we set

, and set to have nonzero rows generated

as random sinusoids tapered with a Hann window. As a proof

of concept experiment, we set to contain only a single out-

lier, whose amplitude is several times greater than the signal

amplitude. In attempt to recover the underlying signals, we ap-

plied theMFOCUSS and TMSBL algorithms (without applying

ALM or VB for outlier-removal preprocessing), and compare

their results with that obtained from ADMM. The reconstruc-

tion error obtained from the three algorithms are as follows: (1)

, (2) , (3)

. Unsurprisingly, the MFOCUSS and TMSBL

algorithms, both of which expect outlier-free measurements as

input, failed to recover the underlying signals even for this fairly

easy test case. The ADMM algorithm, thanks to its outlier-re-

moval capability, accurately recovered the signals as expected.

2) Analysis on Computational Complexity: It is instructive to

examine the computational complexity of the five approaches.

We employ the Big- notation to analyze the growth of compu-

tational complexity with the problem dimensions and .

For each iteration of ADMM, the update of takes

; the update of takes (assuming (25)

is solved); and the update of takes . Therefore,

the computational complexity of the ADMM approach is

per iteration.

For the ALM preprocessing step, the bulk of computation

in each iteration is the Singular Value Decomposition (SVD)

of an matrix, which takes . For the

VB preprocessing step, the computation in each iteration is cen-

tered on updating the various covariance matrices, which takes

in general. For MFOCUSS, each iteration takes

, and for TMSBL, each iteration takes .

The computational complexity of the approaches considered

herein is summarized in Table I. Inspecting the overall com-

plexity, we see there is no clear winner among these approaches.

Therefore, we consider the “marginal” complexity when only

or varies ( is smaller than by definition and hence

is not considered). From the last two columns in Table I, we

see that the complexity of ADMM is comparable with that of

ALM_TMSBL. However, we will see shortly that ADMM has

significantly better results in terms of recovery accuracy than its

counterparts.

3) Reconstruction Accuracy vs. Problem Scale: Before get-

ting into the details of numerical analysis, we make a clarifica-

tion on the experimental setup followed herein. Since the Ro-

bust MMV problem involves multiple variables, e.g., problem

scale, compression ratio , number of signal components

, outlier density , etc., the problem space grows com-

binatorially with the number of variables. As such a result, it

is infeasible to allow all variables to vary together and explore

the entire problem space. In order to meaningfully analyze the

algorithmic performance, we have applied the “separation of
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TABLE I

COMPARISON OF COMPUTATIONAL COMPLEXITY

TABLE II

COMPARISON OF RECOVERY ACCURACY FOR VARYING PROBLEM SCALES

variable” principle in designing the experiments. Specifically,

in each set of experiments, we varied only one primary vari-

able, while either fixing the others or making them dependent

on the primary variable. In this way we can clearly analyze the

algorithmic performance from different experimental perspec-

tives.

In this experiment, we consider problems of varying scales

. For each scale, we set

and . For signal the number of nonzero rows

increases linearly with , and the nonzero rows were tapered

sinusoids generated in a manner that is similar to the previous

experiment. In all cases, we had , rendering

of low rank, and therefore justifying our use of a Robust PCA

approach for preprocessing. For , the density of the outliers

was fixed at % , and the nonzeros of were in-

dependently drawn from the uniform distribution.

Gaussian noise was added to the measurement yielding SNR

at 10 dB and 20 dB, respectively.

Table II summarizes the experimental results for all the test

cases introduced above. For each test case, the reconstruction

errors averaged over 100 independent runs are shown. The per-

formance improvement is defined as the percentage reduction

between the lowest reconstruction error and the second lowest

reconstruction error.

Four observations follow from the results in Table II. Firstly,

in all test cases the ADMM simultaneous approach outperforms

its sequential counterpart by a significant margin. In overall,

ADMM reduces reconstruction error by over 63% in compar-

ison with ALM_TMSBL (the second best approach). In certain

cases, the error reduction is over 80%.

Secondly, the performance of all the algorithms considered

herein generally improves when scale of the problem increases.

From the last column of the table, we see that the ADMM ap-

proach enjoys more significant performance improvement than

the other four approaches. The price to pay for this more rapid

performance improvement is computational complexity, which

has been examined previously.

Thirdly, if we are interested in estimating , i.e., the number

of nonzero rows in , we can simply count the number of rows

in that have norms exceeding a threshold. Such a threshold

can be set dynamically, for instance, to be a small fraction of the

largest row-wise norm in . Experimental results confirm that

with this thresholding step all the approaches considered herein

are able to correctly identify the nonzero rows.

Finally, we note that the use of ALM for preprocessing yields

generally similar, yet slightly better results than the use of VB.

Therefore, in the following experiments we use only ALM for

preprocessing for the clarity of comparison.

4) Robustness to Lack of Measurements: In this experiment

we investigate how the performance of the various algorithms

considered herein is affected by the availability of measure-

ments. For this purpose, we fixed the dimensions at

, and varied from 30 to 100 in the increment of 5. The

number of nonzero rows in was fixed at , and the den-

sity of outliers in was set at % . The signal and

outliers were generated in a similar manner as above. Gaussian

noise was added to yield an SNR at 10 dB.

Fig. 3 plots the results averaged over 100 independent runs

with error bars indicating the standard deviations. It is clear from

the figure that the ADMM approach consistently outperform the

two sequential approaches by a large margin. Averaged across

all numbers of measurements, ADMM yields more than 60%

performance improvement over ALM_TMSBL, which repre-

sents the best performance in sequential approaches. Moreover,

by examining the slopes of the curves in Fig. 3, we observe

that the performance of ADMM degrades muchmore gracefully
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Fig. 3. Reconstruction error versus the number of measurements when out-

liers are present. Results for 5 nonzero rows in and SNR at 10 dB. Average

reduction in reconstruction error between ADMM and ALM_TMSBL is 62.5%.

Fig. 4. Reconstruction error versus density of outliers in . Average reduction

in reconstruction error between ADMM and ALM_TMSBL is 72.7%.

than that of the other two approaches when measurements be-

come increasingly scarce.

5) Robustness to Density of Outliers: In this experiment we

illustrate the performance of the various algorithms when dif-

ferent levels of outliers are present in the measurement. Specif-

ically, the dimensions of the problem were fixed at

, and the number of nonzero rows in was fixed

at . The density of outliers was varied over a wide range

from 1% to 50%. The generation of signals and outliers was

similar as above. Gaussian noise was added to the measurement

resulting in an SNR at 10 dB.

The effectiveness of the ADMM approach in handling out-

liers is clearly illustrated in Fig. 4. Note that the ADMM ap-

proach consistently outperforms the sequential approaches by

a significant margin. Moreover, over the wide range of den-

sity levels considered herein, the performance of the ADMM

approach barely degrades, while in contrast, the reconstruction

error by the sequential approaches has increased by over 20

times. The excellent performance of the ADMM approach is

attributed to the joint estimation of and , where iterative re-

finements are made.

6) Reconstruction Accuracy vs. Number of Nonzero Signals:

In this experiment we fix the dimensions of the problem, and ex-

amine how the number of temporal signals in affects the algo-

rithmic performance. Intuitively, when more signals are present,

Fig. 5. Reconstruction error versus the number of nonzero signals in when

5% of measurements were corrupted by outliers. dB. Average re-

duction in reconstruction error between ADMM and ALM_TMSBL is 56.7%.

i.e., when has more nonzero rows, the recovery problem be-

comesmore difficult. To quantitatively analyze this trend, we set

up the experiment as follows. The dimensions of the problem

were fixed at , and the density of

outliers was fixed at % . The number of nonzero

rows in was selected from .

The generation of signals and outliers was done in a similar

fashion as above. Gaussian noise was added to the measurement

resulting in an SNR at 10 dB.

The experimental results are plotted in Fig. 5. The curves con-

firm that the algorithmic performance degrades as the number

of signals increases. Despite the similar trend, ADMM yields

significantly lower reconstruction error than its sequential coun-

terparts, and the average performance improvement is close to

60%.

7) Robustness to Noise: In this experiment we investigate

how noise in the measurement affects the performance of the

algorithms. Before making quantitative comparison, we first ex-

amine in Figs. 6 and 7 the typical waveforms obtained from the

various algorithms, which provide us with more insight into the

effect of noise.

In Fig. 6, the nonzero rows of consist of 5 tapered si-

nusoids generated in a similar fashion as above. The parame-

ters of the problem were fixed at , and

% , respectively. Noise was added to

yield an SNR at 10 dB. Fig. 6(a) shows a typical realization of

the nonzero rows in . In Figs. 6(b)-(d), we use colored curves

to denote the rows of corresponding to the nonzero rows of

, and use black curves to denote the remaining rows. As is

evidenced by the figures, all of the algorithms can accurately

identify the nonzero rows of . In addition, it is clear that by

using smoothness-promoting regularizations in (7), the ADMM

approach yields more accurate recovery of the signals, while the

results of the other approaches contain spurious variations in the

recovered signals. The spurious variations are due to over-fitting

the noisy measurements. Similar observations follow when we

examine Fig. 7, where the nonzero signals were obtained as re-

alizations of EEG waveforms.

In the following, we quantitatively evaluate the robustness

of the algorithms to noise. For this purpose, we set

, and % . The generation of
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TABLE III

COMPARISON OF ALGORITHMIC PERFORMANCE UNDER CHALLENGING TEST CONDITIONS

Fig. 6. Reconstruction of smooth signals (sinusoidal waveforms). (a) Orig-

inal signals, (b) reconstructed from ADMM , (c) recon-

structed from ALM_MFOCUSS , (d) reconstructed from

ALM_TMSBL .

Fig. 7. Reconstruction of smooth signals (EEG waveforms). (a) Original

signals, (b) reconstructed from ADMM , (c) recon-

structed from ALM_MFOCUSS , (d) reconstructed from

ALM_TMSBL .

signals and outliers was similar to above. Noise level was varied

to yield a range of SNR values from 5 dB to 40 dB, which is of

practical interest for applications including EEG/MEG signal

processing [43], [44].

As can be seen in Fig. 8, the ADMM approach yields signifi-

cantly lower reconstruction error than the sequential approaches

Fig. 8. Reconstruction error vs. SNR. Average reduction in reconstruction error

between ADMM and ALM_TMSBL is 57.3%.

across all noise levels examined, especially at low SNR condi-

tions. The robustness to noise is attributed to the incorporation

of prior smoothness knowledge.

8) Additional Numerical Examples: In the previous subsec-

tions we have analyzed the performance of various algorithms

from different problem perspectives. In addition to the com-

prehensive analysis above, we present in this subsection some

additional numerical examples, which are considered relatively

“tough”. The objective is to provide a thorough investigation

into the algorithmic performance under challenging experi-

mental conditions.

The reconstruction errors from the various algorithms under

the challenging conditions are summarized in Table III. Each

row in the table corresponds to one test case. For example, in

test case 1 we consider heavily compressed measurement data

with ; in test case 2 the row-wise sparsity of is as

high as ; test case 3 is similar to test case 1 but with

shorter measurement sequences; and finally test case 4 is a com-

bination of the first two test cases. As is evidenced by the results

in the table, the performance of all algorithms under investiga-

tion degrades due to the difficulty of the test cases. However, it

is clear that the performance of the ADMM algorithm degrades

much more gracefully than its sequential counterparts, demon-

strating its robustness even under relatively challenging exper-

imental conditions.

In summary, we have examined the algorithmic performance

of the approaches discussed in this paper. Extensive experi-

ments covering a wide range of conditions confirm that the

ADMM approach is highly effective in recovering signals from

corrupted measurements.
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V. CONCLUSION

In this paper we considered the problem of recovering jointly

sparse vectors from under-determined measurements that are

corrupted by both additive noise and outliers. This was pre-

sented as the robust extension of the MMV problem. To solve

this problem, we proposed two general frameworks, with the

first being a sequential approach based on preprocessing and

the state-of-the-art technologies, and the second being based

on the formulation of an innovative regularized fitting problem.

We proposed an algorithmic solution based on the ADMM pro-

cedure to solve this regularized fitting problem. The approach

based on ADMMhas excellent robustness to outliers, and yields

significantly lower reconstruction error than its sequential coun-

terpart.

APPENDIX A

In this appendix, we show that (5) is a convex optimization

problem in . First, define as optimiza-

tion variable. With this definition, the cost function in (5) can

be written as

(A.1)

where , and ,

respectively.

The first term in (A.1) is separable across , where

each term is a quadratic function of , i.e.,

(A.2)

Since is positive semidefinite, it follows that each of

quadratic terms in (A.2) is a convex function in , and there-

fore the first term in (A.1) is convex in .

To see the second term in (A.1) is convex in , let

and , respectively. For any

, it is clear that

(A.3)

where the inequality follows from the homogeneity and subad-

ditivity properties of norms. By definition of convexity, we see

is convex in .

In a similar fashion we can show the third term in (A.1) is

convex in . Therefore, (A.1), as the sum of convex functions

in , is itself convex in . Since (5) is unconstrained, it follows

that it is a convex optimization in .
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