
[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2979 2979–2986

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 21 2011, pages 2979–2986
doi:10.1093/bioinformatics/btr505

Sequence analysis Advance Access publication September 5, 2011

Robust relative compression of genomes with random access
Sebastian Deorowicz1,∗ and Szymon Grabowski2
1Institute of Informatics, Silesian University of Technology, 44-100 Gliwice and 2Department of Computer
Engineering, Technical University of Łódź, 90-924 Łódź, Poland
Associate Editor: John Quackenbush

ABSTRACT

Motivation: Storing, transferring and maintaining genomic
databases becomes a major challenge because of the rapid
technology progress in DNA sequencing and correspondingly
growing pace at which the sequencing data are being produced.
Efficient compression, with support for extraction of arbitrary
snippets of any sequence, is the key to maintaining those huge
amounts of data.
Results: We present an LZ77-style compression scheme for relative
compression of multiple genomes of the same species. While the
solution bears similarity to known algorithms, it offers significantly
higher compression ratios at compression speed over an order of
magnitude greater. In particular, 69 differentially encoded human
genomes are compressed over 400 times at fast compression, or
even 1000 times at slower compression (the reference genome
itself needs much more space). Adding fast random access to text
snippets decreases the ratio to ∼300.
Availability: GDC is available at http://sun.aei.polsl.pl/gdc.
Contact: sebastian.deorowicz@polsl.pl
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on May 17, 2011; revised on August 17, 2011; accepted
on August 31, 2011

1 INTRODUCTION
Rapid development in DNA sequencing technologies led to drastic
growth of data publicly available in sequence databases, for
example, GenBank at NCBI or 1000 Genomes project. The low
cost of acquiring an individual human genome opens the door to
‘personalized medicine’.

DNA sequences within the same species are both large and
highly repetitive. For example, only ∼0.1% of the 3 GB human
genome is specific; the rest is common to all humans. This poses
interesting challenges for efficient storage and fast access to those
data. Most classic data compression techniques fail to recognize
this tremendous redundancy, simply because finding matches with
e.g. an LZ77 variant with a sliding window would require a multi-
gigabyte buffer, not counting the match-finding structures. On the
other hand, using a context-based statistical coding (for example,
PPM) may require maintaining a high-order statistical model,
otherwise the context statistics will be polluted with ‘accidental’
DNA matches. Using such a model is problematic, due to its
enormous memory requirements.

∗To whom correspondence should be addressed.

Interestingly, most of the DNA-specialized compressors from the
literature are inappropriate to handle modern genomic databases.
There are a number of reasons for that: (i) most of them care
about compression ratio rather than compression and decompression
speed or the memory use during the compression process; for
these reasons, they are not practical for sequences larger than, say,
several megabytes; (ii) most effort has been focused on succinctly
representing a single genome (which is believed to be almost
incompressible anyway, hence only tiny improvements were at the
stake), not to be particularly efficient in detecting inter-genome
redundancy; (iii) extracting a range of symbols from the middle
of the compressed stream is a rarely supported feature.

Only since around 2009 can we observe a surge of interest
in practical, multi-sequence oriented DNA compressors, usually
coupled with random access capabilities and sometimes also offering
indexed search. The first algorithms from 2009 (Brandon et al., 2009;
Christley et al., 2009) were soon followed by more mature proposals,
which will be presented below.

Mäkinen et al. (2010) added index functionalities to compressed
DNAsequences: display (which can also be called the random access
functionality) returning the substring specified by its start and end
position, count telling the number of times the given pattern occurs
in the text and locate listing the positions of the pattern in the text.
The authors noticed that the existing general solutions, paying no
attention to long repeats in the input, are not very effective here, and
they proposed novel self-indexes for the problem.

Other full-text indexes for repetitive sequences were proposed
in Claude et al. (2010) and Kreft and Navarro (2011). The former
work presents two schemes, one using an inverted index on q-grams,
tailored to the repetitive nature of the input data, and the other being a
grammar-based index. The latter paper introduced a self-index based
on the LZ-End (Kreft and Navarro, 2010), which is an algorithm
interesting in its own, as it is an LZ77 variant enabling efficient
extraction of arbitrary phrases.

Wang and Zhang (2011) presented a scheme for referential
compression of genomes, working on the chromosome level. If the
pair of respective chromosomes is similar enough, one of them
is encoded with respect to the chromosome from the reference
sequence. If not, it is split into several pieces for which the best
alignments are then found in the reference chromosome. Then,
longest common subsequences between matching parts are found
and the differences encoded using Huffman coding.

Kuruppu et al. (2010) proposed a simple yet quite efficient
compression scheme with random access (it is not an index though),
dubbed RLZ-std. They choose one of the sequences as the reference
sequence and compress it with a self-index (in the cited work,
however, a general-purpose compressor, 7z, with no random access

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2979

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022



[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2980 2979–2986

S.Deorowicz and S.Grabowski

capabilities, was used). The other sequences are greedily parsed to
find longest matches to the reference sequence. Some extra data
structures are added to provide random access. Unfortunately, the
results presented in the cited work are incoherent (which is not
clearly admitted in the paper): the given compression ratios refer
to sole archives, with no random access support, while the display
timings are obtained with partially decompressed (in RAM) data
structures, so the actual memory use during query handling is by
50–75% greater than the size of the archive plus the random access
helper structure.

The work (Kuruppu et al., 2011b) is a follow-up paper, presenting
a stronger LZ77-style algorithm. This time, however, no attempt is
made for enabling random access, although it is mentioned how it
can be (relatively easily) added to the scheme. As their algorithm is
a departure point of our proposal, we describe it more extensively
in the next section.

In this work, we propose another algorithm for effective
compression of multiple genomic (DNA) sequences of the same
species and show experimental results, suggesting its supremacy
over existing solutions. Although the general framework of relative
LZ77-style compression is not new in this context, we propose some
novel ideas. Our scheme provides fast random access to compressed
data, exploiting some space–time trade-offs.

Finally, we note a very recent work from Kuruppu et al. (2011c),
where they cite our preliminary preprint of this article (Grabowski
and Deorowicz, 2011) and focus on the aspect of reference sequence
construction. Three dictionary compression algorithms are tested
in order to generate relevant reference sequences, and the most
successful of them leads to compression ratios comparable to our
‘advanced’ variant (see Section 3.2) on yeast datasets. Alas, the
reference sequence build algorithms are slow and, more importantly,
require huge amounts of memory, which makes running them on
multiple human genomes problematic.

2 METHODS AND ALGORITHMS

2.1 Differential LZ77 compression
Repetitive data are naturally well handled by compressors from the LZ77
family. The feature common to all those algorithms is to parse the input
data into a sequence of matches and literals, usually entropy-encoded,
e.g. with Huffman coding. An LZ-match (also called a factor) is a reference
to an earlier occurrence of the same subsequence, expressed as the distance
(offset) to that earlier subsequence and its length. If, at the current position,
there is no (satisfactory) match, a literal is emitted and the compressor moves
forward by one symbol. We note that greedy parsing, that is, always choosing
the longest match, is usually a suboptimal strategy. Parsing the input into
matches and literals is a vital factor for good compression performance,
and the problem of optimal parsing is solved only under a simplified
assumption of known cost functions for encoding match offsets and match
lengths (Ferragina et al., 2009).

RLZ-opt (Kuruppu et al., 2011b) is the current state-of-the-art algorithm
for compressing collections of genomes (As mentioned in Section 1, the most
recent variants from the same team (Kuruppu et al., 2011c) are significantly
better in compression ratio, and also impractically slow in compression and
memory-consuming. From those reasons, we do not discuss those variants till
the experimental section.). It follows the LZ77 route, but has some features
not often met in that family of compressors, typically applied to other kinds
of data. First, it is not just used, but designed for genomic collections,
where random access to an individual sequence (even better, only a small
snippet of it) is a welcome feature. For this reason, one of the sequences

in the input collection is chosen (and encoded) as the reference sequence,
while all the other sequences are encoded with relation to the first one,
but without any cross-references to one another. Second, matches are found
thanks to a suffix array, which is unusual, since most LZ77 compressors
make use of a hash array (or, more rarely, a search tree). Building a suffix
array is relatively slow, but this structure facilitates effective non-greedy
parsing.

The RLZ-opt algorithm is based on several principles. A lookahead buffer
is used for each considered location in the text, which basically means that
if the match at position i+1 is longer than the match at position i, a literal
may be emitted at position i followed by a match. This idea is however
extended, not to a fixed-size buffer, but to a buffer whose size changes
dynamically, depending on the length of the currently longest match found
(details can be found in the cited work). They also used the idea from Manzini
and Rastero (2004) of encoding short matches as runs of literals, which
gives a fair boost in compression ratio. As a last thing, they notice that
long and short (that is, those encoded as literals) matches tend to appear
alternatively, and the offset of the long match can usually be predicted
quite well from the offset of the previous long match. Those offsets (match
positions) usually form long increasing sequences, hence an algorithm for
solving the classic longest increasing subsequence (LISS) problem (Gusfield,
1997) is used to detect those matches (called LISS factors), whose offsets
are then cheaply encoded. The LISS factors are often followed by single-
symbol factors which represent single nucleotide polymorphisms (SNPs)
in DNA. We note that prediction of the next factor position is another
incarnation of the implicit approximate repeat detection idea, again known
from Manzini and Rastero (2004). The parsing products in RLZ-opt, in
particular, the match lengths and run-of-literals lengths, are compacted with
Golomb encoding.

2.2 Our algorithm at first sight
As said, our algorithm is essentially similar to RLZ-opt (Kuruppu et al.,
2011b), and the main differences are as follows:

(1) In addition to the reference sequence, we use extra reference phrases
from the other sequences for which matches exist.

(2) Our LZ-parsing is different (details later).

(3) Our LZ match-finding procedure is based on hashing rather than
a suffix array, with great benefits for compression speed, and also
helping to reduce memory requirements during the compression.

(4) Huffman coding rather than Golomb coding is used in representation
of various statistics data.

(5) Compression is performed in blocks (with shared Huffman models),
to facilitate random access.

(6) Our (compressed) reference sequence admits random access.

(7) We have found a fast and reliable heuristic to select an appropriate
reference sequence.

(8) Optionally we use more than one reference sequence, which can
improve the compression significantly, for the price of giving up the
random access.

First we describe the scheme from the compression viewpoint, and then
discuss how we implemented the random access functionality. Also, we
implemented a variant with multiple reference sequences, but this time
only for decompressing the whole sequence collection (with increasing the
number of reference sequences, the random access would be slower and
slower, and also quite cumbersome to implement).

Improved compression ratios of our algorithms can be attributed mostly
to the chosen LZ-parsing, which aggressively looks for a certain class of
approximate matches, and Huffman encoding, which is more compact than
Golomb, and also applied to more byproducts of the compression process.
When the genomes are not extremely similar (which is the case of the yeast

2980

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022



[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2981 2979–2986

Robust relative compression of genomes with random access

collections), then also adding extra reference phrases boosts the compression
noticeably.

First, we present the algorithm in the basic form, without the extra
reference phrases, and then explain this enhancement.

2.3 Basic variant
Let us assume that T1 is the reference sequence, and Ti for 2≤ i≤r are the
following sequences that will be encoded relatively to T1. The reference
sequence cannot be compressed as effectively as the other ones and actually
constitutes a substantial part of the final archive. We first divide the reference
sequence into blocks of size 8192 symbols and store explicitly start positions
of each block in the compressed (output) form of this sequence. It is possible
that the start positions for i-th and (i−1)-th block are equal, which means
that the whole block contains only N or n symbols (this phenomenon is
quite frequent especially on the available human genomes). Using blocks
also enables fast access to data (only local decompression of the reference
sequence is needed). Then, within each block except for those N-only blocks,
we divide the reference sequence into q-grams over the actual alphabet. More
precisely, if the number of distinct symbols in the given dataset is σ, then q
is the largest number such that σq ≤4096 (housing an even larger alphabet
of q-grams may be too costly for the representation of the statistical model).
The resulting stream is Huffman-encoded, mostly to prevent inefficiencies
on middle-sized runs of N (or n) symbols, which are not rare. We also hash
overlapping subsequences of length M1 from the reference sequence (that is,
T1[1...M1], T1[2...M1 +1], etc.), to enable further match searches.

In the next phase, we process the sequences Ti, 2≤ i≤r, one by one,
scanning them from left to right and looking for matches in the reference
sequence. (For clarity of exposition, we assume that the data in Ti sequences,
2≤ i≤r, are not partitioned into blocks.) Our parsing strategy is non-greedy,
but does not mimic the lookahead approach known from Kuruppu et al.
(2011b). Instead, we make use of the following simple observations. One is
that shorter matches are better than moderately longer ones if their offsets
are significantly cheaper to encode. The other is that matches with (one or
more) single-character mismatches inside are frequent in genomes, and it is
worth encoding them efficiently. (We will call those approximate matches, to
distinguish from exact matches.) Note that the latter idea, although expressed
in different terms, roughly corresponds to predicting the positions for LISS
factors in Kuruppu et al. (2011b). Approximate matches have a mismatch
count limit k =29 (choosing this value was convenient for technical reasons,
but extending it to, e.g. 128 does not improve compression ratios noticeably).

We denote the minimum match length of the first (contiguous) piece of
an approximate match with M1 and the minimum match extension, that is,
the length of each next piece of an approximate match, with M2.

LZ-matches are traditionally represented as a pair: reference offset and
match length. We encode offsets as differences between the sequence position
in the current genome and the matched-to sequence position in the reference
genome. This tends to produce relatively small numbers (both negative and
non-negative), but the extra step, differential encoding of those values, makes
the resulting stream even flatter.

As said, our parsing scheme may prefer a shorter match if its offset
encoding is cheaper. The chosen heuristics basically distinguishes between
near match offsets (encoded on a single byte) and distant match offsets
(encoded on 5 bytes), and sets a penalty for switching from match to match
between those kinds of offsets. Also a penalty is inflicted for each mismatch
inside a match. Moreover, the penalties for offset kind switching are larger if
the average match length is larger in a given file. This prevents from greedy
looking for the longest match ‘anywhere’ on human genomes, where it is
more beneficial to find approximate copies of possibly large areas. Of course,
those approximate region copies are found implicitly in our scheme, that is,
as a sequence of exact or approximate matches, possibly separated by short
snippets of mismatches. On the other hand, on less repetitive collections
(yeast datasets) finding possibly long matches to diverse regions of the
reference sequence is often a good strategy, and hence the penalties for
switching offset kinds (and thus their encoding) are less severe.

Handling long runs of N or n symbols deserves special care. We encode
runs of N (or n) symbols of length at least M1 as a pseudo-match (with the
run’s actual length and an artificial unique offset).

There are four conceptual streams in our solution: match offsets, match
lengths, literals (those symbols that do not belong to any match) and
match / literal flags. The flags are not binary since they also tell the number
of mismatches in a match. In this way, an approximate match is represented
by a single offset (but the number of encoded match lengths is equal to
the number of its pieces). Variable-length byte coding is used for match
offsets and match lengths. The separate byte positions imply separate order-
0 Huffman models, which are responsible for the final compression stage. For
example, the first byte in a match offset has 161 values for offset differences
from −80 to 80, one value telling that the offset delta is less than −80
(followed by 4 extra bytes), one value telling that the offset delta is >80, one
value denoting an N-run and one value for signaling a match to a string from
the concatenated extra reference phrases (see later). Finally, about 80 values
are reserved for switching the reference sequence (used only in the ‘ultra’
variant of our algorithm, see Section 2.7). Also, long runs of offsets equal to
zero are run-length encoded.

Literals are processed like the reference sequence (only without dividing
them into blocks), with packing several of them into supersymbols and
applying Huffman. Finally, match / literal flags are also packed and submitted
to yet another Huffman model. How many literals / match offsets / flags
should be clumped together before entering the Huffman coding phase is
not fixed but estimated for the given data, according to the length of the
appropriate stream. For greater compression efficiency, we apply exclusions
for the literals within approximate matches. As an example, let us take
a match whose (say, first) mismatching pair is A–C. In our solution, the
decompressor ‘knows’ that all symbols here are possible except for C.

2.4 Extra reference phrases
We have noticed that good LZ-compressors can be very efficient on our data
if no restriction to match references is set. Still, unrestricted set of reference
positions to LZ-matches prevents random access, since a referenced substring
can also be represented as one or more matches to earlier substrings, and
the resulting tree of references can grow with hardly any constraint. Some
compromise has to be found then. Our solution is to take long enough runs of
successive literals in Ti, 2≤ i≤r, and append them to the reference sequence.
They act as a reservoir for extra matches. The offset of such a match, as
mentioned earlier, has a unique 1-byte prefix, and what follows is the match
position from the beginning of the area of extra reference phrases (no delta
coding used here). The minimal length of a literal run is M3 =48. Note that
we detect the literal runs on the fly and attach at the end of the extended
reference sequence, hence this idea does not require an extra pass over data.
In a single pass we cannot be sure, which extra phrases will give a match
for some future sequence, so the value of M3 is chosen quite arbitrarily, but
it cannot be too small; we assume that the literal run should be longer than
the minimal match length to increase the probability of finding a match to
it. It is also possible in an extra pass over the compressed data to remove
the unsuccessfully added extra phrases, but due to the additional time we
decided not to implement this feature in the current version.

2.5 Random access
An important functionality of our application is extraction of arbitrary
contiguous snippets from a pointed sequence and a pointed chromosome.
To this end, we divide each chromosome into blocks of approximately equal
size, about bd symbols. The LZ-parsing in the random access supporting
compression mode disallows creation of phrases crossing block boundaries.

We consider two space / access time trade-offs, using different variants
for encoding the reference sequence symbols: (i) packed into 2 byte words,
corresponding to the actual alphabet of the dataset (if, for example, there
are five DNA symbols in the dataset, they are packed in sextuples, since
56 ≤216 <57); (ii) packed into supersymbols and then Huffman-compressed.

2981

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022



[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2982 2979–2986

S.Deorowicz and S.Grabowski

We start with variant (i). The query asks for a range [�,r] from
chromosome idchr in collection idcol. (We assume that idcol is not
the reference sequence. Handling the opposite case is easier.) All the
chromosomes of a single sequence (chromosome collection) are merged
before compression, hence the original query range must be translated (in
constant time) into the range [�′,r′] in idcol. Then, two binary searches are
used to find the first and the last block at least partially covered by the
obtained range. Binary search, rather than constant-time lookup, is needed,
since the (decompressed) blocks are of varying sizes, only approximately
equal, as the LZ-matches are not artificially truncated. All the found blocks
are partially decompressed, which includes the streams of flags, match
lengths, match offsets and literals. The streams of flags and match lengths
are scanned, to skip over the prefix of the first block corresponding to the
collection offsets less than �′. Similarly, the last block is processed only until
the current position exceeds r′. Any reference to a supersymbol (stored on a
2 byte word) requires decoding it letter-by-letter. Some care must be taken
if the start position �′ is inside an approximate match.

Handling variant (ii) is similar, but whole Huffman-compressed blocks
must be extracted from the reference sequence when there are some
LZ-matches in the currently extracted snippet. This makes the procedure
significantly slower than in the previous variant. There are two tricks
implemented to mitigate this overhead. First, Huffman coding is applied in
the reference sequence over equal-size original blocks, of br =8192 symbols.
Second, several most recently extracted Huffman blocks from the reference
sequence are cached (during a query), since successive LZ-matches may
reuse them.

2.6 Selecting the reference sequence
The choice of the reference sequence has significant impact on the overall
compression results. Of course, if the reference sequence is totally irrelevant
(from another species), the compressed results are horrible, but even a wrong
choice from the given set of same species genomes leads to a noticeable
loss. We found out that choosing the sequence that maximizes the number of
(possibly repeating) subsequences of length M1 (which is set to 13); not
containing the symbol N in it works correctly most of the time, in our
experiments failing only in case of one human chromosome. We use this
procedure in the variant with ‘R’ suffix (see Section 3.2).

2.7 Multiple reference sequences
An alternative to the idea of extra reference phrases is using two, or more,
reference sequences. In our implementation, choosing h reference sequences
means that the first h sequences of the dataset become reference ones. The
first of them is compressed as in the standard variant. The following ones
may have matches to the previously compressed reference sequences, and
the match finding is (again) based on hashing. During the compression (and
decompression) process, the reference sequences are stored uncompressed
in memory.

LZ-parsing is again similar to the standard variant, but the search space
is now broadened, since the parser has to also decide constantly which
reference sequence it should choose. Our strategy is based on two simple
assumptions: (i) matches with small (differential) offsets are cheaper to
encode than matches with large (differential) offsets, provided that both come
from the same reference sequence; (ii) if both previous and current matches
have large (differential) offsets then it is better to use the reference sequence
of the previous match. Simply speaking, switching the reference sequence
is rarely a good deal and we do it (from a match to a match) sparingly,
based on a heuristic. Match encoding is also similar to the variant with a
single reference sequence, but the repertoire of flags has been extended;
in particular, there are flags to signal a changed (compared to the previous
match) reference sequence.

Now we present a theoretical (and not implemented) variant with two
reference sequences. Of course, it is crucial to encode the latter sequence
with reference to the former one; otherwise on the available datasets,
with relatively few sequences, a compression loss would be inevitable.

We believe fast random access is possible using the classic rank/select
operations. To give a flavor of this idea, let us assume we have two reference
sequences and the second, T2, of length n, is LZ-encoded relative to the first
one, and we also assume exact matches for clarity. We create a bit-vector
B[1,n], with 1s exactly in the positions where LZ-matches start and just after
they end. Now, rank(B,k) is odd iff position k in T2 is inside some match
and then k−select(B,rank(B,k)) tells where exactly within this match k is.
We also need to perform select on the match offsets and lengths, and have
some extra structures to handle prefix sums. To reduce the overhead of B,
in reality we should use its compressed representation [see, e.g. Claude and
Navarro (2008)].

2.8 Implementation details
Our tool, Genome Differential Compressor (GDC), supports all the
ambiguity codes (not only the standard N symbol) and can losslessly handle
both lowercase and uppercase DNA notation. Also, it handles headers and
End-Of-Line (EOL) symbols in the input FASTA data. According to our
experience, this is not common in existing implementations; for example, we
found out from the authors of Kuruppu et al. (2011b) that in their experiments
those rare symbols different to A, C, G, T or N were converted to N, and
also their software requires eliminating all EOLs before compression. More
details concerning those issues are given in the Supplementary Material.

GDC was implemented in C++, using g++ 4.1.2 compiler.

3 RESULTS AND DISCUSSION
We have run experiments to evaluate the performance of our
algorithm. In this section, the main results are presented and
discussed. Additional results and more details on the used datasets
and our test methodology can be found in the Supplementary
Material.

3.1 Test methodology
The test machine was a 2.4 GHz Quad-Core AMD Opteron CPU
with 64 GB RAM running Red Hat 4.1.2-46, a single core of the
CPU was used.

The test collections include several datasets previously used in
the literature, and a large collection of human genomes taken from
Complete Genomics Inc. The former group comprises two yeast
datasets and a dataset of four human genomes, all publicly available
and used earlier in Kuruppu et al. (2011b), and also two human
genome sequences and the plant genomes, Arabidopsis thaliana and
rice, used in Wang and Zhang (2011); in the latter test, we measured
only relative compression on the datasets, for compatibility with the
cited work. The largest and probably most interesting collection is,
however, a dataset of 70 human genomes totaling almost 220 GB;
to our knowledge, no one has yet made genomic compression
experiments on such a scale.

We tested our algorithm in several variants. The fast one,
compared with the normal variant, resigns from Huffman encoding
of the reference sequence, in order to significantly speed up random
access to data. The advanced variant includes the idea of extra
reference phrases, not used in normal. The ‘R’ suffix means
‘with reference sequence finding’. Finally, ultra is the variant with
multiple reference sequences, boasting the highest compression but
with no random access functionality. We stress that in the non-ultra
GDC modes are tested for compression only in Tables 1–4 and their
archives do not contain extra data facilitating random access. Only
in Table 5 (and the Supplementary Material), we explore this issue,
presenting obtained space / access time trade-offs. As it will be

2982

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022



[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2983 2979–2986

Robust relative compression of genomes with random access

Table 1. Compression results for S.cerevisiae (39 genomes)

Method Total Avg. per seq. c-sp d-sp

Size (MB) Ratio Size Ratio (MB/s) (MB/s)

original 493.98 – – – – –
gzip∗ 132.00 3.7 3.385 3.7 3.65 91.92
bzip2∗ 122.66 4.0 3.145 4.0 6.22 16.08
7z∗ 4.97 99.3 0.052 244.7 0.54 163.03

RLCSA 40.13 12.3 – – 0.57 1.75
Comrad 16.50 29.9 – – 0.70 12.05
RLZ-opt∗ 9.33 52.9 0.167 76.1 1.60 189.99
RLZ-RePair∗ 6.48 76.2 – – 0.27 160.91
GDC-fast 6.95 71.1 0.103 123.5 33.15 160.91
GDC-normal 6.88 71.8 0.103 123.5 33.15 161.43
GDC-advanced 6.66 74.2 0.097 131.0 38.90 161.43
GDC-advanced-R 6.66 74.2 0.097 131.0 29.06 161.43
GDC-ultra 4.57 108.2 0.042 303.5 2.53 161.43

The ‘*’ character after compressor name means that EOLs were initially removed.

Table 2. Compression results for S.paradoxus (36 genomes)

Method Total Avg. per seq. c-sp d-sp

Size (MB) Ratio Size Ratio (MB/s) (MB/s)

original 436.43 – – – – –
gzip∗ 120.43 3.6 3.345 3.6 3.53 91.86
bzip2∗ 112.24 3.9 3.118 3.9 6.08 15.61
7z∗ 5.34 81.7 0.069 176.6 0.49 156.93

RLCSA 46.48 9.4 – – 0.54 1.33
Comrad 19.69 22.2 – – 0.64 10.41
RLZ-opt∗ 13.44 32.5 0.300 40.4 1.44 170.48
RLZ-RePair∗ 7.70 55.7 – – 0.26 144.54
GDC-fast 10.23 42.7 0.182 66.8 17.80 130.67
GDC-normal 9.20 47.4 0.182 66.8 17.66 124.34
GDC-advanced 8.73 50.0 0.169 71.9 20.49 128.36
GDC-advanced-R 8.73 50.0 0.169 71.9 16.99 128.36
GDC-ultra 5.01 87.2 0.062 196.2 3.03 151.54

The ‘*’ character after compressor name means that EOLs were initially removed.

explained soon, however, also our specialized competitors, Comrad,
RLZ-optand RLZ-RePair, cannot really support random access, at
least within the memory use close to their respective archive sizes
given in Tables 1–4. All the tested compressors (including all GDC
variants) use as the reference sequence the sequence pointed as such
in a given dataset description.

The other tested algorithms include three widely used general-
purpose compressors, gzip, bzip2 and 7z, and specialized
compressors, Comrad 0.2.1 (Kuruppu et al., 2011a), RLZ-opt 0.1.1
and RLCSA (Mäkinen et al., 2010) (the last-named being an index,
hence we did not expect its compression ratios to be comparable to
the rest). Comrad finds repeats over multiple passes through data,
extending already compressed regions. The archives it produces are
potentially searchable, but as far as we know neither the search
(locate) nor display functionalities have been implemented. In

Table 3. Compression results for H.sapiens taken from Complete Genomics
Inc. (70 genomes)

Method Total Avg. per seq. c-sp d-sp

Size (MB) Ratio Size Ratio (MB/s) (MB/s)

original 218 961.98 – – – – –
7z∗ 1 131.27 193.5 7.00 446.8 0.38 155.12

RLZ-opt∗ 1 731.31 126.5 15.26 204.9 1.34 130.38
GDC-fast 1 462.66 149.7 7.34 426.3 35.23 144.62
GDC-normal 1 201.15 182.3 7.34 426.3 35.90 146.16
GDC-advanced 1 201.25 182.3 7.34 426.3 36.36 147.05
GDC-advanced-R 1 201.25 182.3 7.34 426.3 26.71 146.65
GDC-ultra 910.13 240.6 3.12 1003.0 4.17 150.02

The ‘*’ character after compressor name means that EOLs were initially removed.

Table 4. Compression results for Arabidopsis thaliana (TAIR), rice (TIGR)
and Korean H.sapiens

Dataset Raw GRS GDC

size Ratio c-sp d-sp Ratio c-sp d-sp
(MB) (MB/s) (MB/s) (MB/s) (MB/s)

TAIR 120.65 18 160.0 2.52 2.99 21 615.0 3.23 39.56
TIGR 378.52 67.8 0.30 0.97 2760.2 2.63 48.28
Homo sapiens 3131.78 160.2 1.70 2.20 261.6 3.64 35.97

Two genomes in each collection, and only relative compression measured, in agreement
with the methodology from Wang and Zhang (2011).

Table 4, we compare our GDC against GRS from Wang and Zhang
(2011).

We have not tested the older DNA compressors, XM (Cao et al.,
2007) and dna2 (Manzini and Rastero, 2004), because their available
implementations handle only the four-symbol alphabet (we note also
that XM is extremely slow). In spite of our attempts, we were unable
to get a fully working version of the LZ-End compressor (Kreft
and Navarro, 2010) from the authors; the program we had in our
hands sends to the output only semi-compressed data (not interesting
from the compression point), and thus also compression time and
especially decompression time cannot be honestly measured. For
these reasons, we gave up benchmarking it.

The results in Tables 1–3 show compression ratios and
compression / decompression speeds (MB stands for 106 bytes).
For each run, the ratio is specified as a pair of numbers: overall (in
the column ‘Total’) as the ratio between the original dataset size and
the compressed dataset size, and differential (in the column ‘Avg.
per seq.’) as a similar ratio but with the reference sequence sizes
subtracted from both terms. In Table 4, only the differential ratios
are given.

3.2 Main results
GDC improves compression ratio and speed: on the yeast
collections (Tables 1 and 2), the main competitors of GDC are RLZ-
opt and RLZ-RePair. When compression only matters, the GDC-
ultra variant clearly wins in compression ratio with RLZ-RePair,

2983

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022



[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2984 2979–2986

S.Deorowicz and S.Grabowski

Table 5. Random access time for 70 (top five rows) and 4 (bottom six rows) genomes of H.sapiens, for varying pattern length, m

File size RAM usage m=10 m=100 m=1000 m=10 000

GDC-fast/normal 1465.2 / 1204.2 – – – – –
GDC-ra-211-213 1761.1 / 1499.7 2124 / 1863 1180 / 3800 129 / 398 23 / 57 12 / 23
GDC-ra-211-215 1578.9 / 1317.4 1739 / 1477 1710 / 4390 188 / 457 58 / 64 12 / 23
GDC-ra-211-217 1501.6 / 1240.1 1582 / 1320 4040 / 6720 408 / 681 50 / 85 14 / 25
GDC-ra-211-219 1479.0 / 1217.5 1537 / 1275 11 750 / 14 580 1190 / 1474 129 / 165 22 / 33

RLCSA 5429.0 5685 33830 4698 1651 1282
GDC-fast/normal 980.4 / 719.4 – – – – –
GDC-ra-211-213 997.1 / 736.6 1051 / 789 830 / 3360 90 / 351 18 / 52 10 / 21
GDC-ra-211-215 990.6 / 729.1 1038 / 774 1300 / 3810 140 / 404 22 / 56 11 / 21
GDC-ra-211-217 987.2 / 725.8 1031 / 770 3170 / 5770 320 / 593 41 / 75 12 / 23
GDC-ra-211-219 986.2 / 724.7 1027 / 766 10070 / 12830 1017 / 1280 108 / 143 19 / 30

All times are in nanosecond per character. File and memory sizes are in Megabytes. The complete collections are of size: 218 962 and 12 253 MB.

being even about twice faster than RLZ-opt. RLZ-RePair is better by
3–12% in compression ratio than GDC-advanced, but cannot scale:
its compression speed is two orders of magnitude worse than GDC-
advanced, and memory consumption is huge (∼12 GB). RLZ-opt
is faster and uses less memory, but for the price of compression
loss; the total, i.e. including also the reference sequence, GDC-
advanced archives are smaller by 29 or 35%, respectively. Both
RLZ variants (their existing implementations) cannot handle random
access queries without a significant inflation of its data structures in
memory; in particular, their 7z-compressed reference sequence must
be decompressed before packing into bytes, which is a memory-
demanding operation, especially for RLZ-RePair, where the artificial
reference sequences may consist of a large fraction of the input
dataset.

In decompression, however, RLZ-RePair is up to 16% faster
than GDC variants (the difference under the same conditions is
actually by about 5% smaller, because of the removed EOL symbols
before RLZ compression). Still, both compressors achieve well
over 100 MB/s decompression speed, which is at least at the I/O
subsystem speed level, that is, no hindrance in most real scenarios.

Interestingly, in those tests the general-purpose 7z appears to be
a strong competitor. GDC-ultra is better by <10% in compression
ratio, which can even be improved a little if the reference sequence is
7z-compressed, but 5–6 times faster in compression (decompression
speeds are comparable). On the other hand, 7z clearly wins with
RLZ-RePair. Part of the success of 7z comes from the fact that
it uses a huge, 1 GB LZ-buffer. The respective buffers/blocks for
gzip and bzip2 are 32 kB and 900 kB, much too small to exploit
inter-sequence redundancies, making them totally useless for this
compression scenario (for this reason, they are not run in the
successive experiments).

On 70 human genomes (Table 3), the overall picture is similar,
yet some differences should be pointed out. First, we performed the
matching at the chromosome level rather than on whole sequences
(this concerns all the tested algorithms). We believe this is a sound
approach from the biological point and also clearly beneficial for the
compression speed and memory use requirements. Second, despite
reordering the data by chromosomes, this 220 GB compression
ordeal was too hard for some of the competitors, namely Comrad
and RLZ-RePair. The former would need more than a week to

finish its work, while the latter (even slower) would require much
more memory than was available. RLZ-opt and 7z did manage to
compress this huge collection, but the time they required was 45
and 160 h, respectively. On the other hand, most GDC variants
(except for GDC-ultra) needed <2 h. Decompression was in all cases
fast, again largely exceeding 100 MB/s. The total archive sizes were
relatively close (ranging from 910 MB for GDC-ultra to 1731 MB
for RLZ-opt), but the differential ratios varied more, with GDC-ultra
achieving the factor 1003. In other words, we showed that a single
human genome, in a large enough collection, may be compressed to
∼3 MB, using no ‘external’ knowledge.

We also checked if matching at the chromosome level may miss
many large cross-chromosome matches. It does not seem so; the
resulting GDC-normal compression ratios (total and differential)
were by <1% worse than in the previous experiment. Compression
and decompression speed suffered more; they dropped to 18.5 and
96.1 MB/s, respectively. It may be interesting to report the memory
use during the compression process in this mode (i.e. when whole
genomes are matched). GDC variants need ∼12 GB of RAM on
the human collections (similar results for both the 4 and the 70
genomes). RLCSA is more demanding; its peak memory use was
25 GB on the four genomes while on the 70 genomes it required too
much memory to be run on our machine. RLZ-opt cannot be run in
this test, due to its filesize limitation to 2 GB.

The results of the experiment involving four human genomes are
shown in the Supplementary Material. Basically, the observations
are similar, with the difference that 7z wins over GDC-ultra by a few
per cent in compression ratio (but differentially encoded genomes
are about 1.7 times smaller with GDC-ultra), for the price of being
29 times slower in compression.

GDC outperforms GRS in relative compression: next (Table 4), we
compared our tool against GRS from Wang and Zhang (2011), on the
datasets used in the cited work, in the same scenario. This means
that both compared algorithms are based on relative compression
and only the differential archive sizes are measured. We tried to run
GRS also on the datasets from our previous experiments. On the
two yeast datasets it refused to proceed, claiming that the sequences
are too dissimilar to one another. On the four human genomes,
it worked extremely slowly, and preliminary results (on a single

2984

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022



[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2985 2979–2986

Robust relative compression of genomes with random access

chromosome) showed that its compression ratio was worse than
gzip’s. We conclude that GRS cannot be considered a usable tool,
sometimes producing very unstable results (cf. Table 4, TIGR dataset
compression ratios).

GDC provides fast random access: finally, we measured the
random access times (Table 5) for our algorithm, for the two human
genome collections (70 and 4 genomes), varying the displayed
pattern size and the block size parameters. The two numbers in
each GDC description (one per row, e.g. 211-215) correspond to the
reference sequence block size and any other sequence block size,
in symbols. The two values in GDC-related table cells correspond
to the fast and the normal mode. Clearly, there is a space–time
trade-off here. Using the fast mode is an obvious choice for large
collections, but when the number of genomes is small, then the
difference in compression between it and the normal mode becomes
more significant. RLCSA answered the queries significantly (often
over an order of magnitude) slower than GDC. As for RLZ, it was
unable to perform random access queries on the human collections,
due to the (mentioned earlier) filesize limitation to 2 GB (its random
access timings on the two smaller collections are given in the
Supplementary Material). It would also make sense to compare GDC
against LZ-End (Kreft and Navarro, 2010) in the random access
tests. Unfortunately, we were not able to obtain a fully operational
copy of this program from its authors, despite our attempts.

3.3 Parameter tuning
Human genome sequences are not only large, but also much more
similar to each other than the yeast datasets. An adverse side-effect
of this phenomenon is that there are lots of collisions in hashing
which make the compression slow. To mitigate this effect, we took
a couple of precautions. On the yeast datasets, the minimum match
parameters (described in the previous section) are set as follows:
M1 =13, M2 =4, while on the human genomes they are set to: M1 =
20, M2 =4. This, for example, means that the hashed sequences are
longer on the human genomes and collisions are rarer.

The parameters M1,M2,M3 were chosen experimentally but
without severe tuning. Still, it might be interesting to know how
their selection affects the efficiency of our algorithms. Recall that
M3 has a meaning only in GDC-advanced mode and corresponds
to the minimum length of a literal run treated as an extra reference
phrase, that is, setting it to a very high value practically turns the
advanced into the normal variant (both in compression ratio and
speed), which, we believe, is still very competitive. The parameter
M2, on the other hand, concerns approximate matches only. Setting
M2 to a much too high value (instead of 4 in all our experiments)
results in compression loss across all datasets, from a few to about
10%. The compression speed may also drop moderately. Finally,
M1 cannot be too small, since encoding short matches and the triple
(offset, length, flag) is costlier than encoding them as individual
DNA letters. It seems that the optimum is around M1 =13 for
all datasets. For human genomes, however, which are much more
repetitive than other collections of sequences, this threshold had to
be raised, otherwise the compression speed dropped several times.
According to our preliminary experiments, also for human sequences
using M1 =13 gives (slightly) better compression, but the price is
too high. We admit that manual setting of different values to M1 is
a weakness of our algorithm, and for compressing a large collection

of genomes it may be recommended to try out a few parameter
values on a small fraction of the given input, to get an idea about
the compression ratio / speed trade-offs.

The interplay between the parameters M1, M2, M3, compression
speed and compression (overall or differential) ratio was carefully
examined on the individual datasets, and the plots are included in
the Supplementary Material.

4 CONCLUSION
We presented a specialized compressor, GDC, for storing DNA
sequences (genomes) from many individuals of the same species. Its
functionalities include also random access to arbitrary snippets of
the compressed data. Experimental comparison with the predecessor
of our solution, RLZ-opt, shows that we are more than an
order of magnitude faster in compression with significantly higher
compression ratios. The advantage in compression ratio gets
particularly striking when only differential results are taken into
account; here our tool is better than RLZ-opt close to three times on
human genomes. Those differential compression ratios, that is, the
fraction of a full genome its compressed representation occupies,
when represented with reference to another genome of the same
species, will get more and more important with the growth of
genomic databases, a trend which is already clearly visible with
the rapid progress in DNA sequencing technology.

The key new ideas of our solution are augmenting the reference
sequence with extra reference phrases taken from the other
sequences (without compromising compression or decompression
speed), specific LZ-parsing that implicitly detects some class of
approximate repeats and more compact encoding of the various
byproducts of the scheme.

ACKNOWLEDGEMENT
We thank Shanika Kuruppu and Simon Puglisi for providing us with
their software and tips on how to use it.

Funding: Polish Ministry of Science and Higher Education under the
project (N N516 441938); European Community from the European
Social Fund, in part.

Conflict of Interest: none declared.

REFERENCES
Brandon,M.C. et al. (2009) Data structures and compression algorithms for genomic

sequence data. Bioinformatics, 25, 1731–1738.
Cao,M.D. et al. (2007) A simple statistical algorithm for biological sequence

compression. In Proceedings of the DCC. IEEE Computer Society Press,
Washington, DC, USA, pp. 43–52.

Christley,S. et al. (2009) Human genomes as email attachments. Bioinformatics, 25,
274–275.

Claude,F. and Navarro,G. (2008) Practical rank/select queries over arbitrary sequences.
Lect. Notes Comput. Sci. 5280, 176–187.

Claude,F. et al. (2010) Compressed q-gram indexing for highly repetitive biological
sequences. In Proceedings of the International Conference on Bioinformatics
Bioengineering. IEEE Computer Society Press, Washington, DC, USA, pp. 86–91.

Ferragina,P. et al. (2009) On the bit-complexity of Lempel–Ziv compression. In
Proceedings of the SODA. SIAM, Philadelphia, PA, USA, pp. 768–777.

Grabowski,S. and Deorowicz,S. (2011) Engineering relative compression of genomes.
CoRR , abs/1103.2351, 1–12.

Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge, UK.

2985

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022



[10:50 3/10/2011 Bioinformatics-btr505.tex] Page: 2986 2979–2986

S.Deorowicz and S.Grabowski

Kreft,S. and Navarro,G. (2010) LZ77-like compression with fast random access. In
Proceedings of the DCC. IEEE Computer Society Press, Washington, DC, USA,
pp. 239–248.

Kreft,S. and Navarro,G. (2011) Self-Indexing based on LZ77. Lect. Notes Comput. Sci.
6661, 41–54.

Kuruppu,S. et al. (2010) Relative Lempel–Ziv compression of genomes for large-scale
storage and retrieval. Lect. Notes Comput. Sci. 6393, 201–206.

Kuruppu,S. et al. (2011a) Iterative dictionary construction for compression of large
DNA datasets. IEEE ACM Trans. Comput. Biol. Bioinformatics, 99, [Epub ahead
of print, doi: 10.1109/TCBB.2011.82, April 27, 2011].

Kuruppu,S. et al. (2011b) Optimized relative Lempel–Ziv compression of genomes.
In Proceedings of the ACSC. Australian Computer Society, Inc., Sydney, Australia,
pp. 91–98.

Kuruppu,S. et al. (2011c) Reference sequence construction for relative compression of
genomes. In Proceedings of the SPIRE, (In press).

Larsson,N.J. and Moffat,A. (2000) Off-line dictionary-based compression. Proc. IEEE,
88, 1722–1732.

Mäkinen,V. et al. (2010) Storage and retrieval of highly repetitive sequence collections.
J. Comput. Biol., 17, 281–308.

Manzini,G. and Rastero,M. (2004) A simple and fast DNA compressor. Software Pract.
Exper., 34, 1397–1411.

Wang,C. and Zhang,D. (2011) A novel compression tool for efficient storage of
genome resequencing data. Nucleic Acids Res., 39, 25.[Epub ahead of print,
doi:10.1093/nar/gkr009, January 25, 2011].

2986

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2979/217176 by guest on 21 August 2022


