Robust Remote Data Checking

Reza Curtmola
Department of Computer Science
New Jersey Institute of Technology
Newark, NJ

crix@nijit.edu

ABSTRACT

Remote data checking protocols, such as provable data possession
(PDP) [1], allow clients that outsource data to untrusted servers to
verify that the server continues to correctly store the data. Through
the careful integration of forward error-correcting codes and remote
data checking, a system can prove possession with arbitrarily high
probability. We formalize this notion in the robust data possession
guarantee. We distill the key performance and security require-
ments for integrating forward error-correcting codes into PDP and
describe an encoding scheme and file organization for robust data
possession that meets these requirements. We give a detailed anal-
ysis of this scheme and build a Monte-Carlo simulation to evaluate
tradeoffs in reliability, space overhead, and performance. A prac-
tical way to evaluate these tradeoffs is an essential input to sys-
tem design, allowing the designer to choose the encoding and data
checking protocol parameters that realize robust data possession.

Categories and Subject Descriptors

H.3.2 [Information Storage and Retrieval]: Information Storage;
E.4 [Coding and Information Theory]: Error Control Codes; E.3
[Data Encryption]

General Terms

Security, Reliability, Performance

Keywords

Remote data checking, spot checking, provable data possession,
PDP, archival storage, storage security, error-correcting codes

1. INTRODUCTION

Remote or outsourced storage allows clients with limited re-
sources or limited expertise to store and distribute large amounts
of data at low costs by using third parties, known as Storage Ser-
vice Providers (SSPs). An SSP may not always be trusted to store
the data with which it has been entrusted. For example, an SSP may
try to hide data loss incidents in order to preserve its reputation or
it may discard data that are rarely accessed in order to sell the same
storage resource multiple times.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

StorageSS’08, October 31, 2008, Fairfax, Virginia, USA.

Copyright 2008 ACM 978-1-60558-299-3/08/10 ...$5.00.

Osama Khan

Randal Burns
Department of Computer Science
Johns Hopkins University
Baltimore, MD
{okhan, randal}@cs.jhu.edu

Recent work focuses on adding a data possession [1] or retriev-
ability [6, 15] guarantee to systems for remote archival/backup.
More precisely, a scheme for remote data checking allows a client
to periodically challenge the server (SSP) to prove that, at the time
of the challenge, the server possesses the same exact data that
was initially stored by the client. (The subtle differences between
possession and retrievability [3] are not relevant to this paper.)
These schemes were designed to meet the unique characteristics
of archival storage systems (e.g., operating on very large amounts
of data), and are able to provide the data possession guarantee with-
out returning the data to the client and without having the server
access all the data. The latter is achieved through spot checking in
which the client samples random portions of the data stored at the
server. Spot checking allows the client to detect if a fraction of the
data stored at the server has been corrupted, which leads to solu-
tions that minimize I/O on the server but which are probabilistic in
nature and cannot detect corruption of small parts of the data (e.g.,
1 byte).

Integrating error-correcting codes with spot checking enhances
the possession guarantee in that the codes recover the data when
a small amount of the file has been deleted. To damage a file, an
attacker must delete a large and, thus, easily detectable amount of
data. This concept was mentioned in early works [6] and plays a
more prominent role as the remote storage community moves from
the theoretical to the practical [3, 15]. The same pairing of erasure
coding with data checking has been used by remote storage systems
that distribute or replicate data among many servers [7, 14].

In this paper, we examine the challenges that arise from the inte-
gration of Forward Error Correction (FEC) codes with remote data
checking schemes that rely on spot checking. We start by putting
forth a set of desirable properties of remote data checking schemes,
which must be considered when FEC codes are used to improve
the data possession guarantee. We then show that the integration of
FEC codes is non-trivial and can lead to schemes with significantly
different properties and performance characteristics. Indeed, the
proposed use of FEC codes in the frameworks of [6, 15] is not opti-
mal and may lead to reduced performance. Independently, Bowers
et al. [3] proposed an optimized application of FEC codes that is
nearly identical to the scheme we present in Section 5. They estab-
lish the bounds under which a client is able to retrieve its data from
the server. Our focus is more practical. We give a detailed analy-
sis of the effects of adversarial corruption on the data that provides
specific guidance as to the selection of encoding parameters and
the manner in which client/server possession challenges should be
conducted.

We focus on the Provable Data Possession (PDP) [1] framework,
as being representative for remote data checking based on spot
checking. PDP allows easy and immediate integration with FEC



codes to improve the data possession guarantee: A file F' is first
encoded using a FEC code and PDP is then applied on the encoded
file F' (instead of F'). The original PDP framework provides the
ability to detect if the server corrupts a fraction of F'. When com-
bined with an appropriate FEC code, a PDP scheme provides the
following robust data possession guarantee for the encoded file F':

e Protection against corruption of a large portion of F: The
client will derect with high probability if the server corrupts
more than a d-fraction of F';

e Protection against corruption of a small portion of F: The
client will recover the data in F' with high probability if the
server corrupts at most a d-fraction of F.

On the Adversarial Model. Protection against corruption of a
large portion of the data is necessary in order to handle servers that
discard a significant fraction of the data. This applies to servers
that are financially motivated to sell the same storage resource to
multiple clients.

Protection against corruption of a small portion of the data is
necessary in order to handle servers that try to hide data loss inci-
dents. This applies to servers that wish to preserve their reputation.
Data loss incidents may be accidental (e.g., management errors or
hardware failures) or malicious (e.g., insider attacks).

Improving the Data Possession Guarantee. The improvement in
the data possession guarantee offered by PDP extends the usabil-
ity of PDP to different storage applications that require all parts
of the data to be protected. Protection against corruption of a
large amount of the data inhibits cheating for resource manage-
ment reasons: Little space can be reclaimed undetectably, making
it unattractive to delete data to save on storage costs or sell the
same storage multiple times. However, many data are valuable be-
yond their storage costs, making attacks that corrupt small amounts
of data practical. For example, modifying a single bit may destroy
an encrypted file or invalidate authentication information. Protec-
tion against corruption of a small amount of the data makes PDP
suitable for protecting the data itself, not just the storage resource.

Contributions. In this paper, we make the following contributions:

e We identify the requirements that must be considered when
choosing an FEC code to improve the data possession
guarantee. These are important because different FEC
codes result in trade-offs in performance, flexibility and re-
configurability, rate of error correction and output data for-
mat.

e We show that remote data checking schemes based on spot
checking (and in particular PDP [1]) allow easy and imme-
diate integration with FEC codes to improve the data pos-
session guarantee and we give a specific encoding and file
layout scheme that meets the specified requirements.

e We provide a detailed analysis of our scheme that quantifies
the probability of the success of an attacker given different
encodings, attack strategies, and client checking strategies.
This analysis can be used by system designers to choose en-
coding parameters and data checking disciplines.

Our findings and analysis are general and can be applied to any
spot checking scheme that uses FEC codes to improve the data pos-
session guarantee when data are outsourced at untrusted servers.

2. RELATED WORK

In the Introduction, we covered the most closely related work.
This includes protocols for provable data possesion [1] and proofs
of retrievability [6, 15] in which a remote server can be shown to
possess previously stored data through spot checking and without
transmitting data back to the checking process. The issue of inte-
grating forward error-correcting codes was initially identified [6]
and then specific encodings have been proposed based on Online
codes [15] or Reed-Solomon codes [3]. Combining FEC codes
with remote data checking schemes is non-trivial and may lead to
schemes that are either impractical (e.g., [15] uses an FEC code
that covers the entire file) or that lack useful properties (e.g., [6]
does not meet the sequentiality requirement identified in Section 4).
Bowers et al. [3] show that adding a layer of erasure coding to pre-
compute challenge-response values can enhance proofs of retriev-
ability under certain attack scenarios.

The combination or erasure coding and data checking has also
been used to enhance data protection in systems that distribute data
sets across multiple servers. These data checking protocols are
asymptotically less efficient. Kotla et al. [7] use hierarchical era-
sure coding in which both the client and server compute FECs. In
their model, the server reveals the parameters of the encoding it
uses to make storage safe from failures. Based on these parame-
ters, the client chooses complementary erasure coding parameters.
Schwarz and Miller [14] present a data checking scheme for dis-
tributed erasure-coded data that is based on comparing the unen-
coded data with the redundant check blocks in a RS encoded file.
The scheme only allows sampling within each file block, whereas
we focus on schemes that allow sampling across blocks.

Other extensions to remote data checking include extending the
data possession guarantee to cover multiple replicas without encod-
ing each replica separately [4] and to efficiently support dynamic
data updates [2]. Shah et al. describe techniques for ensuring that
remote data checking is privacy preserving [16], i.e., reveals noth-
ing about the content of the data to the auditors, that extend to re-
mote data checking.

3. PRELIMINARIES

Remote data checking (RDC) schemes. A remote data check-
ing scheme allows a client that has stored data at an untrusted server
to verify that the server possesses the original data without retriev-
ing it. The data is represented as a file split into blocks. In a
Setup phase, the client pre-processes the file, generating a piece
of verification metadata for each file block, and then stores the file
and the verification metadata on the server. The verification meta-
data can be either distinct from the actual file blocks (e.g., veri-
fication tags [1, 15]), or it can be integrated into and be indistin-
guishable from the file blocks (e.g., sentinels [6]). Later, in a Chal-
lenge phase, the client randomly samples a small number of file
blocks that is independent of f (i.e., spot checks); the server pro-
vides a proof of data possession based on the sampled file blocks
and the corresponding verification metadata. By only exchanging
an amount of information sub-linear in f, spot checking allows the
client to detect with high probability if a fraction of the file stored
at the server has been corrupted. Ateniese et al. [1] analyze the
probabilistic guarantees offered by an RDC scheme based on spot
checking.

The details of various RDC schemes (such as PDP [1] or POR [6,
15]) are not important for the purpose of this paper. The simplest
RDC scheme stores on the server a message authentication code
(MAC) for each file block; the client later retrieves a number of
randomly selected file blocks and their corresponding MACs.



Error-correcting codes. We say that a code C is a (n, k, d)
error-correcting code if it encodes a message of k symbols into a
codeword of n symbols and has minimum distance d. The min-
imum distance d is the minimum Hamming distance between any
two distinct codewords of C and reflects the code’s ability to handle
errors. We will use Reed-Solomon [13] (RS) codes which are Max-
imum Distance Separable (MDS) codes (i.e., can tolerate as many
erasures as their overhead, e.g., n — k). We use the notation (n, k)
RS code to denote a RS code that can correct up to n — k erasures.

For data checking protocols, we are concerned with erasure cor-
rection not error correction. The integrity of data is independently
verifiable, e.g., through tags in PDP [1]. Any data error will be de-
tected and the erroneous data will be omitted, converting an error
into an erasure.

The rate of a code is R = k/n. We consider systematic codes,
which are codes that embed the unmodified input in the encoded
output (e.g., the first k symbols of a codeword are the same k sym-
bols of the original message). We refer to the redundant symbols in
the codeword as check symbols.

We consider block codes, i.e. codes that work on fixed-size sym-
bols. When applied to our constructions, we will assume symbols
are blocks of a specified bit length.

Finally, we will be using forward error correction (FEC) codes,
which are codes that include redundant symbols in the codewords.

4. STORAGE REQUIREMENTS

Different forward error-correcting codes present trade-offs in
performance, flexibility and reconfigurability, rate of error correc-
tion, and output data format. All of these factors influence the
usability of a coding scheme for storage auditing. The important
characteristics include:

e The output of the forward error-correcting encoding should
preserve the sequential order of blocks in the original file
so that access to contiguous regions of the original file are
efficient in the encoded version.

e The computation of forward error-correcting codes should
be efficient so that it minimally degrades the performance
(throughput and latency) of the storage system.

The redundancy encoding should minimally expand the file
in order to limit space overhead.

e The coding should regionalize data constraints (dependen-
cies among encoded blocks and the original data). This al-
lows for efficient incremental calculation of codes, which in-
creases performance when accessing or updating small por-
tions of a file and when repairing erasures.

5. THE ROBUST DATA POSSESSION GUAR-

ANTEE

The data possession guarantee offered by a remote data checking
scheme for a file F can be transformed into a robust data possession
guarantee for F by first using an FEC code to encode F into F, and
then using the encoded file F as input to the RDC scheme. This
is a generic transformation that can be applied to any remote data
checking scheme matching the description in Section 3.

There are various ways to perform the encoding step, which can
lead to remote data checking schemes with significantly different
properties and performance characteristics. We will compare two
such encodings that meet most or all of our requirements. For ef-
ficiency, both use RS codes with fixed parameters applied to sub-
portions of the file. They both also rely on the careful application

of permutation and encryption to conceal the dependencies among
blocks within each sub-region from the attacker. The first one gives
an attacker no information about the constraints among file blocks,
but the original file data lack contiguity in the output. The second
one gives an attacker limited information about constraints, but out-
puts the original data unmodified. Our analysis reveals that this ex-
tra information does not noticeably decrease the robust possession
guarantee.

Before presenting our encoding schemes, we examine alternate
encoding strategies that do not work well in practice.

5.1 Impractical Coding Schemes

The requirements of PDP and storage applications renders many
applications of FECs impractical for reasons of inefficiency or be-
cause the coding does not lead to robust possession guarantees.

Full File Redundancy. Ideally, we would use an FEC code that
covers the entire file. This is possible with a RS (n, f) code in
which f is the file size (in symbols). This would give an even
stronger guarantee than our robust possession guarantee in that this
code deterministically corrects up to f — n deletions and not just
with high probability.

However, such an FEC code would be inefficient, because its pa-
rameters depend on the file size. While very fast for small fields, RS
codes become quite inefficient to compute for even modest widths,
because they are based on inverting matrices. They may be com-
puted in O(nlogn) and decoded in O(n?). Faster implementa-
tions are possible, but these are only asymptotically more efficient
and do not apply to practical codeword lengths [9]. Also, each
unique n, f pair requires a new encoding matrix of size f X n.

Encoding at the Server. Error correction can be independently
applied by the server to protect against accidental data loss. This
has the advantage of relieving the client of the burden of error cor-
rection encoding. However, applying error correction on the server
cannot guarantee the same level of protection in case of malicious
data corruption (e.g., insider attacks caused by server compromise,
which is a realistic possibility [5,11]). Thus, we apply error correc-
tion on the client side. This results in a unified protection scheme,
regardless of what happens on the untrusted server.

Rateless Erasure Codes. Rateless erasure codes [9, 10, 12] are
codes in which the code messages are computed as an XOR of
a random set of input blocks. Thus, they lack the sequentiality
property that we desire. Additionally, with rateless erasure codes,
the original file can only be reconstructed in the presence of a large
fraction of these messages [8]. This means that small portions of
the file may not be accessed independently, which is problematic
when reading data and when recovering from deletions.

5.2 FEC Codes for PDP

For performance reasons, it is desirable to fix the parameters of
the RS encoding. This also fixes the code generation matrix. We
divide the file F into k-block chunks' and apply a (n, k) RS code
to each chunk, expanding it into a n-block codeword. The first k
blocks of the codeword are the original £ blocks, followed by d =
n — k check blocks. We call a constraint group the blocks from the
same codeword, i.e., the original k blocks and their corresponding
d check blocks. The number of constraint groups in the encoded
file F is the same as the number of chunks in the original file F: %

We now describe several encoding schemes that lead to re-

"'We assume w.1.0.g. that f (the number of blocks in F) is a multiple
of k (the size of a chunk). This can always be achieved by padding
F if necessary.



randomly select groups
of k blocks from F

(6,4) RS Encoder

encrypt and permute

= Output File

Figure 1: Computation of a (6,4) RS code with 7 R.

mote data checking schemes with different properties and perfor-
mance characteristics. The main difference between these encoding
schemes comes from the design choices of how to permute/encrypt
the blocks in each constraint group.

Let (G, E, D) be a symmetric-key encryption scheme and 7, ¥, w
be pseudo-random permutations (PRPs) defined as:
-7 :{0,1}* x {0, 1}log2(fn/k) — {0, 1}logz(fn/k)
-1 :{0,1}" x {0, 1}10g2(f) — {0, 1}10g2(f)
—w:{0,1}" x {0, 1}10g2(fd/k> — {0, 1}logz(fd/k)
We use the keys w, z, v, u for the encryption scheme, PRP 7, PRP
1 and PRP w, respectively.

Simple-RS. A simple encoding would take a file F = by,..., by
and generate the encoded file F = bi,...,bf,c1,..., Cryr in
which blocks big+1, - - - ,b(it1)x are constrained by check blocks
Cid+1,- -+, C(it1)d> for 0 < 4 < % — 1. The blocks of the input
file are separated from the check blocks, rather than interleaved, in
order to meet the contiguity requirement.

However, with fixed values of k and d, an attacker can effectively
delete data by deleting a fixed number of blocks: Deleting any d
blocks of F drawn from the same constraint group will result in a
loss of data from the original file F. Remote data checking schemes
based on spot checking can only detect corruption of a §-fraction
of F and will not detect corruption of d blocks for fixed values of
d (i.e., independent of f). Thus, this encoding does not meet the
requirement for robust data possession guarantee.

Permute-All (mA). The problem with Simple-RS is that an ad-
versary can distinguish which blocks belong to the same constraint
group. The constraints among blocks can be concealed by ran-
domly permuting the blocks of the encoded file. Then encryption
is applied to all blocks so that an attacker cannot uncover the con-
straints among the permuted blocks.

We first generate, like in Simple-RS, the file ¥ = by,..., by,
Cly...,C L We then use 7 and E to randomly permute and then

encrypt all the blocks of F, obtaining the encoded file ¥, where
Fli] = Ew(F[r.(3)]), for 1 <i < fn/k.

This strategy (also used by Juels and Kaliski in [6]) leads to a
robust data possession guarantee (as shown by our analysis in Sec-
tion 6). However, the scheme has several drawbacks: The resource-
intensive nature of permuting the entire encoded file can be rather
slow (as acknowledged in [6]); also, the scheme does not meet the
sequentiality requirement.

Permute-Redundancy (7R). We can overcome the drawbacks of
the 7w A scheme by observing that it is sufficient to only permute the
check blocks. We encode the input file F = b1, ...,y as follows:

1. Use v to randomly permute the blocks of F' to obtain the file
P = py,...,py, Where p; = by, ), 1 <4 < f. (As
explained below, this step is not explicitly required.)

2. Compute check blocks C = ci,...,cys, so that blocks
k

Pik+1s-+ > P(41)k are constrained by Cia41,. .., Clit1)ds
for0<i<{-1

3. Permute and then encrypt the check blocks to obtain R =
ri,...,r ¢, where r; = Ey(cu, (i), 1 <0 < %d.
k

4. Output redundancy encoded file F = F||R.

Figure 1 shows the computation of mR and the resulting output
file layout. The original file data is output sequentially and un-
encrypted, followed by permuted and encrypted redundancy. We
emphasize the permutation in step 1 is included for ease of exposi-
tion and the scheme does not require the blocks of the file F to be
physically permuted. Instead, the check blocks in step 2 are com-
puted directly as a function of the blocks with the corresponding
permuted index.

By computing RS codes over the permuted input file, rather than
the original input file, an attacker does not know the relationship
among blocks of the input file. By permuting the check blocks,
the attacker does not know the relationship among the blocks in
the redundant portion R of the output file. By encrypting the check
blocks, an attacker cannot find the combinations of input blocks
that correspond to output blocks. We note that in the challenge
phase, the block dependencies (i.e., constraint groups) remain hid-
den because the client asks for proof of possession of randomly
chosen blocks over the entire encoded file.

However, wR does reveal some information about the structure
of the file. An attacker knows that the file is divided into two parts,
the original data (F) and the redundancy information (R) and can
delete data differentially among these two regions to some advan-
tage. For example, an attacker guarantees damage to a file by delet-
ing all blocks in R and one block in F. No deterministic attack that
deletes the same number of blocks exists for the 7 A scheme.

The 7 R scheme meets all the requirements put forth in Section 4:
The use of a systematic code, which outputs the original blocks
as part of the output, ensures the contiguity and the data indepen-
dence requirements. RS codes are space optimal because they are
Maximum Distance Separable. Also, RS codes with fixed param-
eters are computationally efficient and ensure that only a constant
amount of I/0 is required for accessing and repairing small portions
of the file, thus meeting the regionalization requirement (although
7R does not regionalize in the address space).

6. ANALYSIS

We turn to an analysis of the probability of a successful attack
against TA and 7R as a function of the RS encoding parameters
and the RDC checking discipline. By comparing the results, we
identify that an attacker gains no detectable advantage from the 7R
strategy when compared with 7 A.

Analysis of mA. We encode a file that contains f blocks with a
(n, k) code that corrects for up to d deletions. This produces an
encoded file of length f - %, which has f/k different constraint
groups. This file is encrypted and permuted using wA. An attacker
deletes x blocks of the file at random and X; is the number of
blocks deleted from constraint group <.

In deleting blocks, an attacker is performing sampling without
replacement, which is governed by the hypergeometric distribution.
Let A; be the event that constraint group ¢; has more than d blocks
deleted from it: X; > d. The probability of A; is merely the sum
of the hypergeometric distributions evaluated for all numbers larger
than d:

n n n\ (f-n
p(A)= > pXi=j)= > M

j=d+1 j=d+1 (ac)



The file is damaged when any of the constraint groups experiences
more than d deletions. Thus, the quantity of interest is: p(Uf 'k A,)
which can be accurately evaluated through an 1nclus10n/exclus10n
process:

f/k f/k flk flk
p(J4)=Yn4) -3 3 plaina)
=1 1=1 1=1 j=i+1
f/k flk f/k

D30 pAinA;NA) -

i=1 j=i+11=j+1

Because all constraint groups are the same, the outer sums that
make up each inclusion/exclusion term need not be computed ex-
plicitly. Rather, the probability of intersection can be computed
once and multiplied by the number of combinations of groups.
However, the computation of p(A; N A;) involves summing over
many terms.

p(AiNA) = > > p(Ai=u)-p(4; =)

u=d+1v=d+1

Evaluating the ¢-th term in the inclusion-exclusion argument in this
fashion performs ©(n*) work.

Analysis of 7R. We change our formulation slightly in this case.
The attacker splits her deletions into z; deletions from the unen-
coded blocks (F) and z, deletions from the encrypted and permuted
redundancy blocks (R), which produce X} ; and X, ; deletions in
constraint group % respectively.

In this formulation, we need to consider all possible combina-
tions of deletions from each side of the encoded file.

Z Zp(Xb,i =j—k)  p(X;i=k)

j=d+1 k=0

Deletions on F and on R are independent events. The remainder
of the formulation (inclusion/exclusion) remains the same. This
problem is not substantially harder (a factor of d) than the single
file version.

6.1 Monte-Carlo Results

We turn to Monte-Carlo simulation to determine the probabil-
ity of an attacker’s success. Evaluating the inclusion/exclusion se-
ries of the hypergeometric distribution is not computationally rea-
sonable. Note that the alternating signs of the inclusion/exclusion
terms means that evaluating fewer terms does not provide bounds
on the expansion and inclusion/exclusion processes do not always
converge quickly. Our Monte-Carlo simulation models an attacker
that deletes blocks randomly, but may choose the distribution of
those deletions over the two portions of the 7R encoding. It then
runs one million trials of the attacker, in order to analyze the prob-
ability of a successful attack. We implement the simulation in C++
using the Gnu simulation library (gs1). Our presentation of re-
sults uses specific parameters for encoding and data checking, but
the results are general in that they hold across the wide-range of
parameterizations with which we experimented.

We analyze the benefit an attacker realizes from 7R when com-
pared with wA. To do so, we identify the attacker’s best strategy
in R and then compare the probability of successful attack using
that strategy with an attack against wA.

Based on an understanding of the probability of a successful at-
tack, we use the simulation to determine the encoding and data
checking parameters that a system can use to achieve its data pro-
tection goals.

0.0018
0.0016
0.0014 A
0.0012 A
0.001 -
0.0008

Pr(deletion)

0.0006 -
0.0004
0.0002 -

0 02 04 0.6 0.8 1
Fraction of Redundancy Blocks Deleted

Figure 2: Identify the best attack strategy by varying where
blocks are deleted.

Attacker’s Best Strategy. An attacker that deletes x blocks can
split those blocks between the original file data (F) and the redun-
dancy information (R). Examining the probability of deletion as
function of the attacker’s choice reveals the best strategy, which is
to distribute the deletions between F and R in proportion to their
size. Figure 2 shows that probability of an attacker damaging a file
as a function of this choice for a file of 100,000 blocks unencoded
and 108,000 blocks encoded with a (108,100) RS code in which
the attacker deletes 1080 blocks (1% of the data). The attacker
maximizes the probability of a successful attack when deleting 5-
10% of the data from R. The results are somewhat noisy. The
redundancy represents 8% of the data and matches well with this
number.

Restricted choice provides the intuition behind the correspon-
dence of the data distribution and the attackers strategy. A success-
ful attack requires d+1 blocks to be deleted from a single constraint
group. Deleting a block in a constraint group reduces the number of
blocks remaining in that constraint group, restricting the probabil-
ity of finding another block from this constraint group. Restricting
the probability happens more rapidly in R than in F, because there
are fewer blocks in each constraint group. The attacker balances
these probabilities by deleting data proportionately between R and
F so that the probability of deletion match in each side of the file.

(Near) Equivalence of mA and wR. Figure 3 quantifies the dif-
ference in the robust data possession guarantee between the mR
and mA encodings. This experiment uses similar configuration
parameters: an unencoded file of 100,000 blocks encoded with
(100 + d,100) RS with d € (1,10) in which the attacker deletes
1% of the data. The probability of success for an attacker matches
closely between the two encodings.

While 7R gives some advantage to an attacker, it is minor and
quantifiable. A system that uses 7R will have to use more redun-
dancy or check more blocks. At the same time, 7R has the advan-
tages of meeting several requirements that 7 A does not: Storing
data contiguously and unencrypted.

Realizing the Robust Data Possession Guarantee. This paper’s
main result shows that the 7R encoding realizes the robust pos-
session guarantee. A successful attack against PDP occurs when
the attacker damages the file and PDP does not detect this damage.
Both need to occur. Thus, the probability of the attack failing is
bounded from below by the maximum of the probability of detec-
tion and the probability that the file is not damaged.

We use the Monte-Carlo simulation to select the encoding pa-



“#-piR

“®pi A

11

0.1 1

0.01 1

0.001 A

Pr(deletion)

0.0001 A

0.00001 A

0.000001 T T T T
0 2 4 6 8 10
d =n-k (RS distance separable)

Figure 3: Probability of a succesful attack against the 7 A and
7R encodings for different RS parameters.

==°Pr(Detect) = Pr(No Damage)

1 / Vi
7
[
081 {
1
]
1
0.6 |
)
()
04 11
)
]
)
02 4
"
0 . . . . )
0 1000 2000 3000 4000 5000
Blocks Deleted

Figure 4: Probability of an attack failing because either no data
was damaged or the audit process detected deleted blocks.

rameters and data checking protocol that achieve the data protec-
tion goals. To achieve fives 9s of attack resilience, we encode
in (140, 128) RS and the auditor checks 1137 blocks of the file.
An attacker deletes between zero and all the blocks of an 140, 000
block file. Figure 4 shows that probability of a successful attack is
less that 0.00001 in all cases (we truncate the results after the first
relevant 5000 block deletions).

There is no deletion attack that allows an attacker to damage a
file without getting caught. This analysis is constructive and allows
system designers to select specific encodings and data checking dis-
ciplines. The designer picks confidence goals, five 9s in our case,
and the simulation outputs parameterizations that achieve these
goals. System designers may trade-off space-overhead for stor-
age (more redundancy) versus the efficiency of challenges (more

checking).

7. REFERENCES

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song. Provable data possession at
untrusted stores. In Proc. of ACM CCS '07.

[2] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik.
Scalable and efficient provable data possession. In Proc. of
Securecomm 2008.

[3] K. Bowers, A. Juels, and A. Oprea. Proofs of retrievability:
Theory and implementation. ePrint Archive Report,
(2008/175), 2008.

[4] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR-PDP:
Multiple-replica provable data possession. In Proc. of ICDCS
’08, 2008.

[5] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. Sirius:
Securing remote untrusted storage. In Proc. of NDSS ’03,
2003.

[6] A.Juels and B. S. Kaliski. PORs: Proofs of retrievability for
large files. In Proc. of ACM CCS ’07, 2007.

[7] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: A durable and
practical storage system. In USENIX Annual Technical
Conference, 2007.

[8] M. N. Krohn, M. J. Freedman, and D. Maziéres. On-the-fly
verification of rateless erasure codes for efficient content
distribution. In IEEE Symposium on Security and Privacy,
2004.

[9] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A.
Spielman, and V. Stemann. Practical loss-resilient codes. In
Proc. of STOC ’97, 1997.

[10] P. Maymounkov and D. Mazieres. Rateless codes and big
downloads. In International Workshop on Peer-to-Peer
Systems, 2003.

[11] D. Mazieres and D. Shasha. Building secure file systems out
of Byzantine storage. In Proc. of PODC ’02, pages 108-117,
2002.

[12] M. Mitzenmacher. Digital fountains: A survey and look
forward. In IEEE Information Theory Workshop, 2004.

[13] I. S. Reed and G. Solomon. Polynomial codes over certain
finite fields. Journal of the Society for Industrial and Applied
Mathematics, 8(2):300-304, 1960.

[14] T.S.J. Schwarz and E. L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered
storage. In International Conference on Distributed
Computing Systems, 2006.

[15] H. Shacham and B. Waters. Compact proofs of retrievability.
ePrint Archive Report, (2008/073), 2008.

[16] M. A. Shah, R. Swaminathan, and M. Baker.
Privacy-preserving audit and extraction of digital contents.
ePrint Archive Report, (2008/186).



