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Robust Remote Homology Detection by

Feature Based Profile Hidden Markov Models∗

Thomas Plötz and Gernot A. Fink

Abstract

The detection of remote homologies is of major importance for molecular biology ap-
plications like drug discovery. The problem is still very challenging even for state-of-the-art
probabilistic models of protein families, namely Profile HMMs. In order to improve re-
mote homology detection we propose feature based semi-continuous Profile HMMs. Based
on a richer sequence representation consisting of features which capture the biochemical
properties of residues in their local context, family specific semi-continuous models are
estimated completely data-driven. Additionally, for substantially reducing the number of
false predictions an explicit rejection model is estimated. Both the family specific semi-
continuous Profile HMM and the non-target model are competitively evaluated.
In the experimental evaluation of superfamily based screening of the SCOP database we
demonstrate that semi-continuous Profile HMMs significantly outperform their discrete
counterparts. Using the rejection model the number of false positive predictions could be
reduced substantially which is an important prerequisite for target identification applica-
tions.

KEYWORDS: Profile Hidden Markov Models (Profile HMMs), remote homology detec-
tion, protein sequence analysis, feature representation, target identification
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1 Introduction

Despite impressive improvements in both sensitivity and specificity obtained by
the application of powerful probabilistic sequence analysis techniques, robust
remote homology detection is still a challenging problem. Especially for target
identification within drug discovery, the detection of new members of therapeuti-
cally relevant protein families is of fundamental scientific as well as commercial
interest.

In the last decade, probabilistic modeling of protein families by means of
Profile Hidden Markov Models became one of the dominating approaches for
biological sequence analysis. They represent an important framework for ob-
taining fundamental biological insights by exploiting the results of major se-
quencing projects when aiming at general understanding of biological processes.
The reason for the broad popularity of Profile HMMs is mainly given by the ex-
istence of efficient algorithms for both model estimation and evaluation. The
basic technical challenge is the estimation of robust family models for highly
diverging but related protein sequences with small amounts of training samples.
In order to tackle this problem, several refinements of the basic Profile HMM
estimation approach were proposed. By means of certain model regularization
techniques, the parameters of Profile HMMs can be estimated using small sets of
training samples. Additionally, during model evaluation target hits and misses
are discriminated by means of specialized null models for log-odds scoring.

However, the incorporation of prior expert knowledge into the modeling pro-
cess, e.g. by carefully designed Dirichlet mixtures [Brown et al., 1993], is criti-
cal regarding the detection of really new homologues. Models created by means
of small sample sets containing data actually belonging to the appropriate target
family, and larger amounts of potentially biased expert knowledge tend to focus
on patterns already known. This means that their generalization abilities can
be limited. In order to gain really new knowledge which is important for e.g.
pharmaceutical purposes, alternative approaches need to be developed.

We present feature based semi-continuous Profile HMMs and application
concepts for robust remote homology detection. The features extracted from a
continuous signal-like protein data representation based on various biochemical
properties and local residual context provide a richer sequence representation
which is advantageous especially for remote homology detection. According to
the critical incorporation of manually derived prior expert knowledge, the fo-
cus of our developments is on completely data driven techniques. Our principle
goal is to estimate probabilistic models for protein families as un-biased as pos-
sible at every stage of the modeling process while keeping the robustness high
even for small training sets. Compared to state-of-the-art discrete modeling ap-
proaches, feature based Profile HMMs presented in this article show superior
performance for superfamily based remote homology detection tasks. Our new
approach addresses the improvement of the general method of Profile HMM
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based sequence comparison. Thus, also iterative model estimation processes
(cf. [Karplus et al., 1998]) can benefit from our techniques.

Semi-continuous HMMs as introduced in [Huang and Jack, 1989] represent
a modeling technique for effective exploitation of small training sets. Emissions
are described by mixture densities based on a shared set of Gaussians which
can be considered as a general representation of the feature space. The estima-
tion of standard Profile HMMs, where both the emission space representation
and the model structure are jointly optimized, requires rather large amounts of
model specific training samples for data-driven model estimation. Contrary to
this, the estimation of semi-continuous HMMs can be divided into training steps
separately optimizing the emission space, and based on this the model struc-
ture. Only for the latter case model specific data is required. For the data-driven
estimation of our feature space representation large amounts of un-annotated
sequence data can be used, e.g. the complete SWISSPROT database. By ap-
plying different adaptation techniques, the general mixture representation of the
emission space can be focused on particular protein families using small target
specific training sets. Based on the new semi-continuous Profile HMMs robust
remote homology detection becomes possible. For further reduction of the num-
ber of false predictions which are critical e.g. for drug discovery applications,
we propose competitive model evaluation using a particular family model and
an explicit rejection model estimated on general, i.e. un-annotated protein data.

This paper is organized as follows. Based on the analysis of current Profile
HMMs (section2) our new feature based sequence representation is presented in
section3. In section4 the newly developed semi-continuous Profile HMMs are
introduced which allow robust remote homology detection. Evaluation results
based on SCOP superfamily experiments illustrating the improved performance
of the new approach are presented in section5.

2 Discrete Profile HMMs

Profile HMMs currently represent the most important statistical models used for
probabilistic sequence analysis of biological data. The typical architecture of
these models is shown in figure1. Usually, the conserved parts of a multiple
alignment of the sequences belonging to the protein family of interest are mod-
eled by a linear sequence of match statesMi. A position in the alignment is con-
sidered conserved if some residue is present for the majority of sequences. In or-
der to capture variations in sequence length insertions and deletions of residues
are described by additional insertIi and delete statesDi. Besides model estima-
tion based on preceding separate multiple alignments, in the literature alterna-
tive approaches are described where models are created by iterative refinements
using un-aligned training sequences [Krogh et al., 1994]. There are some exten-
sions to the basic architecture with increased flexibility, e.g. in HMMER’s Plan7
[Eddy, 2001].

2 Statistical Applications in Genetics and Molecular Biology Vol. 4 [2005], No. 1, Article 21

http://www.bepress.com/sagmb/vol4/iss1/art21



M4M3M2M1M0

I0 I1

D1

I2

D2

I3

D3

Figure 1: State-of-the-art Profile HMM

Currently, the emissions of Profile HMMs are modeled by state dependent
discrete probability distributions over the set of 20 amino acids. Transition
and emission probabilities are estimated using standard Baum-Welch or Viterbi
training. For classification of sequence data the models are evaluated by com-
puting the Forward or Viterbi scores, respectively. An excellent treatment of
Profile HMMs can be found in [Durbin et al., 1998].

For detection tasks, the scores generated by aligning query sequences to
the appropriate family models are evaluated regarding a threshold. Since these
scores are depending on both the length of the sequences as well as on the length
of the models, usually, they are considered regarding the scores generated by
some background or null model. The resulting ratio of both scores is called the
log-odds score and target hits are assumed for statistically significant values.
The actual choice of the appropriate background model is rather crucial for the
overall detection performance and target specific background models are widely
used [Barrett et al., 1997].

Especially for remote homology detection tasks the number of training sam-
ples for estimating the target specific Profile HMM is usually rather small which
is disadvantageous forrobustmodel estimation. Thus, several so-called model
regularization techniques were proposed which try to tackle this so-called sparse
data problem. The currently most promising technique for obtaining statistically
more “stable” amino acid distributions is based on the incorporation of prior
knowledge by means of carefully designed Dirichlet distributions. For a review
of model regularization techniques cf. e.g. [Karplus, 1995].

Common to all present Profile HMM approaches is the explicit and exclusive
use of symbolic sequence representations. Furthermore, contextual information
cannot be captured by the discrete probability distributions used.
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3 Feature Based Profile HMMs

For most current Profile HMM based sequence analysis applications, raw amino
acid data is processed. This seems obvious because it is usually the result of
major sequencing projects and especially for target identification within the drug
discovery pipeline often it is the only source of information. Consequently, dis-
crete Profile HMMs are the methodology of choice for probabilistic sequence
analysis.

Contrary to this, when applying HMMs to general pattern recognition prob-
lems like automatic speech recognition, usually, “natural” real-valued signals
evolving in time are processed. Based on such signals (e.g. acoustic pressure
for speech recognition), relevant features are extracted and used for (semi-)con-
tinuous HMMs. By means of the continuous emissions of such models, very
flexible modeling of highly diverging data becomes possible usually signifi-
cantly outperforming discrete HMMs.

The biological functions of proteins are principally caused by their biochem-
ical properties which determine their three-dimensional structure. In fact, this
spatial folding and thus the biochemical properties cause functional similari-
ties of proteins motivating the definition of protein (super)families. Amino acid
symbols “summarize” such properties of the residues which is usually implic-
itly respected by means of specific substitution matrices. However, this abstrac-
tion seems crucial because details investigated throughout the years in wet-lab
research are neglected when processing symbolic data. The huge arsenal of
powerful pattern recognition techniques cannot be used directly for protein se-
quences in their current representation.

In order to achieve better results for remote homology detection tasks we de-
veloped semi-continuous Profile HMMs. Their emissions are based on features
extracted using pattern recognition techniques from a protein sequence repre-
sentation which explicitly captures the underlying biochemical properties of the
appropriate residues. Whereas the emissions are changed towards a continuous
feature representation, the principle state-of-the-art Profile HMM architecture as
shown in figure1 remains the same. We first introduced the feature extraction
approach described here in [Plötz and Fink, 2004].

In the following we will first explain our signal representation of the protein
data (section3.1). Subsequently, in section3.2 the general feature extraction
process as well as the actual modeling is described in detail.

3.1 Signal Representation of Proteins

The basic motivation for alternative representations of biological sequences is
reasoned by the huge amount of pattern recognition techniques available. By
means of such techniques, the application of Profile HMMs can benefit from
uncovering possibly hidden characteristics of biochemical properties of protein
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data. Explicitly exploiting such information can especially increase the perfor-
mance of remote homology detection approaches.

Reconsidering the argumentation regarding the abstraction from biochemical
properties when using raw amino acid data, the most promising signal represen-
tation approaches in fact rely on such properties. Kawashima et al. compiled a
huge amount of so-called amino acid indices [Kawashima and Kanehisa, 2000].
Every index defines a mapping of amino acids to numerical values depending on
its natural properties, e.g. hydrophobicity, or molecular weight. Once the amino
acids are appropriately mapped to numerical values, a large variety of signal
processing techniques can be applied.

In our approach we, basically, follow the idea of mapping residues to nu-
merical values as defined in amino acid indices. However, limiting the sequence
representation to an arbitrary but single index implies neglecting putative higher
level relationships of the residuals. Furthermore, there is hardly anyexhaus-
tive prior knowledge, which property causes remote homologue sequences to
belong to a distinct protein family – usually it cannot be specified exclusively.
Therefore, we do not want to restrict the representation to a single biochemi-
cal property but to incorporatemultipleproperties of amino acids relevant for
protein family affiliation.

We carefully selected 35 indices out of the huge pool of encoding schemes
available, normalized each of them to the interval of[−1, . . . 1], and used the
combination of them as a multi-channel signal representation which provides
a rich characterization of the protein sequence analyzed. The actual selec-
tion of the indices followed biological considerations as explained in the fol-
lowing. On their website Kawashima and colleagues deliver a cluster map of
the approximately 500 indices contained in the abovementioned database. The
correlation coefficients of the particular indices are the basis for this statistical
clustering. All biochemical properties considered are assigned to six coarse cat-
egories. When selecting the indices for our new signal-like protein sequence
representation, we aimed at a broad coverage of these six categories in order to
actually capture the most relevant biochemical properties of amino acids. Note
that we do not focus on a completely redundancy-free selection of amino acid
indices at this initial stage of feature extraction. Actually this is a very chal-
lenging problem which can hardly be solved manually. Instead, we perform an
automatic redundancy reduction in the final stage of the overall feature extrac-
tion process (cf. section3.2). In appendixA the 35 amino acid indices used
for the signal-like representation of protein sequences are listed including the
cluster map of Kawashima et al. where the selected indices are highlighted.

3.2 Feature Based Sequence Representation

The previously described sequence encoding method subsumes information from
various sources in a multi-channel numerical representation. Generally, when
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using Profile HMMs for protein families, two levels of residual context are con-
sidered. The classification result determining the decision regarding the prob-
able affiliation of the sequence analyzed to a particular protein family is per-
formed using the complete sequence. Thus, the global context is captured by the
HMM. Contrary to this, for the estimation of emission probabilities no residual
context is used at all.

In order to respectlocal signal characteristics already at the level of emission
probabilities, in our feature extraction procedure local contexts of residues are
considered. Consecutive samples of the 35 channel signals are analyzed using
a sliding window approach (extractingframes). Starting from the first residue
of a distinct sequence for each of the 35 channels 16 samples are used for short
length signal analysis. The window size was heuristically determined in infor-
mal experiments. At the borders of the sequences the data is padded using prior
probabilities of amino acids obtained from general protein data.

Basically, for remote homology detection the essentials of a particular pro-
tein family are of major interest. Thus, any putatively misguiding signal special-
ties relevant only for a minority of sequences belonging to the family of interest
should be neglected. In summary, signal analysis should produce features en-
abling an abstract but meaningful view on the sequences representing the coarse
shape. For extracting such features independently of the actual signal type, usu-
ally, a spectral analysis is performed. Transforming signals into a frequency
based representation offers direct access to the desired shape approximation.
Within the general pattern recognition domain a wide variety of such transfor-
mations has been developed, e.g. the Fourier or the Cosine transform. Once the
transformation is estimated, distinct parts of frequencies of the signal can easily
be removed by skipping single transformation coefficients. Thus, reducing the
original signal to its coarse shape is straightforward.

While analyzing signals of protein sequences we found out that the standard
spectral analysis approach using Fourier transform is not suitable for biological
signals subsumed in the frames introduced above. This function transform as-
sumes periodic signals of infinite length which is in no way the case for our data.
Thus, we used a refined function transform technique which is more suitable for
the short signals analyzed in our approach – the Discrete Wavelet Transform
(DWT). Exemplary, in [Percival and Walden, 2000] a very detailed overview of
general Wavelet based function analysis is provided whereas [Poularikas, 2000]
gives a more general overview of function transforms including Wavelets. The
basic advantage of the DWT for the analysis of the signal frames is the superb
localization property in both time, i.e. the position of the residues, and frequency
space. The coarse temporal signal structure of the protein sequences analyzed is
determined channelwise, i.e. the DWT is applied to every channel of our multi-
channel signal representation individually.

In order to obtain the abovementioned coarse signals for every channel of
a particular frame, we skip the upper five Wavelet detail coefficients. Informal
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experiments on related data showed that the reconstruction of the original sig-
nals based on the first 11 Wavelet coefficients obtained after a two-stage multi-
scale analysis is suitable for the necessary abstraction from putatively misguid-
ing details. Per frame the channel based feature vectors are concatenated to
385-dimensional vectors (35 channels× 11 DWT-coefficients).

The actual relevance of a single channel of the biological signal for the re-
lationship to a distinct protein family can hardly be determined. Therefore, the
combination of several biochemical properties needs to be considered. In order
to improve remote homology detection, the goal of the proposed method is to
avoid as many pitfalls in the early stages of sequence analysis as possible. Be-
sides this, manually fixing the residues’ properties tends to models whose gen-
eralization abilities regarding the detection of currently unknown homologues
are limited. Thus, we propose a completely data driven approach. Potentially
redundant information included in the concatenation of the DWT coefficients
needs to be removed.

Generally, redundancy within the 385-dimensional feature vectors may orig-
inate from two different sources. First, even the most careful manual selection
of relevant biochemical properties for the multi-channel signal-like representa-
tion of protein sequences (cf. section3.1) does not necessarily guarantee that the
particular amino acid indices do not provide completely complementary infor-
mation. Second, the frames extracted using the sliding window approach for a
particular protein sequence overlap substantially resulting in smoothed but (to
some degree) redundant feature vectors.

The abovementioned redundancy is reduced using an automatic and data-
driven approach, namely by finally performing a Principle Component Analysis
(PCA) for the feature vectors of every frame. Usually, the (lower) dimension
of the target feature space where the original feature vectors are projected to
is determined by analyzing the spectrum of the eigenvalues of the appropriate
covariance matrix with respect to the percentage of achievable reconstruction of
the original data. In our case, a compact representation of the feature vectors
in a 99-dimensional subspace is sufficient for more than 95% reconstruction.
Thus, the dimensionality of the final feature vectors for protein sequence data is
adjusted to 99.1

Figure2 summarizes the feature extraction method described in this paper
for an exemplary protein sequence (Coxsackie virus and adenovirus receptor,
domain 1 – Homo sapiens; PDB-Id: 1f5w.). Starting from the plain protein se-
quence, frames of length 16 are extracted (upper part of the figure). For every
frame the 35 channel encoding procedure is performed, resulting in the signal
representation shown on the left side. The first 11 DWT coefficients of all chan-

1Note that due to the channel-wise linear DWT-based analysis of the sequence windows
containing 16 residues at least 15 linear constraints exist. Choosing a full rank subset of the
considered feature vectors would affect the definition of the principal components in a rather
arbitrary way.
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nels, illustrated on the right side, are concatenated to a single feature vector per
frame. The concluding PCA (lower part) reduces the dimension to 99.
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Figure 2: Feature extraction process for an exemplary protein sequence –Cox-
sackie virus and adenovirus receptor, domain 1 (Homo sapiens); PDB-Id: 1f5w.

4 Robust Model Estimation and Remote
Homology Detection

When processing feature vectors, generally continuous instead of discrete HMMs
are used. Here, the continuous feature space is represented by means of mixture
densities. For effective exploitation of training data, Huang and Jack proposed
semi-continuous HMMs where all states share a common set of mixture den-
sities which are weighted state-specifically [Huang and Jack, 1989]. Compared
to continuous models only one global set of component densities needs to be
estimated which is advantageous for small training sets. This shared set of den-
sities can be considered as a general mixture representation of the feature space.
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For a feature vectorx corresponding to a frame of residuesa = (a1, . . . , a16),
the emissionsbj(x) of HMM statesj are defined as mixtures ofK Gaussians
N (x|µk,Ck) with mean vectorsµk and covariance matricesCk which are used
for all HMM states but individually weighted bycjk:

bj(x) =
K∑

k=1

cjkN (x|µk,Ck) =
K∑

k=1

cjkgk(x) (1)

In our approach we replace the discrete emissions of state-of-the-art Profile
HMMs with such semi-continuous emissions while keeping the original model
topology as illustrated in figure1.

By analyzing equation1 it becomes clear that the estimation of semi-contin-
uous HMMs can principally be divided into two separate steps. The model in-
dependent feature space representation, i.e. the Gaussian mixture component
densities, can be obtained using general feature data. Subsequently, the model
itself is optimized based on the resulting component densities and model specific
training samples. We found that the separation of the estimation of a general fea-
ture space representation from position specific modeling is the basic advantage
of semi-continuous modeling which can be exploited for robust estimation of
protein families using small family specific sample sets.

In this section we present modeling techniques for data driven estimation of
robusttarget specific semi-continuous Profile HMMs.

4.1 Robust Model Estimation

The parameters of the general mixture density based feature space represen-
tation are obtained by applying a modifiedk-means procedure to general pro-
tein data which is comparable to the Expectation-Maximization (EM) approach
[Dempster et al., 1977]. The base for the un-supervised and completely data
driven estimation of mixture densities are all sequences (approximately 90K)
from the SWISSPROT database [Boeckmann et al., 2003] allowing the estima-
tion of 1,024 Gaussians.

Technically, semi-continuous Profile HMMs are derived from the architec-
ture of discrete models. Given the Profile structure, standard Viterbi training is
performed using the component densities of the general feature space represen-
tation and small amounts of family specific data.

The mixture density representation of the feature space obtained from SWISS-
PROT captures theglobal properties of general protein data. In order to focus
this representation to specific properties of proteins belonging to a particular
target family, data driven mixture adaptation techniques are applied. Such trans-
formations of the mixture parameters, i.e. mean vectorsµk and (not necessarily)
covariance matricesCk, are used in order to optimize the coverage of general
protein properties towards more family specific characteristics. Note that the
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model structure, the transition probabilities as well as the state specific mixture
weightscjk remain unchanged during adaptation. Only the underlying mixture
component densities are modified.

The initial estimation of the mixture densities using general protein data is,
furthermore, the basis for the either probabilistic or deterministic assignment
of target family specific samples to the particular Gaussians. Using these pre-
trained parameters the actual mixture adaptation can be performed very robustly.

For the target family specific transformation of the densities, we investigated
three different adaptation techniques which are described in the following. The
number of family specific training samples, i.e. the amount of adaptation data
which is usually very small, is denoted byT .2

Maximum Likelihood (ML) Estimation:

In the simplest case of target family based specialization of the feature space
representation, the adaptation is performed by maximizing the likelihood of the
mixture densities for the family specific sample sequences using EM up to con-
vergence. Given the initial mixture representation of the feature space derived
from SWISSPROT, the adaptation samplesxt are assigned probabilistically to
all mixturesg in the iterative re-estimation of the parameters:

µ̂m+1
k =

∑T
t=1 ξm

t (k)xt∑T
t=1 ξm

t (k)
(2)

Ĉm+1
k =

∑T
t=1 ξm

t (k)xtx
T
t∑T

t=1 ξm
t (k)

− µ̂m+1
k (µ̂m+1

k )T (3)

p̂m+1
k =

1

T

T∑
t=1

ξm
t (k) (4)

ξm
t (k) = P (gt = k|xt, p̂

m
k , µ̂m

k , Ĉm
k )

The probability of selecting thek-th Gaussian for thet-th adaptation sample
(gt = k) given the current estimates of the mixtures’ parameters is denoted by
ξm
t (j, k), whereaŝpk represents the prior probability of thek-th Gaussian. Since

the parameters of all densities are re-estimated by the ML procedure, usually
rather large sample sets are required for robust adaptation.

Maximum A-Posteriori (MAP) Adaptation:

Contrary to the ML approach, here, the iterative adaptation of the component
densities is performed with respect to optimization of the posterior probability

2According to common experience of molecular biologists working in the field of drug
discovery, typically (depending on the actual task) for remote homology detection only some
dozens of sample sequences are available.
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of the mixture parameters for the adaptation samples. Generally, prior parameter
estimateŝµk andĈk weighted byτ are combined with the re-estimation based
on the family specific data by changing equations2 and3 to:

µ̂m+1
k =

τ µ̂m
k +

∑T
t=1 ξm

t (k)xt

τ +
∑T

t=1 ξm
t (k)

(5)

Ĉm+1
k =

τ(Ĉm
k + µ̂m

k (µ̂m
k )T ) +

PT
t=1 ξm

t (k)xtxT
tPT

t=1 ξm
t (k)

τ +
∑T

t=1 ξm
t (k)

−µ̂m+1
k (µ̂m+1

k )T (6)

Initial parameter estimates are obtained by applying the (modified)k-means al-
gorithm to SWISSPROT data. The advantage of MAP adaptation is the balanced
incorporation of prior information extracted from the larger set of un-labeled
sequences depending on the actual amount of adaptation data. The more adap-
tation samples available, the stronger the influence of them and vice versa, the
smaller the amount of target specific data, the higher the influence of the back-
ground estimation. We adjustedτ to the number of samples assigned to the
particular mixture components as accumulated during the previous estimation
steps which allows robust mixture adaptation even for small training sets.

Maximum Likelihood Linear Regression (MLLR):

For the third kind of adaptation, deterministic assignments of feature vectorsxt

to mixture components are assumed. Originally developed for speaker adap-
tation of automatic speech recognition systems, Leggetter and Woodland pro-
posed the modification of the mixtures’ mean vectors only using affine transfor-
mationsWk [Leggetter and Woodland, 1995]. These transformations represent
rotations and translations of the feature space estimated on small adaptation sets.
They can be defined with respect to augmentedD-dimensional mean vectors
µ̃k = (1, µk1 , . . . , µkD

)T , whereD in our case is 99:

µ̂k = Wkµ̃k (7)

The transformations are generalized to groups of mixture components including
densities not covered by the adaptation set via linear regression. Fischer and
Stahl developed a simplified adaptation procedure by using a single regression
class. This implies a global transformation matrixW which is applied to all
augmented mean vectors̃µk [Fischer and Stahl, 1999]:

W =

{
T∑

t=1

xtµ̃
T
t

}{
T∑

t=1

µ̃tµ̃
T
t

}−1

(8)
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Contrary to ML and MAP adaptation, here instead of statistically re-estimating
the mixtures’ parameters, the densities themselves are transformed. The trans-
formation estimated for mixtures actually covered by a small adaptation set is
generalized to the complete feature space.

By means of all adaptation techniques described here the general feature
space representation is focussed on particular target families in a completely
data-driven way. For both ML and MAP adaptation all mixture parameters are
re-estimated, in the latter case in combination with prior estimates of the mixture
parameters. For MLLR only the single transformation matrixW needs to be
estimated which requires considerably smaller amounts of target family specific
data. Therefore, MLLR is especially attractive for remote homology detection
tasks as addressed in this paper.

4.2 Robust Remote Homology Detection

The major difficulty for detection tasks is the discrimination between target hits
and misses which is usually realized by threshold comparison of the scores. For
independence regarding the actual length of a query sequence and for robust
separation of sequences belonging to the target model and those who are not,
discrete Profile HMM evaluation is based on more or less sophisticated null
models for log-odds scores. When applying our feature based semi-continuous
Profile HMMs to homology detection, we use a null model based on the prior
probabilities of the mixture components estimated during model building.

In order to reduce the overall number of false detections, we furthermore ap-
ply a technique which is principally known from general detection tasks. Con-
sidering e.g. the problem of automatic speaker detection, usually an additional
non-target model is estimated which explicitly covers all datanot belonging
to the target class. According to Reynolds such a model is calledUniversal
Background Model (UBM)[Reynolds, 1997]. As an enhancement of the general
UBM approach, our definition of the background model captures structural in-
formation using a left-right topology as outlined in figure3. We evaluate both
the UBM and the particular target model in a competitive manner which is com-
bined with the log-odds scoring method described above. The UBM itself, con-
sisting ofLU = 30 states, was estimated on the set of general SWISSPROT data
by Baum-Welch training. The actual model length was determined heuristically
in informal experiments.

4.3 System Overview

In figure4 our approach for estimating semi-continuous Profile HMMs and
an explicit UBM for robust remote homology detection is summarized graphi-
cally. Based on the feature representation of general protein data obtained us-
ing our new extraction method, a mixture representation of the general feature
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Figure 3: Left-Right topology of the UBM (sketch)

space is estimated usingk-means (upper-left part). For semi-continuous model-
ing, the separate optimization of the emission space representation using large
amounts of general protein data and the family specific training of the model
structure is possible. By means of standard discrete modelsλD estimated on
family specific training samples (upper-right), and the general feature space rep-
resentation, semi-continuous Profile HMMsλG are obtained via Viterbi training
(middle-right). Then, the mixture representation is optimized for the target fam-
ilies by applying adaptation techniques resulting in family specific modelsλS

(lower-right). Finally, on SWISSPROT data the UBM is estimated (lower-left).
Compared to the state-of-the-art in probabilistic protein family modeling,

namely discrete Profile HMMs as summarized in section2 or treated in detail in
e.g. [Durbin et al., 1998], semi-continuous feature based Profile HMMs as pro-
posed in this article basically differ in their state specific emissions. The three-
state model structure, and the probabilistic state transitions remain unchanged,
though. In table1 the properties of both modeling approaches are summarized.3

By means of an un-supervised estimation technique the 1,024 mixture com-
ponents are obtained using sufficient amounts of general (un-annotated) protein
data. The corresponding state-specific mixture weights (cjk – cf. equation1) are
estimated during model training using small amounts of family specific train-
ing samples. Since usually only little training data is available, certainly not all
of the 1,024 mixture components will contribute substantially to the state spe-
cific emission probabilities. Consequently, several mixture weights will be set
to some small floor probability.

However, practical experience in alternative pattern recognition domains
where (semi-) continuous HMMs are applied confirms that the resultingempir-
ical probability distribution for mixture weights is suitable for robust modeling.
Actually, model regularization of semi-continuous HMMs is only discussed at
the level of density representations in the literature (cf. e.g. [Huang et al., 2001]).
As the underlying protein feature space shows strong locality, i.e. for a particular
target family only a small set of relevant Gaussians need to be considered per
state. Thus, using the approaches presented in this paper the estimation of model
parameters is possible even when only little family specific data is available.

3Since the detailed description of the particular protein family models includingall param-
eters is very complex the reader interested in these technical details is referred to our website
[Plötz, 2004].
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Figure 4: Overview of the model estimation procedure

5 Evaluation

The basic motivation for the developments described in this article is the im-
provement of remote homology detection methods for e.g. drug discovery tasks.
In order to evaluate our new approaches of applying feature based semi-contin-
uous Profile HMMs to this challenging task, we performed several experiments
based on public data.

We concentrated on target identification tasks typical for early stages of the
drug discovery process. Therefore, homologue sequences for single protein fam-
ilies are searched by database screening. Here, all query sequences are aligned to
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Discrete Profile HMMs SCFB Profile HMMs

• Three-state Profile architecture
• Probabilistic state transitions (aij)

• Discrete state-specific emission
probabilitiesbj(o) based on 20
standard amino acids – discrete
distributions estimated on fam-
ily specific training data and op-
tionally regularized using back-
ground distributions

• State-specific emission probabil-
ity vectorsbj(x) based on 1,024
Gaussians which are weighted
state specifically (cjk) – em-
piric probability distribution es-
timated using family specific
training data

• Robust estimation of mixture
components using general pro-
tein data and modifiedk-means

• Family related specialization of
mixture components using adap-
tation techniques

Table 1: Properties of probabilistic protein family models (SCFB: Semi-
Continuous Feature Based). Only the emission parameters differ and for the
larger number of parameters within the SCFB models robust estimation tech-
niques are applied.

the appropriate model and depending on the scores generated the classification
regarding target hit or miss is performed. Usually, the performance of detec-
tion techniques is measured as a function of the number of false negative pre-
dictions vs. the number of false positives which is summarized in ROC-curves
[Baldi et al., 2000].

We compared our new approach to standard discrete Profile HMMs esti-
mated using the SAM package v3.3.1 [Hughey and Krogh, 1996]. These models
were created and evaluated using default parameters which e.g. implies Dirich-
let model regularization, model training from un-aligned sequences, and Smith-
Waterman like evaluation. According to the manual of SAM this configuration
is reasonable for remote homology analysis using discrete Profile HMMs. Based
on these models we created feature based semi-continuous HMMs as described
in section4 by means of our own general HMM framework ESMERALDA
[Fink, 1999]. The topology of Profile HMMs (cf. figure1) was kept fixed. As
already noted, in this article the performance of the basic procedure is evaluated.
Iterative model estimation approaches can benefit from our new approach, too.
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5.1 Datasets

In order to evaluate the detection performance of the approaches presented in
this paper, we applied the new Profile HMMs to the task of remote homol-
ogy detection for superfamilies. Therefore, we used the SUPERFAMILY (cf.
[Gough et al., 2001]) based hierarchy of the SCOP database [Murzin et al., 1995].
Sequences belonging to a distinct superfamily must not have similarity values
above 95%. In fact, the data for every protein family covers almost the whole
range of possible similarities. Thus, the performance for remote homology de-
tection can actually be evaluated.

Generally, for the complex Profile HMM architecture (cf. figure1) a certain
amount of training material is required. Additionally, samples not used for train-
ing need to be available for performance assessment. Therefore, 16 superfami-
lies fulfilling these constraints were selected. Every superfamily contains at least
66 sequences and two thirds of the appropriate material was used for estimating
the Profile HMMs. For the assessment of the models’ detection performance ap-
proximately 34 sequences were used on average for every superfamily. Details
regarding the sample sets can be found in appendixB. For the experiments, ho-
mologue sequences were searched for every superfamily considered analyzing
the complete SCOP database (version 1.63) consisting of approximately 8,000
sequences.

5.2 Results

The remote homology detection experiments were performed individually for
every superfamily. We compared the detection performance of discrete Pro-
file HMMs with our feature based semi-continuous models. Additionally to the
comparison with the baseline results of SAM, we evaluated the effectiveness
of the three adaptation approaches described in section4.1. The overall per-
formance for superfamily based remote homology detection could be improved
significantly which will be illustrated in the following.

The results of the detection experiments are illustrated by ROC-curves given
in figures5 and6, respectively. The numbers of false negatives (x-axes) are com-
pared to the corresponding numbers of false positives (y-axes). In addition to the
complete ROC curves, individual “working areas” are highlighted. These areas
shaded gray contain those parts of the plots which are most important for molec-
ular biology research because the number of false positive predictions is reason-
ably limited. For the overall rating of our approaches, in figure5 the results of
all experiments are summarized in a single diagram. In order to demonstrate the
effectiveness of the new techniques in more detail, in the remaining figures6(a)
and6(b) the detection results for two exemplary superfamilies, namely”Winged
helix” DNA-binding domains (SCOP: a.4.5), andNucleic Acid Binding proteins
(SCOP: b.40.4), are presented individually. Note that the actual restriction of the
detailed presentation to two superfamilies was for clarity reasons. The results
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are typical for the whole corpus and complete evaluation data can be found on
our website [Plötz, 2004].

When inspecting the ROC-curves it becomes clear that feature based semi-
continuous Profile HMMs significantly outperform their discrete counterparts
for the task of remote homology detection. From the overall results shown in
figure5 it can be seen that the number of false negative predictions can generally
be decreased while reducing the number of false positives significantly for all
models. The ROC-curves corresponding to all variants of feature based semi-
continuous Profile HMMs lie significantly below the reference curve of discrete
models for the whole diagram (with an exception outside the working area for
ML based adaptation which is due to insufficient training data). The outcome
of the comparison of the performance of the particular adaptation techniques
described in section4.1 is that the MLLR approach is best.
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Figure 5: Summary of detection results for all superfamilies analyzed

The effectiveness of the competitive evaluation of both UBM and target mod-
els (cf. section4.2) can be assessed by the maximum number of false positive
predictions. Due to our explicit rejection model estimated on general protein
data this number is dramatically reduced by almost 66 percent for all superfam-
ilies and more than 80 percent for the exemplary superfamilies whose corre-
sponding ROC-curves are presented individually.

To summarize, the results of the experimental evaluation presented in this
section demonstrate the superior performance of feature based semi-continuous

17Plötz and Fink: Feature Based Profile HMMs

Produced by The Berkeley Electronic Press, 2005



ML

MAP discrete

MLLR

MLLR

MAP

ML

discrete

0 10 20 30 40 50 60 70 80

# 
fa

ls
e 

po
si

tiv
es

# false negatives

1000

800

600

400

200

8000

0

0

0 10 20 30 40 50 60 70

working area

7000

6000

5000

4000

3000

2000

1000

(a) Individual ROC-curves for SCOP superfamily a.4.5

MAP

ML

discrete ML discrete

MLLR MAP

MLLR

200

400

600

800

1000

0 10 20 30 40 50

4000

5000

6000

7000

8000

0

0

10

70

20 30 40 50 60 70 80 90

# 
fa

ls
e 

po
si

tiv
es

# false negatives

working area

3000

2000

1000

0

60

(b) Individual ROC-curves for SCOP superfamily b.40.4

Figure 6: ROC-curves representing the results of superfamily based remote ho-
mology detection utilizing SCOP

Profile HMMs compared to their discrete counterparts for the task of remote
homology detection. By means of an explicit rejection model capturing pro-
teins not explicitly belonging to the appropriate target family, the number of
false positives could be reduced significantly. The number of positive predic-
tions generallycorresponds to the number of e.g. drug candidates. Since this
data needs to be analyzed in further e.g. wet-lab examinations which are usually
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very time-consuming and expensive, the reduction of false positives is of major
importance.

6 Conclusion

In order to improve the performance of remote homology detection, in this paper
feature based semi-continuous Profile HMMs were presented. We developed a
multi-channel signal representation of fixed length sequence frames represent-
ing the biochemical properties of residues in their local neighborhood. The
emissions of semi-continuous Profile HMMs are based on a mixture density
representation of the feature space. In order to focus this representation on the
properties of a particular protein family, we applied mixture density adaptation
techniques with MLLR providing the best results. For reducing the number of
false positive predictions, explicit rejection models were introduced which are
evaluated in a competitive manner parallel to the particular target models.

The experimental evaluation of the new approach was performed by super-
family based screening of the SCOP database. It was shown that feature based
semi-continuous Profile HMMs significantly outperform their discrete counter-
parts for remote homology detection for all superfamilies considered. The num-
ber of false predictions was substantially reduced which is an important prereq-
uisite for e.g. target identification applications in the drug discovery area.

Compared to state-of-the-art discrete models our new approach of semi-
continuous Profile HMMs represents a radical change of HMM based protein
family modeling. The richer sequence representation using features which cap-
ture biochemical properties of residues in their local context is effective for emis-
sion modeling of HMMs. The estimation of background distributions can be
performed completely data-driven on general protein data. The feature space
representation can be specialized by adaptation techniques enabling the estima-
tion of optimized models for particular target families using small amounts of
specific training data.
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A Amino Acid Indices used

Table2 provides information about the 35 biochemical amino-acid properties,
selected for the signal based protein sequence encoding. These indices were
selected from the compilation provided by [Kawashima and Kanehisa, 2000].

Channel Index Description Accession Key

0 Average flexibility indices BHAR880101
1 Residue volume BIGC670101
2 Transfer free energy to surface BULH740101
3 Steric parameter CHAM810101
4 Polarizability parameter CHAM820101
5 A parameter of charge transfer capability CHAM830107
6 A parameter of charge transfer donor capability CHAM830108
7 Normalized average hydrophobicity scales CIDH920105
8 Size DAWD720101
9 Relative mutability DAYM780201
10 Solvation free energy EISD860101
11 Molecular weight FASG760101
12 Melting point FASG760102
13 pK-N FASG760104
14 pK-C FASG760105
15 Graph shape index FAUJ880101
16 Normalized van der Waals volume FAUJ880103
17 Positive charge FAUJ880111
18 Negative charge FAUJ880112
19 pK-a (RCOOH) FAUJ880113
20 Hydrophilicity value HOPT810101
21 Average accessible surface area JANJ780101
22 Average number of surrounding residues PONP800108
23 Mean polarity RADA880108
24 Side chain hydropathy, corrected for solvation ROSM880102
25 Bitterness VENT840101
26 Bulkiness ZIMJ680102
27 Isoelectric point ZIMJ680104
28 Composition of amino-acids in extracellular proteinsCEDJ970101
29 Composition of amino-acids in anchored proteins CEDJ970102
30 Composition of amino-acids in membrane proteins CEDJ970103
31 Composition of amino-acids in intracellular proteinsCEDJ970104
32 Composition of amino-acids in nuclear proteins CEDJ970105
33 Amphiphilicity index MITS020101
34 Electron-ion interaction potential values COSI940101

Table 2: Biochemical properties selected for sequence representation.

At the website of the authors most indices of the database are clustered with
respect to six coarse categories:

A. Alpha and turn propensities,
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B. Beta propensity,

C. Composition,

H. Hydrophobicity,

P. Physiochemical properties, and

O. Other properties.

In figure7 an overview of the indices clustering is given. The indices used which
were assigned by the authors to any of the categories are highlighted.

CHAM830108
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(CEDJ970102)
(CEDJ970103)
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Figure 7: Clustering of the amino acid index database in
[Kawashima and Kanehisa, 2000] as provided by the authors. The amino
acid indices used for the approaches described in this article are marked
explicitly. Note that for unknown reasons the cluster map does not include all
indices used. These indices are manually assigned to the existing cluster map
and written in parentheses.
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B Overview of the sample set’s characteristics

In the following details concerning the sample set used for the experimental
evaluation of the new feature based semi-continuous Profile HMMs are given.
In order to obtain suitable training and test sets the SCOP database was analyzed.
Here, protein domains are classified regarding their affiliation to certain families,
superfamilies, classes and folds. We used the SUPERFAMILY classification
regarding sequence identities and limited it to 95%, i.e. all sequences contained
in the sets must not contain similarity values of more thean 95%. In figure8
the actual distribution of sequence similarities is illustrated. It can be seen, that
similarities are almost uniformly distributed.

At the level of superfamilies, domains were selected which contain at least
66 members. This number is motivated by the fact that for both training and test
a non-trivial number of samples is required for meaningful assessment. Limiting
the minimum number of samples to 66, 16 superfamilies remain which can be
used for the evaluation. For all superfamilies analyzed, the sequence sets are
randomly divided into disjoint training and test sets (2/3 and 1/3, respectively).
Table3 provides detailed information about the sample set used.
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eraged over all 16 superfamilies involved (black: Training / blue: Test) illustrat-
ing the almost uniform distribution of similarities all over the whole range with
one exception at 20-25%.
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SCOP SCOP superfamily # samples length (mean/std.-derivation)
Id name training test training test
a.1.1 Globin-like 60 30 150.3 (13.6) 151.6 (11.1)
a.3.1 Cytochrome c 44 22 102.6 (24.1) 118.4 (32.6)
a.39.1 EF-hand 49 25 138.1 (48.0) 122.0 (39.3)
a.4.5 ”Winged helix”

DNA-binding
domain

49 25 93.8 (26.6) 92.9 (23.1)

b.1.1 Immunoglobulin 207 104 108.9 (15.3) 106.7 (12.3)
b.10.1 Viral coat and

capsid proteins
64 32 278.0 (92.9) 262.1 (85.2)

b.29.1 Concanavalin
A-like
lectins/glucanases

52 27 221.2 (51.2) 220.8 (72.9)

b.40.4 Nucleic acid-
binding proteins

47 24 113.1 (36.6) 111.5 (47.2)

b.47.1 Trypsin-like
serine proteases

55 28 231.4 (29.5) 226.0 (30.1)

b.6.1 Cupredoxins 50 26 143.9 (34.6) 139.0 (31.5)
c.1.8 (Trans)glycosidases 62 31 376.5 (76.4) 397.8 (84.0)
c.2.1 NAD(P)-binding

Rossmann-fold
domains

102 51 204.3 (58.9) 211.5 (75.1)

c.3.1 FAD/NAD(P)-
binding
domain

45 23 226.1 (93.3) 223.3 (86.3)

c.37.1 P-loop containing
nucleotide
triphosphate
hydrolases

127 64 259.3 (120.4) 253.4 (85.6)

c.47.1 Thioredoxin-like 56 28 111.6 (38.2) 105.6 (35.3)
c.69.1 Alpha/Beta-

Hydrolases
51 26 350.1 (103.7) 323.7 (25.0)

Total: 1,120 566

Table 3: Overview of the SCOPSUPER9566 corpus used for the comparison of
the effectiveness of both state-of-the-art discrete Profile HMM and the new fea-
ture based semi-continuous Profile HMMs. For every superfamily the numerical
SCOP Id as well as their real name as defined in the database is given.
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Sjölander, K., and Haussler, D. (1993). Using Dirichlet mixture priors to
derive Hidden Markov Models for protein families. InProc. Int. Conf. Intel-
ligent Systems for Molecular Biology, pages 47–55.

[Dempster et al., 1977]Dempster, A. et al. (1977). Maximum likelihood from
incomplete data via the EM algorithm.Journal of the Royal Statistical Soci-
ety, 39:1–38.

[Durbin et al., 1998]Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998).
Biological sequence analysis: Probabilistic models of proteins and nucleic
acids. Cambridge Univ. Press.

[Eddy, 2001] Eddy, S. R. (2001). HMMER: Profile Hidden Markov Models for
biological sequence analysis.http://hmmer.wustl.edu/.

[Fink, 1999] Fink, G. A. (1999). Developing HMM-based recognizers with
ESMERALDA. In Text, Speech and Dialogue, Lecture Notes in Artificial
Intelligence, pages 229–234. Springer.

[Fischer and Stahl, 1999]Fischer, A. and Stahl, V. (1999). Database and online
adaptation for improved speech recognition in car environments. InProc. Int.
Conf. on Acoustics, Speech, and Signal Processing.

[Gough et al., 2001]Gough, J. et al. (2001). Assignment of homology to
genome sequences using a library of Hidden Markov Models that represent
all proteins of known structure.J. Molecular Biology, 313:903–919.

[Huang et al., 2001]Huang, X., Acero, A., and Hon, H.-W. (2001).Spoken
Language Processing – A Guide to Theory, Algorithm, and System Develop-
ment. Prentice Hall PTR.

[Huang and Jack, 1989]Huang, X. D. and Jack, M. A. (1989). Semi-continuous
hidden markov models for speech signals.Computer Speech & Language,
3:239–251.

25Plötz and Fink: Feature Based Profile HMMs

Produced by The Berkeley Electronic Press, 2005



[Hughey and Krogh, 1996]Hughey, R. and Krogh, A. (1996). Hidden Markov
Models for sequence analysis: Extension and analysis of the basic method.
Computer Applications in the Bioscience, 12(2):95–108.

[Karplus, 1995]Karplus, K. (1995). Evaluating Regularizers for Estimating
Distributions of Amino Acids. InProc. Int. Conf. Intelligent Systems for
Molecular Biology, pages 188–196.

[Karplus et al., 1998]Karplus, K., Barrett, C., and Hughey, R. (1998). Hidden
Markov Models for detecting remote protein homologies.Bioinformatics,
14(10):846–856.

[Kawashima and Kanehisa, 2000]Kawashima, S. and Kanehisa, M. (2000).
AAindex: Amino acid index database.Nucleic Acids Research, 28(1):374.

[Krogh et al., 1994]Krogh, A. et al. (1994). Hidden Markov Models in com-
putational biology: Applications to protein modeling.J. Molecular Biology,
235:1501–1531.

[Leggetter and Woodland, 1995]Leggetter, C. J. and Woodland, P. C. (1995).
Maximum likelihood linear regression for speaker adaptation of continuous
density hidden markov models.Computer Speech & Language, pages 171–
185.

[Murzin et al., 1995]Murzin, A. G. et al. (1995). SCOP: A structural classifi-
cation of proteins database for the investigation of sequences and structures.
J. Molecular Biology, 247:536–540.

[Percival and Walden, 2000]Percival, D. B. and Walden, A. T. (2000).Wavelet
Methods for Time Series Analysis. Cambridge Series in Statistical and Prob-
abilistical Mathematics. Cambridge University Press.
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