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Robust Representation and Recognition of Facial

Emotions Using Extreme Sparse Learning
Seyedehsamaneh Shojaeilangari, Wei-Yun Yau, Senior Member, IEEE, Karthik Nandakumar, Member, IEEE,

Li Jun, and Eam Khwang Teoh, Member, IEEE

Abstract—Recognition of natural emotions from human faces
is an interesting topic with a wide range of potential appli-
cations like human-computer interaction, automated tutoring
systems, image and video retrieval, smart environments, and
driver warning systems. Traditionally, facial emotion recognition
systems have been evaluated on laboratory controlled data,
which is not representative of the environment faced in real-
world applications. To robustly recognize facial emotions in
real-world natural situations, this paper proposes an approach
called Extreme Sparse Learning (ESL), which has the ability
to jointly learn a dictionary (set of basis) and a non-linear
classification model. The proposed approach combines the dis-
criminative power of Extreme Learning Machine (ELM) with
the reconstruction property of sparse representation to enable
accurate classification when presented with noisy signals and
imperfect data recorded in natural settings. Additionally, this
work presents a new local spatio-temporal descriptor that is
distinctive and pose-invariant. The proposed framework is able
to achieve state-of-the-art recognition accuracy on both acted and
spontaneous facial emotion databases.

Index Terms—Emotion recognition, Facial emotion, Pose-
invariance, Dictionary learning, Sparse representation, Extreme
learning machine, Extreme sparse learning.

I. INTRODUCTION

Facial emotion recognition in uncontrolled environments

is a very challenging task due to large intra-class variations

caused by factors such as illumination and pose changes,

occlusion, and head movement. The accuracy of a facial

emotion recognition system generally depends on two critical

factors: (i) extraction of facial features that are robust under

intra-class variations (e.g. pose changes), but are distinctive for

various emotions, and (ii) design of a classifier that is capable

of distinguishing different facial emotions based on noisy and

imperfect data (e.g., illumination changes and occlusion).

The objective of the present work is to develop a facial

emotion recognition system that is capable of handling vari-

ations in facial pose, illumination, and partial occlusion. The

proposed system robustly represents the facial emotions using

a novel spatio-temporal descriptor based on Optical Flow (OF),

which is distinctive and pose-invariant. Robustness to pose

variations is achieved by extracting features that depend only

on relative movements of different facial regions. However, the

S. Shojaeilangari and E. K. Teoh are with the School of Electrical and
Electronic Engineering at Nanyang Technological University, Singapore, e-
mail: seyedehs1@e.ntu.edu.sg, EEKTEOH@ntu.edu.sg

W.-Y. Yau and J. Li are with the Institute for Infocomm Research, A*STAR,
Singapore, e-mail: {wyyau, jli}@i2r.a-star.edu.sg

K. Nandakumar is with the IBM Research Collaboratory, Singapore, e-mail:
nkarthik@sg.ibm.com

feature encoding may fail in the case of extreme poses, where

some parts of the face are not visible in the recorded images.

To recognize the emotions in the presence of self-occlusion

and illumination variations, we combine the idea of sparse

representation with Extreme Learning Machine (ELM) to learn

a powerful classifier that can handle noisy and imperfect data.

Sparse representation [1], [2] is a powerful tool for recon-

struction, representation, and compression of high-dimensional

noisy data (such as images/videos and features derived from

them) due to its ability to uncover important information about

signals from the base elements or dictionary atoms. While

the sparse representation approach has the ability to enhance

noisy data using a dictionary learned from clean data, it is not

sufficient because our end goal is to correctly recognize the

facial emotion. In a sparse-representation-based classification

task, the desired dictionary should have both representational

ability and discriminative power. Since separating the classifier

training from dictionary learning may cause the learned dictio-

nary to be sub-optimal for the classification task, we propose

to jointly learn a dictionary (which may not be necessarily

over-complete) and a classification model. To the best of

our knowledge, this is the first attempt in the literature to

simultaneously learn the sparse representation of the signal

and train a non-linear classifier based on sparse codes.

The key contributions of this paper are as follows:

• A pose-invariant OF-based spatio-temporal descriptor,

which is able to robustly represent facial emotions even

when there are head movements while expressing an emo-

tion. The proposed descriptor is capable of characterizing

both the intensity and dynamics of facial emotions.

• A new classifier called Extreme Sparse Learning (ESL) is

obtained by adding the ELM error term to the objective

function of the conventional sparse representation to learn

a dictionary that is both discriminative and reconstructive.

This combined objective function (containing both linear

and non-linear terms) is solved using a novel approach

called Class Specific Matching Pursuit (CSMP). A kernel

extension of the above framework called Kernel ESL

(KESL) has also been developed.

II. RELATED WORK

Facial emotion is an important cue for assessment of hu-

man affective behavior. While various techniques have been

proposed for vision-based facial emotion recognition, majority

of them focus on emotion recognition based on static images

and ignore the temporal component of such a dynamic event
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[3], [4]. However, research on the human visual system has

demonstrated that better judgment of the facial emotion is

achieved when the temporal information is taken into account

[5]. Techniques that exploit the dynamics of facial emotion

include hidden Markov models [6], dynamic Bayesian net-

works [7], geometrical displacement [8], and dynamic texture

descriptors [9]. A comprehensive literature survey on facial

emotion recognition can be found in [10]. However, most

of the existing techniques are applicable only for laboratory-

controlled data and are not able to deal with natural settings.

The following sub-sections present a review of (a) pose-

invariant methods for feature extraction and (b) relevant works

on sparse representation based classification.

A. Pose-Invariant Feature Extraction

Although facial emotion recognition has been extensively

studied in the past, most of the existing feature extraction ap-

proaches require frontal facial images and even small changes

in facial pose may reduce their effectiveness. Only a few

researchers have attempted to solve the facial pose challenge.

In [11], a probabilistic method based on 2D geometrical

features was proposed for pose-invariant facial emotion recog-

nition. The locations of 39 landmarks were extracted from an

expressed facial image with arbitrary head pose. The coupled

scaled Gaussian process regression model was then applied

to normalize the facial pose. Although the model was trained

based on only a few discrete head poses, the method has ability

to deal with continuous head pose variations. But the method

requires accurate localization of facial landmarks, which is a

very challenging task for automatic emotion recognition.

A face representation scheme using the regional covariance

matrix was proposed in [12]. A dimensionality reduction step

is then applied to the resulting features based on discriminant

analysis. An effective approach was further proposed to find

the optimal discriminant vectors. The key advantage of this

method is that it does not need any facial alignment and feature

point localization, which are both challenging tasks. However,

this method is only applicable for facial emotion recognition

based on static images.

A technique called variable-intensity template was proposed

in [13] to obtain a person specific model for describing various

facial emotions. The variable intensity templates define how

the intensity of multiple facial points varies for an observed

emotion. This method is able to detect the facial emotion

and estimate the pose simultaneously within the framework

of particle filtering. While this method is simple and has low

computational cost, it is quite sensitive to errors in interest

point localization and misalignment.

Since the dynamics of facial emotion is critical for a reliable

facial emotion analysis, a variety of approaches focus on

motion and OF based feature extraction [14], [15]. However,

our proposed dynamic descriptor is different from existing

OF based representations in three aspects: (i) we propose a

new set of spatio-temporal features to capture the dynamic

information hidden in a flow field, (ii) the extracted features

are encoded effectively to achieve pose-invariance, and (iii)

only the statistics of the extracted features is retained as

discriminative information for further processing.

B. Sparse Representation based Classification

While learning a dictionary directly from the training data

usually leads to satisfactory reconstruction from sparse codes,

adding a specific discriminative criterion to dictionary training

can improve the discriminative ability of the method and lead

to better classification results. Recently, several methods have

been developed to train a classification oriented dictionary.

These methods can be divided into three broad categories.

• The first category of methods directly forces the dictio-

nary atoms to be discriminative and uses the reconstruc-

tion error for the final classification [16], [17].

• The second approach makes the sparse coefficients dis-

criminative by incorporating the classification error term

into the dictionary learning and indirectly propagates

the discrimination power to the overall dictionary [18]–

[20]. Most of the techniques proposed in the literature

for sparse representation based classification (including

the one proposed in this paper) fall under this second

category, where the classifier is simultaneously trained

along with Dictionary Learning (DL).

• The third category includes methods that apply the dis-

criminative criterion for coefficients, but the classifier is

not necessarily trained along with DL. They either use the

reconstruction error based classification or employ other

classifiers on the resulting sparse representation [1], [21].

An example of the first approach is the scheme proposed in

[16] for learning the class specific sub-dictionaries by incorpo-

rating a penalty term to make the sub-dictionaries incoherent.

Another example of this approach is the classification-oriented

DL model proposed in [17], which learns a class-specific

dictionary (named particularity) to capture the most discrim-

inative information of each category, and also a common

pattern dictionary (named commonality) that only contributes

the essential representation for all the data.

A supervised DL method that incorporates a logistic loss

function to the classical reconstructive term to simultaneously

learn a classifier was introduced in [18]. This work also

proposed a general formulation of supervised DL and an

efficient algorithm for solving the corresponding optimization

criterion. The Discriminative K-Singular Value Decomposition

(D-KSVD) method was proposed in [19] by introducing a

discriminative term into the conventional objective function of

K-SVD. The dictionary learned by this method was claimed

to be both reconstructive and discriminative. The Label Con-

sistent K-SVD (LCKSVD) algorithm proposed in [20] trains a

discriminative dictionary utilizing the class label information

of each dictionary atom. This algorithm incorporates sparse

coding error and classification error criterion into a unified

objective function, which is optimized using the K-SVD

algorithm. The LCKSVD algorithm efficiently learns an over-

complete, compact, and discriminative dictionary and a multi-

class linear classifier simultaneously. However, the method

cannot be directly extended to learn a non-linear classifier,

which is required when the data is not linearly separable.

A good example of third category is the Fisher Discrimina-

tive Dictionary Learning (FDDL) proposed in [21]. In this

method, dictionary learning based on Fisher discrimination
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criterion is used to improve the classification performance.

The method aims to learn a structured dictionary, where the

criterion imposed on sparse coding causes the sparse coeffi-

cients to have small within-class scatter but large between-

class variance. Another example of the third approach is

the scheme proposed in [1] for signal classification, which

combines a reconstructive approach with a discriminative term

using linear discriminant analysis and a predefined dictionary.

To the best of our knowledge, none of the existing methods

can learn a non-linear classifier in the context of simultaneous

sparse coding and classifier training. Learning such a non-

linear classifier is not only an interesting research topic, but

also very important in many real-world applications where the

observations are not probably linearly separable. This paper is

the first research work that explores how to simultaneously

learn the sparse representation of the signal and train a non-

linear classifier to be discriminative for sparse codes.

III. PROPOSED METHODOLOGY: FEATURE EXTRACTION

We propose a set of pose-invariant features derived based

on the optical flow (OF) extracted from the videos. To begin

with, we define a new face coordinate system on the image

plane as shown in Fig. 1(a). The algorithm1 proposed in [22]

is used for detecting the eyes and the nose tip. While the

nose tip is considered as the origin of the face coordinate

system, the reference vector connecting the nose tip to the

midpoint between the centres of the two eyes is considered as

the positive y-axis.

In order to compute the dynamic features, we start by com-

puting the OF of a given video based on both brightness and

gradient constancy assumption, combined with a discontinuity-

preserving spatio-temporal smoothness constraint2 [23]. Let

U(P, ti) represent the flow vector (u, v) at pixel location

P = (px, py) at time ti. Note that all the pixel locations in

the feature extraction stage are defined with respect to the

new face coordinate system.

A. Optical Flow Correction

Since we are only interested in the local motion of facial

components resulting from the act of expressing an emotion,

global motion of the head is subtracted from the flow vector.

Uemo = Utot − Uhead, (1)

where Uemo is the emotion-related OF that we intend to

measure, Utot is the overall OF, and Uhead is the OF rep-

resenting the global head movement. Since head movement

does not necessarily imply change in pose, the above optical

flow correction only has a limited impact on pose invariance.

To measure Uhead, we divide the face into a few regions and

compute the average flow vector in each region. If the angle

difference between the flow vector at individual pixels and the

corresponding average flow vector of the region is less than a

1The source code for nose point detection is available at: http://
humansensing.cs.cmu.edu/intraface/download.html

2The source code for OF extraction is available at: http://www.mathworks.
com/matlabcentral/fileexchange/17500-high-accuracy-optical-flow

Fig. 1. Optical flow correction for head movement. (a) and (b) are two
consecutive frames in a video; (a) also shows the proposed face coordinate
system, where the nose tip is considered as the origin and the reference vector
connects the nose tip to the midpoint between the centres of the two eyes;
(c) total optical flow (Utot) illustrated in blue and the head movement optical
flow (Uhead) indicated in green; (d) emotion related optical flow (Uemo)
illustrated in red; (e) Utot of mouth region; and (f) Uemo of mouth region.

threshold for a majority of the pixels, the average flow vector

is considered as Uhead for each pixel in that region. Otherwise,

Uhead is set to zero for all the pixels in that region. Note that

in all the subsequent processing steps, U(P, ti) indicates only

the emotion-related OF (i.e, Uemo) and not the overall OF.

Fig. 1 shows an example of head movement correction using

the above method. As shown in Figures 1(a) and 1(b), the

emotion does not change between the two successive frames,

but there is a slight head movement. Fig. 1(c) shows the

region-wise estimate for Uhead. For some regions, Uhead is not

shown because majority of the movements in these regions are

not coherent (Uhead = 0). For better illustration, we zoomed

out the OF of the mouth region before and after correction

in Figures 1(e-f). Fig. 1(f) shows that the emotion-related OF

(Uemo) is almost zero in the mouth region.

B. Spatio-Temporal Features

Four pose-invariant features are proposed for encoding the

motion information of facial components. The first feature is

the divergence of the flow field, which measures the amount

of local expansion or contraction of the facial muscles.

Div(U(P, ti)) =
∂u(P, ti)

∂x
+

∂v(P, ti)

∂y
, (2)

where
∂u(P,ti)

∂x
and

∂v(P,ti)
∂y

are the partial derivatives of u
and v components of the OF along the x and y directions,

respectively. We used a simple Prewitt operator to compute

the gradient of the OF.

The second feature captures the local spin around the axis

perpendicular to the OF plane and is referred to as Curl. It
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(a) (b)

Fig. 2. (a)Illustration of projection feature (Proj) for sad (left) and happy
(right) emotions; and (b) illustration of rotation feature (Rot) for happy (left)
and anger (right) emotions.

is useful to measure the dynamics of the local circular motion

of the facial components.

Curl(U(P, ti)) =
∂v(P, ti)

∂x
−

∂u(P, ti)

∂y
, (3)

where
∂v(P,ti)

∂x
and

∂u(P,ti)
∂y

are the partial derivatives of v
and u components of the OF along the x and y directions,

respectively.

The third feature is the scalar projection of the OF vector U

onto the unit position vector P̂, where P̂ = P/‖P‖ = (p̂x, p̂y).

Proj(U(P, ti)) = U · P̂ = up̂x + vp̂y. (4)

This Proj feature captures the amount of expansion or con-

traction of each point with respect to the nose point. For

example, the “happy” and “sad” emotions can be distinguished

by this feature clearly. Fig. 2(a) shows how the sign and

magnitude of the Proj feature changes for a sample lip point

(the magnitude is exaggerated for better illustration) depending

on the facial emotion.

The rotation (Rot) feature is the defined as the cross product

of the unit position vector P̂ and OF vector U as follows:

Rot(U(P, ti)) = P̂ × U = vp̂x − up̂y. (5)

Since both P̂ and U lie on the image plane, their cross

product is a vector perpendicular to the image (x-y) plane.

For simplicity, we consider only the coefficient of this cross-

product vector and treat it as a scalar quantity. The Rot feature

measures the amount of clockwise or anti-clockwise rotation

of each facial point movement with respect to the position

vector. Fig. 2(b) illustrates the usefulness of this feature in

distinguishing between “happy” and “anger” emotions. As

shown in this figure, the sign and magnitude of Rot feature are

different for a sample lip point (the magnitude is exaggerated

for better illustration) depending on the facial emotion.

C. Spatio Temporal Descriptor Construction

A spatio-temporal descriptor is obtained by concatenating

the spatio-temporal features extracted at each local region in

the video. Fig. 3 illustrates the construction of the spatio-

temporal descriptor. The local regions are determined by

dividing the volumetric data into M 3D blocks (could be
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Fig. 3. Spatio-temporal descriptor construction. (a) Volume data is divided
into a number of 3D blocks (Bm) and the final descriptor (y) is a concatenation
of features from all the blocks. (b) Each block is further divided into number of
3D cells (Cn) and the feature vector of each block (fBm

) is a concatenation
of all the cell histograms within that block. (c) Weighted and un-weighted
histograms are calculated for each cell based on the four spatio-temporal
features and concatenated to obtain the cell histogram.

overlapping or non-overlapping) as shown in Fig. 3a. To

preserve the geometric information of descriptors, each block

is further divided into N 3D cells as illustrated in Fig. 3b.

Two types of histograms, namely, weighted histogram (WH)

and un-weighted histogram (UWH), are used to aggregate the

features in each cell. The weighted histogram characterizes the

magnitude of emotion, i.e., it differentiates a subtle emotion

from an exaggerated emotion. Each WH consists of two bins

- positive and negative bins, and the magnitude of the asso-

ciated features is used to vote for each bin. The un-weighted

histogram ignores the magnitude of the emotion and attempts

to characterize its dynamics. It involves three bins related to

positive, negative, and zero features. Equal vote is assigned

for each bin, which means that the total number of positive,

negative, and zero features are counted. The UWH minimizes

the effect of changes in the emotion speed3 by considering

only the sign (positive, negative, or zero) of the features and

ignoring their magnitude. Thus, the two histograms (WH and

UWH) encode complementary information that can potentially

improve the classification performance.

WH and UWH are computed for each cell based on the

four spatio-temporal features (Div, Curl, Proj, and Rot) de-

scribed earlier. The concatenation of all these eight histograms

is considered as the final descriptor of the corresponding

cell, hCn
, n = 1, 2, · · · , N . The dimensionality of each cell

descriptor is 20 as shown in Fig. 3c. The concatenation of

all the cell descriptors gives the block descriptor, fBm
, m =

1, 2, · · · ,M . The concatenation of all the block descriptors

results in the final spatio-temporal descriptor (y) representing

the given video sequence. The dimensionality of the spatio-

temporal descriptor y is 20MN .

IV. PROPOSED METHODOLOGY: RECOGNITION

FRAMEWORK

In this section, we propose a dictionary-based classification

method called Extreme Sparse Learning (ESL) to recognize

3The emotion speed is inversely proportional to time lapse (or number of
frames) between the start of the expression and the peak expression.
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facial emotions in real-world natural situations. The pro-

posed approach combines the discriminative power of Extreme

Learning Machine (ELM) with the reconstruction capability

of sparse representation. The key motivation behind the use

of sparse representation is its inherent ability to reconstruct

the original signals from noisy and imperfect samples (in

this context, imperfect data may refer to cases with large

pose variations, occlusion, and illumination changes) based

on a learned dictionary [2]. By simultaneously learning a

dictionary for sparse representation and a classification model,

the proposed ESL algorithm is able to implicitly handle illumi-

nation and occlusion changes. Before introducing the ESL, we

briefly present the concepts underlying sparse representation

and ELM in the following sub-sections.

A. Sparse Representation and Dictionary Learning

The basic assumption underlying sparse representation is

that natural signals or images can be efficiently approximated

by linear combination of a few elements (so called atoms) of

a dictionary. One of the critical issues in sparse representation

is the choice of the dictionary. The dictionary can be obtained

by either applying predefined transforms to the data (e.g.,

Fourier transforms) or directly learning from training data.

Since Dictionary Learning (DL) directly from the training data

usually leads to a satisfactory reconstruction, we applied this

technique in our proposed ESL algorithm.

Let Y be a set of S input signals of dimension N , i.e. Y =
[y1y2 · · · yS ] ∈ R

N×S . Learning a reconstructive dictionary

for sparse representation of Y can be accomplished by solving

the following problem:

min
X,D

(
‖Y − DX‖22

)
s.t. ‖xi‖0 ≤ N0, (6)

where D = [d1d2 · · · dM] ∈ R
N×M is the learned over-

complete dictionary, X = [x1x2 · · · xS ] ∈ R
M×S is the sparse

code matrix of the input signals, N0 is the sparsity constraint,

and ‖ · ‖0 is the ℓ0 pseudo norm that counts the number of

non-zero elements. The K-SVD algorithm [24] is an efficient

technique for solving the optimization problem in (6).

B. Extreme Learning Machine (ELM)

ELM is considered to be a state-of-the-art classification

technique, especially for multi-class classification problems.

ELM requires fewer optimization constraints in comparison

to Support Vector Machines (SVM), which results in simple

implementation, fast learning, and better generalization perfor-

mance [25]. Therefore, ELM is a good choice for the problem

of facial emotion recognition. We believe that combining ELM

with sparse representation and dictionary learning can lead to

further improvement in recognition performance.

The objective function of ELM can be summarized as:

min
β

(
‖H(X)β − Z‖22 + ‖β‖22

)
, (7)

where X denotes the set of training samples, H is the hidden

layer output matrix (H(X) ∈ R
S×L, where L is the number

of nodes in the hidden layer), β is the output weight vector

of length L, and Z is the vector of class labels of length S .

The minimal norm least squares method can be used to solve

the above optimization problem, whose solution is represented

as follows:

when S < L : β = H†Z = HT
(
I
c
+HHT

)−1
Z, (8)

when S > L : β = H†Z =
(
I
c
+HTH

)−1
HT Z,

where H† is the Moore-Penrose generalized inverse of matrix

H , HT is the transpose of the matrix H , I is the identity

matrix, and c is a the user-specified parameter added to the

formulation for better generalization performance [25].

It has been shown in the literature that a wide variety

of feature mappings including random hidden nodes and

kernels can be utilized for ELM [25]. For unknown feature

mappings, kernels can be applied interchangeably, resulting in

the Kernel ELM (KELM) approach. We conducted preliminary

experiments to evaluate various types of kernels and activation

functions. Based on the results of these experiments, we chose

a sigmoid activation function for the hidden nodes of the ELM

and a polynomial kernel for KELM.

C. Extreme Sparse Learning (ESL)

Separating the classifier training from dictionary learning

may lead to a scenario where the learned dictionary is not

optimal for the classification task. Therefore, we propose to

jointly learn the dictionary and the classification model for

better performance. Learning a discriminative dictionary for

sparse representation of Y can be accomplished by solving

the following optimization problem:

min
X,D,β

Et(X,D, β,Y,Z), where

Et(X,D, β,Y,Z) = (Er + γ1Ec + γ2Es),

Er(X,D,Y) = ‖Y − DX‖22,

Ec(X, β,Y,Z) = ‖H(X)β − Z‖22 + ‖β‖22,

Es(X) = ‖X‖1. (9)

In the above equation, Et represents the overall objective

function, Er measures the reconstruction error, Ec represents

the ELM optimization constraints, and Es represents the spar-

sity constraint. The notation ‖ · ‖1 indicates the ℓ1 norm

that simply sums up the absolute value of the elements.

Note that formulating the sparsity constraint using ℓ1 norm

simplifies the optimization problem without affecting the

sparse representation significantly [26]. The parameters γ1
and γ2 are regularization terms, which control the relative

contributions of reconstruction error, classification error, and

sparsity constraints to the final objective function.

The framework in (9) is referred to as Extreme Sparse

Learning (ESL). When kernels are incorporated in the above

framework, we refer to it as Kernel ESL (KESL). Fig. 4 shows

a high-level outline of the proposed ESL recognition frame-

work. The associated training and classification algorithms are

presented in Algorithm 1 and Algorithm 2, respectively.
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Fig. 4. High-level outline of the proposed ESL framework.

As shown in Fig. 4, there are three main steps involved in

ESL training: supervised sparse coding, ELM output weight

update, and dictionary optimization. The supervised sparse

coding step learns the sparse code matrix X corresponding

to the input signals Y based on the given dictionary D and

the ELM output weight vector β. Based on this estimated

sparse code matrix, the ELM output weight vector β is updated

in the second step. These two steps are repeated until the

first stopping criterion is met. The first stopping criterion is

triggered when the value (e1) of the objective function Et
falls below a threshold (ǫ1) or when the maximum number of

iterations (η1) is reached. The output of this inner loop is the

estimated sparse code matrix X and the updated ELM weight

vector β. Finally, the dictionary atoms are updated based on

the sparse code matrix X to obtain the updated dictionary

D. All three steps are iteratively repeated, until the second

stopping criterion is met. The second stopping criterion is

triggered when the value (e2) of the objective function Et
falls below a threshold (ǫ2) or when the maximum number

of iterations (η2) is reached. The output of ESL training is the

learned dictionary D and the ELM output weight β.

For classification, the sparse coefficient vector x of the given

test sample y is first estimated using the learned dictionary D.

The sparse vector x is then classified by ELM with output

weight vector β as shown in Algorithm 2.

1) Supervised Sparse Coding: Class Specific Matching Pur-

suit (CSMP): The most critical step in the proposed ESL

training algorithm is supervised sparse coding, which estimates

a sparse code matrix X that simultaneously minimizes the

reconstruction error based on the given dictionary D and the

classification error based on the given ELM output weight

vector β. In this section, we propose a novel algorithm

called Class Specific Matching Pursuit (CSMP) to perform

supervised sparse coding.

The objective of supervised sparse coding can be summa-

rized by the following equation:

min
X

Et(·,D, β,Y,Z) (10)

Although different methods have been suggested in the lit-

erature for supervised sparse coding [19], [20], [27], [28],

Algorithm 1 Training Algorithm for Extreme Sparse Learning

Input: Training set Y, vector of class labels Z corresponding to Y,
regularization terms γ1 and γ2, stopping criterion for inner loop
(ǫ1, η1), and stopping criterion for outer loop (ǫ2, η2)
Output: Dictionary D and ELM output weight vector β

Initialize D← D
(0), β ← β(0), i2 ← 0

repeat
i1 ← 0

repeat
i1 ← i1 + 1

X ← min
X
Et(·,D, β,Y,Z)

β ← min
β
Ec(X, ·,Y,Z)

e1 ← Et(X,D, β,Y,Z)

until (e1 < ǫ1) OR (i1 > η1)

i2 ← i2 + 1

D← min
D
Er(X, ·,Y)

e2 ← Et(X,D, β,Y,Z)

until (e2 < ǫ2) OR (i2 > η2)

return D and β

Algorithm 2 Classification Algorithm for Extreme Sparse

Learning

Input: Test sample y, learned dictionary D, ELM output weight
vector β, total number of classes ω, and regularization term γ
Output: Class label z of test sample

x← min
x

(
‖y− Dx‖22 + γ‖x‖1

)

z ← min
z
|H(x)β − z|, z ∈ {1, 2, · · · , ω}

return z

none of them can be applied for (10) directly due to the

presence of the non-linear term H(X). In this paper, we have

developed an algorithm for supervised sparse coding inspired

by the simultaneous sparse approximation algorithm [1] and

Simultaneous Orthogonal Matching Pursuit (S-OMP) [27].

While S-OMP seeks to find a set of dictionary atoms that

best represents all the signals irrespective of their class labels,

the proposed method attempts to find a fixed set of atoms that

can optimize the objective function in (10) for all signals that

belong to the same class. Therefore, the proposed method is

referred to as Class Specific Matching Pursuit (CSMP).

Algorithm 3 shows the steps involved in the CSMP method.

The basic idea underlying the matching pursuit process is to

sequentially find atoms in the dictionary and the corresponding

sparse coefficients that minimize the objective function Et
defined in (9) and (10). This process is repeated for each class.

More specifically, during each iteration j of the while loop in

Algorithm 3, one atom (with index λj) is chosen from the list

of unselected atoms (denoted by Ωj) and added to the selected

index list (denoted by Λj). This selection is done based on the

value of the total error Et, which is a weighted combination of

the reconstruction error Er, the classification error Ec, and the

sparsity constraint Es. The innermost for loop in Algorithm

3 iterates through all the unselected atoms and computes the

value of Et based on each one of them. The sparse code matrix

(X̂) is then updated based on the subset of atoms given by
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Λj and the new value (e3) of the objective function Et is

computed. The above iterative process is repeated until all the

atoms in the dictionary are exhausted or e3 becomes less than

the stopping threshold ǫ3.

Algorithm 3 Class Specific Matching Pursuit

Input: Training set Y, vector of class labels Z corresponding to
Y, total number of classes ω, number of dictionary atoms M,
regularization terms γ1 and γ2, stopping threshold ǫ3, dictionary
D, ELM output weight vector β, and sparse code matrix from

previous iteration X
(old)

Output: Updated sparse code matrix X
(new)

Notation: Let AΘ denote a sub-matrix containing only the columns
of matrix A whose indices are included in set Θ, A∗,q denote the
q-th column of A, Aq,∗ denote the q-th row of A, A

† denote the
pseudo-inverse of matrix A, and φ is the empty set

Initialize X
(new) ← X

(old)

for i = 1 to ω do
Θi ← Indices of all training samples that belong to class i
Si ← number of elements in the set Θi

Zi ← Si-dimensional vector with all elements taking value i

Initialize X̂ ← 0, X̂ ∈ R
M×Si

Initialize Λ0 ← φ, Ω1 ← {1, 2, · · · ,M}, j ← 1
while j ≤M do

m← number of elements in the set Ωj

∆← DΩj
,∆ ∈ R

N×m

Γ← ∆†
YΘi

,Γ ∈ R
m×Si

for k = 1 to m do
Er ← ‖YΘi

−∆∗,kΓk,∗‖
2
2

Es ← ‖Γk,∗‖1
κ← k-th element of set Ωj

X̃ ← X̂

X̃κ,∗ ← Γk,∗

Ec ← ELM classification error for class i based on X̃ and
β
Et(k)← Er + γ1Ec + γ2Es

end for
λj ← Ωj(argmink Et(.))
Λj ← Λj−1 ∪ λj

Ωj+1 ← Ωj \ λj

X̂Λj
← (DΛj

)†YΘi

e3 ← Et(X̂,D, β,YΘi
,Zi)

if (e3 < ǫ3) then
break while loop

end if
j ← j + 1

end while
X

(new)
Θi

← X̂

end for
return X

(new)

2) Dictionary Update Stage: The objective of this step is to

find the dictionary D that minimizes the reconstruction error

of signal Y estimated by the sparse code matrix X as follows:

min
D

Er(X, ·,Y). (11)

We used the classical “Projected Gradient Descent” method

[18] to solve this optimization problem. Given a dictionary

D
(old) from the previous iteration, it is updated as follows:

D
(new) = H(D(old) − τ∇Er), (12)

Fig. 5. Sample frames of a single subject from our own collected data. The top
row shows some examples of pose variation, the middle row depicts occlusion
examples, and the bottom row includes illumination variations.

where H is a simple normalizing function that forces each

dictionary atom to be of unit norm, τ is the step size, ∇Er =
2(D(old)

X − Y)XT , and X
T is the transpose of matrix X. We

follow the Barzilai-Borwein technique to calculate the optimal

step size iteratively [29].

Since our final objective is not perfect reconstruction, we

have not used an over-complete dictionary. Indeed, over-

completeness is not always necessary for the classification task

as long as discriminative features are captured in the sparse

coding procedure [18].

V. DATABASE DESCRIPTION & PRE-PROCESSING

We have evaluated the performance of the proposed spatio-

temporal descriptor and ESL algorithm on four databases for

the facial emotion recognition task.

A. Cohn-Kanade (CK+) Database

The CK+ dataset [30] contains acted emotional data cap-

tured under controlled environmental conditions. It consists of

309 video sequences, where each sequence is labeled with one

of the six basic emotions (joy, surprise, anger, fear, disgust,

and sadness). Since the location of nose point is provided in

the database, preprocessing involves only face alignment based

on constant distance between the two eyes.

B. Extended Cohn-Kanade (ECK+) Database

To evaluate the robustness of our proposed approach un-

der difficult environmental conditions, the CK+ database is

appended with data collected in our lab, which includes 42

samples of head pose variation, 15 samples of illumination

changes, and 18 samples of facial occlusion. Three subjects

were asked to show one emotion (anger, happiness, sadness,

and surprise) from neutral to apex. Some sample frames from

our database are depicted in Fig. 5. The localization of nose

points and face cropping have been performed manually.

C. AVEC2011 Database

The Audio Visual Emotion Challenge (AVEC 2011)

database [31] contains spontaneous emotional states in nat-

uralistic situations. It consists of 95 videos recorded at 49.979
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frames per second. Binary labels along the four affective

dimensions (activation, expectation, power and valence) are

provided for each video frame. The data is divided into 3

subsets: training, development, and test, containing 31, 32,

and 11 sequences, respectively. Due to processor and memory

constraints, we sample the videos in the training and develop-

ment sets as follows. We partition each video into segments

containing 60 frames with 20% overlap between the segments.

Only 10 frames per segment are selected for processing (by

downsampling at a rate of 6), resulting in 1550 frames for each

video. Information about the position of the face and eyes

are provided in the database. Thus, the preprocessing stage

includes only normalization of the face to achieve a constant

distance between the two eyes.

D. EmotiW Database

The Emotion Recognition in the Wild (EmotiW) dataset

[32] contains realistic challenges like pose variations, various

illumination conditions, occlusion, and spontaneous emotions.

EmotiW database is a collection of short video clips collected

from some popular movies, where the actor is expressing

one of seven emotions (anger, disgust, fear, happy, neutral,

sad, and surprise) under near real-world conditions. EmotiW

consists of three sets for training, validation, and testing

including 380, 396, and 312 video clips, respectively. We use

the faces detected by a simple eye based alignment method as

provided by the organizers of EmotiW2013. This database is

challenging due to the following reasons:

• Due to large pose variations, the face detection failure

rate is quite high.

• Many video clips consist of more than one human subject,

making it difficult to isolate the subject of interest.

• There is a wide difference in the way that the same

emotion is expressed by the various subjects. Some of

emotions are very confusing and hard even for a human

expert to identify correctly.

VI. RESULTS AND DISCUSSION

We systematically evaluate each component of the proposed

facial emotion recognition framework. Note that the proposed

algorithms were implemented using Matlab 7.11.0 running on

a Core i5 CPU (2.8 GHz with 16 GB RAM).

A. Parameter setting and initialization

For OF extraction, we use the default setting of parameters

in [23] as it was claimed that the algorithm is insensitive to

parameter variations. We also observed that the number of

regions (equivalently, the block size used for computing the av-

erage flow vector) used in optical flow correction does not have

a significant impact on the final classification performance.

We carried out a preliminary experiment to determine the

numbers of blocks and cells to be used in feature extraction

and evaluated its effect on feature dimension and classification

performance. Based on these results, the volume data is parti-

tioned into 100 blocks (10×10×1) and 4 cells (2×2×1) per

block, because this setting achieves the highest classification

accuracy.

TABLE I
PARAMETER SETTING FOR ESL AND KESL.

Databases

ECK+ AVEC 2011 EmotiW
Method ESL KESL ESL KESL ESL KESL

No. of
atoms (M)

100 100 150 150 200 200

γ1 2 1.5 1 2 2 1

γ2 0.1 0.05 0.05 0.5 0.05 0.01

c 16 1 100 8 16 8

d - 0.5 - 0.25 - 0.125

n - 8 - 8 - 6

For the classification part, we performed a greedy search to

select the ELM parameter c (refer to (8)), kernel parameters,

and regularization parameters γ1 and γ2 (refer to (9)). We

used the polynomial kernel (K(a, b) = (a.b + d)n) for all

experiments using KESL, SVM, and KELM. The optimal

values of all the classification parameters for the different

databases are summarized in Table I.

The sensitivity of the proposed algorithm with respect to

the regularization parameters γ1 and γ2 was analyzed on

the ECK+ database. Our experiments indicate that the best

performance is obtained by setting γ1 > 1 > γ2. In other

words, the best performance is obtained when the classification

error term (with weight γ1) is assigned the highest priority, the

reconstruction error term is assigned the second priority, and

the sparsity constraint (with weight γ2) is assigned the least

priority. This result is intuitive because we are primarily inter-

ested in classification accuracy for this application. However,

for other applications such as noise reduction, the priorities

may change. Therefore, the regularization terms should be set

according to the application.

We need to initialize the dictionary D and the ELM output

weight β in Algorithm 1. There are some suggestions for

dictionary initialization in the literature [20], [21]. In our

experiments, a sub-matrix of Y containing randomly selected

input samples from all the classes is treated as the initial

D
(0). To obtain β(0), we first compute the initial sparse matrix

X = (D(0))†Y , where † represents the pseudo-inverse, and

then apply (8) to get the initial ELM output weight.

One important parameter is the number of dictionary atoms

(M). If this parameter is too small, the dictionary will not

be very representative. On the other hand, the execution time

would be prohibitively large for a large number of dictionary

atoms. In fact, the number of dictionary atoms should be set

depending on the characteristics of the database. If the same

emotion is expressed differently by different subjects (as in

the EmotiW database), the number of dictionary atoms should

be on the higher side. However, if the subjects show the same

emotion in a similar fashion (as in the CK+ database), the

number of dictionary atoms need not be large. Fig. 6 plots

the recognition rates of ESL as a function of the number of

dictionary atoms for different databases. We can observe that

the recognition rate increases with the number of dictionary

atoms only up to a point (100 atoms for ECK+, 150 atoms

for AVEC2011, and 200 atoms for EmotiW in Fig. 6).
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Fig. 6. Recognition rate of ESL as a function of the number of dictionary
atoms.

TABLE II
EFFECT OF DIFFERENT COMBINATIONS OF FEATURES ON THE

CLASSIFICATION ACCURACY. THESE RESULTS ARE OBTAINED BASED ON

THE CK+ DATABASE USING SVM AS THE CLASSIFIER.

Feature Combination Recognition rate (%)

Div (WH+UWH) 92.42

Curl (WH+UWH) 91.05

Proj (WH+UWH) 84.75

Rot (WH+UWH) 88.57

Div+Curl+Proj (WH+UWH) 94.83

Div+Curl+Rot: (WH+UWH) 93.38

Div+Proj+Rot: (WH+UWH) 92.37

Curl+Proj+Rot: (WH+UWH) 92.95

All 4 features (WH only) 90.66

All 4 features (UWH only) 91.91

All 4 features (WH+UWH) 95.33

B. Performance of the Spatio-Temporal Descriptor

To evaluate the accuracy of the proposed spatio-temporal de-

scriptor for the facial emotion recognition task, we conducted

a series of experiments on the CK+ database. In all these

experiments, support vector machine (SVM) with polynomial

kernel is used as the classifier.

First, we evaluated the performance based on the two types

of histograms (WH and UWH) individually. The results in

the last three rows of Table II clearly show that both WH

and UWH encode complementary information, which can

potentially improve the classification performance. Secondly,

we evaluated the performance based on each feature (Div,

Curl, Proj, and Rot)) individually. As shown in Table II, the

features contain complementary information and an ensemble

of all these features gives better classification performance

compared to any subset of these four features.

Finally, we compared the performance of the proposed

spatio-temporal descriptor to two other successful dynamic

descriptors in this field: Local Binary Pattern on Three Orthog-

onal Planes (LBP-TOP) [9] and Local Phase Quantization on

Three Orthogonal Planes (LPQ-TOP) [33]. The source codes

of these methods are publicly available4. We have attempted

to set the parameters of each method to get the best result.

4http://www.ee.oulu.fi/∼gyzhao/LBP Book.htm

Experiments were conducted using 5-fold cross-validation and

the average results are reported. The execution time was also

measured for the extraction of descriptors from a volume data

of size (100×100×10). As shown in Table III, the recognition

rate of the proposed descriptor is significantly better than the

other two descriptors, but at the cost of increased execution

time. The dimensionality of the proposed descriptor is also

less compared to the other two methods.

TABLE III
COMPARISON OF THE PROPOSED SPATIO-TEMPORAL DESCRIPTOR TO

OTHER DYNAMIC DESCRIPTORS. THESE RESULTS ARE OBTAINED BASED

ON THE CK+ DATABASE USING SVM AS THE CLASSIFIER.

Method
No. of

Features

Recognition

rate (%)

Time complexity

(Sec)

LBP-TOP [9] 17700 89.31 4.26

LPQ-TOP [33] 76800 89.17 2.19

Proposed
Descriptor

8000 94.48 13.12

To illustrate the robustness of the descriptor to facial pose

variations, we show the features extracted from the lip segment

of both frontal and non-frontal faces for happy and surprise

emotions in Fig. 7. As we can observe in this figure, the feature

histograms are similar across pose changes, but dissimilar

for different emotions. For instance, if we compare the Curl

feature in the weighted histograms corresponding to the happy

emotion (shown in Fig. 7(a)), the negative bin has a higher

weight than the positive one for both frontal face and non-

frontal faces. This is in contrast to the Curl feature extracted

from surprise emotion (shown in Fig. 7(b)), where the positive

bin has a higher weight compared to negative bin across both

the poses. Similar phenomenon was also observed in the case

of other features from different emotions, which indicates

that the proposed features indeed have some view invariance

properties.

C. Performance of ESL

Table IV compares the performance of the proposed ESL

and KESL classifiers to other classifiers in term of recognition

accuracy and time complexity of training and testing phases

individually. These results are based on 5-fold cross-validation

using the proposed spatio-temporal descriptor as the feature

vector for all the classifiers. Apart from standard classifiers

such as SVM, ELM and KELM, we have also implemented

the Sparse ELM (SELM) method, which performs sparse

coding and classification individually in the training phase.

Note that the learned dictionary and output weights of SELM

will be completely different from those obtained through ESL,

which simultaneously optimizes the sparse representation and

classifier weights as defined in (9).

The results in Table IV show that ESL and KESL classifiers

typically have higher recognition rates compared to ELM

and SELM classifiers. The KESL algorithm results in the

highest classification accuracy among all the methods, but this

improvement comes at the cost of increased time complexity.

While a number of researchers have reported the perfor-

mance of their facial emotion recognition algorithms on the
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Fig. 7. Pose-invariant descriptor for happy and surprise emotions. (a) Features extracted from the lip segment from frontal (left) and non-frontal (right) faces
with happy emotion. (b) Features extracted from the lip segment from frontal (left) and non-frontal (right) faces with surprise emotion.

TABLE IV
COMPARISON OF THE PROPOSED ESL APPROACH WITH OTHER

STANDARD CLASSIFIERS ON ALL DATABASES.

Method Recognition rate (%) Time

ECK+ AVEC 2011 EmotiW complexity (Sec)

Val Test Val Test Train Test

SVM 90.60 62.61 56.52 27.42 22.75 0.96 0.14

ELM 81.25 59.04 52.48 23.18 19.23 0.26 0.04

SELM 86.19 60.14 54.18 24.64 26.93 110.55 7.42

ESL 90.36 66.73 59.21 29.85 27.88 1403.51 5.06

KELM 90.12 60.79 55.19 27.88 23.72 0.06 0.04

KESL 92.74 65.92 61.82 31.34 29.81 1629.20 5.02

CK+ benchmark database, these results are not directly com-

parable to those reported in Table IV. This is due to the large

differences in the experimental setup (e.g., pre-processing

steps, feature extraction method, number of sequences used

for training and evaluation, etc.). Therefore, to obtain a mean-

ingful comparison of the proposed ESL classifier with other

state-of-the-art classifiers that involve sparse coding, we have

evaluated some of the successful techniques reported in the

literature using a common experimental setup. Though the

source codes for these methods are publicly available5, they

have not been written on the same platform. Therefore, we do

not compare the computational cost of these methods and limit

ourselves to comparing them only in terms of classification

accuracy. Note that we have optimized the parameters of each

method via greedy search. From Table V, we observe that the

recognition rates of the proposed method are quite comparable

to the state-of-the-art methods.

Tables VI and VII summarize the accuracy of the proposed

emotion recognition system (using the novel spatio-temporal

5SRC:http://www.mathworks.com/matlabcentral/fileexchange/
35813-sparse-representations-classifier
DKSVD, LCKSVD: http://www.umiacs.umd.edu/∼zhuolin/projectlcksvd.html
FDDL: http://www4.comp.polyu.edu.hk/∼cslzhang/code.htm

TABLE V
COMPARISON OF THE PROPOSED ESL APPROACH WITH OTHER

STATE-OF-THE-ART CLASSIFIERS BASED ON SPARSE CODING. THESE

RESULTS ARE OBTAINED ON THE ECK+ DATABASE USING THE

PROPOSED SPATIO-TEMPORAL DESCRIPTOR AND A COMMON

EXPERIMENTAL SETUP.

Method
SRC
[2]

DKSVD
[19]

LCKSVD
[20]

FDDL
[21]

ESL KESL

Recognition

rate (%)
89.00 90.11 90.38 91.93 90.36 92.74

descriptor and KESL classifier) to other reported results on

the AVEC 2011 and EmotiW databases, respectively. Note

that we have included the results of only the vision part and

ignore the results that require the audio modality. The results in

Tables VI and VII show that the performance of the proposed

emotion recognition system is quite comparable to the best

results achieved in both these competitions.

TABLE VI
PERFORMANCE COMPARISON ON THE TEST SET OF AVEC 2011

DATABASE.

Method
Baseline

[31] [34] [35] [36]
Proposed
system

Recognition rate (%) 46.2 61.0 55.9 51.8 61.8

Unlike the CK+ database, the AVEC 2011 and EmotiW

TABLE VII
PERFORMANCE COMPARISON ON THE TEST SET OF EMOTIW DATABASE.

Method
Baseline

[32] [37] [38] [39] [40] [41]
Proposed
system

Recognition

rate (%)
22.75 24.04 24.68 24.68 35.58 29.81 29.81
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databases are representative of real-world applications because

they contain samples with natural or spontaneous emotions

that do not exhibit sharp facial changes from the start to apex

of an expression. This is one of the main reasons for the huge

difference between the recognition rates reported in the fourth

(AVEC 2011 - Test) and sixth (EmotiW - Test) columns of

Table IV compared to those reported in the second column

(ECK+) of Table IV. However, the proposed system is able

to achieve recognition rates that are comparable to the state-

of-the-art performance reported on these two databases. This

shows that the proposed emotion recognition system is indeed

capable of recognizing natural emotions with subtle changes

in facial expression, although there is a scope for significant

improvement in the recognition accuracy in such scenarios.

A possible limitation of the proposed emotion recognition

system is the need for database-specific tuning of parameters

as described in section VI-A. However, it must be emphasized

that this phenomenon is not unique to the proposed system,

but is common to most pattern recognition systems. In fact, we

have performed database-specific parameter tuning via greedy

search for all the competing systems reported in Tables III,

IV, and V. In the case of AVEC 2011 and EmotiW databases,

the primary purpose of having a validation or development

subset is to allow tuning of parameters before the model is

evaluated on the test set. Thus, the comparison of results in

Tables VI and VII is fair, with all the competing approaches

being allowed the luxury of parameter tuning.

Another approach to measure the sensitivity to various

parameters is to evaluate the generalization performance on

unseen test data. While the results in Tables IV-VII demon-

strate that the proposed ESL and KESL algorithms have

good generalization performance, we observe that the accuracy

improvement is not very significant in most cases. For example

on the ECK+ database, the accuracy of KESL is only ≈ 2%

better than the competing approaches. However, we believe

that the advantage of the proposed algorithms can be readily

observed if we train the classifier on clean data and test it

using samples with large intra-class variations (i.e., the training

set is no longer representative of the test set). To investigate

this claim, we train the ESL and KESL classifiers on the

original CK+ data and then test it using our own collected

samples (occlusion, pose variation, and illumination changes).

Fig. 8 illustrates the results of this experiment, which clearly

demonstrates the advantage of the ESL and KESL methods

over other classifiers in terms of generalization performance.

The reason for this better generalization performance is that

ESL algorithms do not directly use the noisy input samples,

but only the sparse coefficients based on a learned dictionary.

Thus, ESL algorithms are indeed more robust to noisy and

imperfect test data, but this comes at the cost of longer

execution times during training and testing.

D. Analysis of Failure Cases

We have analyzed the errors on the EmotiW database

and identified three main sources of failure of the proposed

emotion recognition system.
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Fig. 8. Comparison of accuracy when the different classifiers are trained on
the original CK+ database and applied to data collected by us, which includes
occlusion, head posed variations, and illumination changes.
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Fig. 9. Sources of failure of the proposed emotion recognition system. (a)
Failure of face detector to detect the whole face; (b) failure to detect all faces
in an emotion sequence, leading to a scenario where the detected faces do not
capture the dynamics of the emotion; (c) wrong reference point localization.
The detected nose points are represented as red dots.

1) Failure of face detector and reference point detection:

The first and primary source of error is caused by the failure

of the face detector to correctly detect the faces. For example,

on the validation set of the EmotiW database, no face was

detected for 60 out of the 389 sequences, which accounts for

a 15.42% absolute reduction in the final recognition rate.

False detection of non-faces is another source of error.

To overcome this problem, we could filter out the non-face

samples using methods similar to the one used in [37]. We

also identified cases where the face detector detected only a

part of face instead of whole face as shown in Fig. 9(a).

Another source of error is the failure of the face detector to

detect all faces in a given emotion sequence. This may lead to

scenario where there is a lack of faces that depict an emotion

from start to apex. For example, Fig. 9(b) shows the faces
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(a) (b) (c) (d) 

Fig. 10. Failure to estimate the correct optical flow; (a)-(b) two consequent
frames; (c) estimated optical flow; (d) magnification of optical flow for nose
region indicating errors in OF extraction.

detected in a whole sequence. One can readily observe that all

the faces in Fig. 9(b) represent the apex of the emotion and

there is no facial movement due to emotion. There are many

similar cases in this database. Since the proposed descriptor

only encodes the dynamic information (motion), it fails to

accurately extract the target features if the emotion is not

captured from start to apex. Consequently, many sequences

with other emotions will be classified as neutral emotion.

Incorporating the static features in addition to the motion

features will mitigate this problem.

Errors in nose point localization also affect the feature

extraction process. Fig. 9(c) shows a few sample faces with

wrong reference point localization.

2) Failure of optical flow: When the range of head pose

variation is very large, the OF algorithm will fail to correctly

compute the flow field. Fig. 10 illustrates an example of OF

failure due to large head movement. As shown in this figure,

the head was turned left, but the estimated OF dose not capture

this information. We zoomed out the OF around the nose

region for better illustration in Fig. 10d.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel classification scheme

called ESL, which is motivated by the recent advancements

in the field of sparse representation and supervised dictionary

learning. ESL incorporates reconstruction properties of sparse

representation and discriminative power of a nonlinear ELM

for robust classification. In addition, we proposed a novel

OF-based spatio-temporal descriptor for pose invariant facial

emotion detection. We have performed extensive experiments

on both acted and spontaneous emotion databases to evalu-

ate the effectiveness of the proposed feature extraction and

classification schemes under different scenarios.

Our results clearly demonstrate the robustness of the pro-

posed emotion recognition system, especially in challenging

scenarios that involve illumination changes, occlusion, and

pose variations. The limitations include the higher computa-

tional cost for both feature extraction and classification as well

as the need to optimize many parameters. Furthermore, there is

still a large room for improvement in the recognition accuracy

when dealing with natural or spontaneous emotions. Possible

ways to improve the proposed emotion recognition framework

include: (i) combining the proposed spatio-temporal descriptor

with static (appearance) based features to deal with failure

in motion feature (e.g., optical flow) extraction, (ii) use of

motion exaggeration techniques to improve the recognition

accuracy for subtle facial emotions, and (iii) enhancing the

OF correction model to remove the effect of facial muscle

movement caused due to the person speaking.
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