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Abstract

Reset controllers can outperform PID controllers and may introduce phase advantage com-
pared to linear PID control. However, in general, reset controllers do not have the same
steady state properties as linear controllers, like removing steady state errors. In case of
model mismatches and disturbances, this may cause limit cycles (persisting oscillations) in
the closed response when (constant) references are tracked. The occurrence of these limit cy-
cles is very unwanted in mechatronic precision systems, since the response does not converge
to the desired set-point.

To avoid / remove limit cycles in the response, some reset control methods are currently
available. Examples are PI+CI controllers, reset controllers that reset to non-zero values and
reset controllers with (adaptive) feedforward. Although the existing methods can be used to
overcome the limit cycle problem, they are often dependent on the model of the system or are
a trade-off between linear and nonlinear control. Hence, the existing methods are not very
robust in general or do not use the full advantage of reset control.

In this thesis, a simple and robust fixed instant adaptive reset controller is developed for a
minimum phase SISO system that can be stabilized by standard PID control. The presented
adaptive reset algorithm detects if a limit cycle is present and adapts the after reset value in
an iterative way until the limit cycle is removed. Although no mathematical proof is given, the
idea behind the presented method is explained. Simulations and measurements are performed
to show that the algorithm is able to get rid of limit cycles caused by model mismatches and
constant input disturbances. Furthermore, it is shown that the adaptive algorithm can be
applied to zero-crossing reset as well.
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Chapter 1

Introduction

PID controllers are one of the most used controllers in feedback control [1]. They are easy to
implement and moreover, they are easy to understand and to tune. However, the performance
that can be achieved by (linear) PID controllers is limited by the well-known waterbed effect
(see e.g. [2]). In order to overcome the limitations of linear controllers, reset control has
become a more popular research field in the past decades. It is for example used to control
mechatronic systems like hard disk drives [3] and PZT positioning stages [4]. In this chapter,
a short introduction to reset control will be given first. After that, one of the problems of
reset control will be discussed, which will result in the problem statement of this thesis.

1.1 Reset controllers

A reset controller is a standard linear controller, e.g. PID, that resets (a subset of) the
controller states when a certain reset law is satisfied. Between the resets, the controller
behaves like a linear controller. Due to the reset actions, reset controllers can create a phase
advantage. This makes it possible to obtain higher bandwidths, having less overshoot and/or
a faster settling time compared to standard PID controllers, see for example [5], [6], [3] and
examples in [2].

A simple and well-known reset controller is the Clegg Integrator (CI), which was introduced
by J.C. Clegg in 1958 [7]. It is an integrator which resets its state to zero when the input
is zero. A CI has a similar gain characteristic in terms of slope as a normal integrator, but
due to the reset mechanism, it has a phase of -38◦ instead of -90◦. To illustrate how a reset
integrator operates, the output of a CI for a sinusoidal input is shown in Figure 1.1. As can
be observed, the output resets to zero when the input crosses zero.

A generalization of the CI is a First Order Reset Element (FORE), which was proposed by
Horowitz and Rosenbaum in [8]. It is a first order transfer function, which also resets its
state when the error crosses zero. Besides the CI and FORE many other reset controllers are
currently available. An example of a more general reset controller is given in [2], where the
states of the controller can be reset partially.
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Figure 1.1: Clegg integrator

In general, a reset controller can be defined by equation (1.1). The first line in 1.1 describes
the linear base dynamics of the controller (flow mode). The second line describes the value to
which the integrator resets when the reset law is satisfied (jump mode). The third line defines
the controller output and the last line the initial value. The reset law can be state and/or
time dependent. The after reset value x(t+) may depend on the states of the controller, states
of the plant, error signal and/or reference signal. See for example the reset controllers in [9],
[4] and [10].







ẋ(t) = Ax(t) + Be(t) if reset law 6= true

x(t+) = F (t) if reset law = true

u(t) = Cx(t) + De(t)

x(0) = x0

(1.1)

As mentioned, resetting controller states may introduce a phase advantage which can make
it possible to outperform linear PID controllers. Although this is the case, resetting the
controller states can have some drawbacks. One of these drawbacks is discussed and illustrated
in the next section and will result in the problem statement of this thesis.

1.2 Problem statement

Due to the reset actions of a reset controller, a reset integrator does not have the same steady
state properties as a linear integrator has, [2, p.182]. If the integrator resets to a value which
is not equal to the steady state value of the control signal, limit cycles may be present in
the response. This might for example be due to model uncertainties and/or disturbances.
The occurrence of limit cycles is very unwanted in precision systems, like wafer scanners and
positioning stages, since the response does not converge to the desired set-point. To illustrate
the problem, a few simple examples will be given for a first order system.

M.C.F. Ivens Master of Science Thesis



1.2 Problem statement 3

1.2.1 Resetting to zero and nonzero value

As a first example to illustrate the limit cycle problem, the influence of resetting to zero and
nonzero values will be shown. For this purpose, a negative feedback loop as shown in Figure
1.2 is considered.

Figure 1.2: Negative feedback loop

Let C(s) be a PI reset controller, given by (1.2) and let the plant be given by H1(s) = 1
s+0.5 .

C :=







ẋc(t) = e(t) if e(t) 6= 0

xc(t
+) = 0 if e(t) = 0

u(t) =
kp

τi
xc(t) + kpe(t) kp = 2, τi = 0.1

(1.2)

The closed loop response for a unit step reference is shown in Figure 1.3. For comparison,
also the response for the same PI controller without reset is shown. As can be observed, a
limit cycle is present in the response controlled by the reset controller and steady state is not
achieved.
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Figure 1.3: Step response of H1 with
xc(t+) = 0
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Figure 1.4: Step response of H1 with
xc(t+) = 0.025

The reason for the occurrence of this limit cycle is that the after reset value xc(t
+) = 0 does

not match the steady state value of the control signal of the closed loop linear base system
(the system without reset applied). From the control signal of the normal PI controller, it
can be observed that the steady state value of the control signal for H1 is 0.5 instead of 0.
Changing the after reset value in equation (1.2) to xc(t

+) = 0.5 · τi

kp
= 0.025 and simulating
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4 Introduction

the system again leads to the results shown in Figure 1.4. As can be observed, the controller
resets one time and the response stays at the desired set-point. A limit cycle is not present
anymore, since the after reset value matches the steady state value of the control signal.

1.2.2 Model uncertainty

Suppose that the same controller as given in equation (1.2) is used but that due to model
uncertainty the actual plant is given by H2 = 1

s+1 instead of H1 = 1
s+0.5 . The response for

xc(t
+) = 0.025 and for xc(t

+) = 0.05 are shown in Figure 1.5. As can be observed, resetting
to xc(t

+) = 0.025 result in a limit cycle. This is again caused by the fact that the after reset
value does not match the steady state value of the control signal for H2. By setting xc(t

+) to
xc(t

+) = 1 · τi

kp
= 0.05, the control signal is equal to 1 at reset, which is equal to the steady

state value of the control signal. Hence, no limit is present in the response for xc(t
+) = 0.05.

In general, when there are no disturbances present, the steady state value of the control signal
for a unit step reference is equal to the inverse DC gain of the plant.
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Figure 1.5: Step response of H2 for wrong and right xc(t+)

1.2.3 Input disturbance

Limit cycles will also be present if a constant input disturbance at the plant input is present.
This for reason that the control input to the plant changes by a constant value due to the
disturbance. Hence, the after reset value should be chosen such that the input to the plant,
after the disturbance is added, is equal to the steady state value of the control signal.
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1.2 Problem statement 5

In order to illustrate the above, a simulation is performed for H1(s) = 1
s+0.5 with the PI reset

controller as defined in (1.2) with xc(t
+) = 0.025. This is the right after reset value when no

disturbance is present. At t = 5 a constant disturbance with an amplitude of 0.5 is added at
the plant input. The result is shown in Figure 1.6, which clearly shows that a limit cycle is
present due to the added disturbance at t = 5.
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Figure 1.6: Constant input disturbance
with amplitude of 0.5 applied at t = 5 and
wrong xc(t+) for disturbance rejection.
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Figure 1.7: Constant input disturbance
with amplitude of 0.5 applied at t = 5 and
right xc(t+) for disturbance rejection.

The control signal of the normal PI controller converges to 0 after the disturbance is applied.
This is also what is expected since the steady state value of the control input without distur-
bance was 0.5 (see Figure 1.4). Due to the disturbance, the output of the controller has to be
lowered by 0.5 to compensate for the disturbance. By performing the same simulation again,
but using xc(t

+) = 0, the result shown in Figure 1.7 is obtained. Clearly, the disturbance is
removed. However, since xc(t

+) = 0 is not the right after reset value as the disturbance is
not present, a limit cycle is present during the first 5 seconds.

The examples in this section revealed two problems that occur when reset control is used.
The first problem is that a reset integrator has not the same steady state properties as a
linear integrator and cannot remove a steady state error in general. The second problem is
that if the after reset value does not match the steady state value of the control signal, a limit
cycle may be present in the response if the after reset value is not adapted.

The fact that reset integrators do not have the same steady state properties as a linear
integrator and the fact that limit cycles may be present is not new. Currently, some methods
are available to overcome these problems, like PI+CI controllers, reset controllers with a reset
band [2], reset controllers with adaptive feedforward [11], [12] and reset control with ILC [9].
These methods will be discussed in more detail in Chapter 2. However, the aforementioned
methods do not use the full advantage of reset control, are slowly adapting, or are complicated
and difficult to tune and understand. Hence, finding an adaptive, robust and intuitive to tune
reset controller is still an open problem.
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6 Introduction

1.3 Goal & objectives

The goal of this thesis is to design a robust adaptive / iterative learning reset controller
algorithm that is able to remove limit cycles when (piecewise) constant references are being
tracked. Furthermore, the algorithm should be able to reject constant input disturbances. In
this thesis, the development the algorithm will be limited to minimum phase SISO system
that can asymptotically be stabilized by standard PID control. In order to fulfill the goal,
the following objectives are foreseen:

1. Literature review on existing reset control strategies.

2. Selecting a reset control method.

3. Proposing a method to detect limit cycles and an update law.

4. Testing the algorithm by performing simulations.

5. Testing the algorithm in practice on a real setup.
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Chapter 2

Existing reset control methods

In this chapter, some available reset control methods will be mentioned. The advantages and
disadvantages of these methods will be discussed as well. Some methods seem to overcome
the limit cycle problem. Other methods do not (explicitly) focus on the occurrence of limit
cycles, but might be interesting methods to use. For some methods, examples will be given
in order to show that the methods are not robust.

2.1 PI+CI control

One of the available methods to avoid/remove limit cycles is a PI+CI controller. This con-
troller is described in [13], [14] and [2] where also some tuning rules are given. The controller
has the configuration shown in Figure 2.1. In fact, it is a PI controller, in which the integrator
is parallel combined with a Clegg Integrator (CI). The parameter pr is a tuning parameter,
which can be seen as a trade-off between linear and reset control. This parameter can be
fixed, but can also be made variable. Since a linear integrator is included, a PI+CI controller
is able to remove steady state errors.

Figure 2.1: PI+CI controller structure
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8 Existing reset control methods

Due to the reset actions, a PI+CI controller can have phase advantage compared to a normal
PI controller, see [2, p.185]. Hence, faster responses can be obtained compared to normal PI
control. However, since the controller is a trade-off between linear and nonlinear control it
does not use the full advantage of reset control and the response will not be as fast as can be.
An example of a PI+CI controller can be found in Appendix A.1.

2.2 Reset control with reset band

Besides reset controllers that reset its states when the error signal crosses zero, there are also
reset controllers that resets when the error signal enters a certain reset band, see [2]. These
reset controllers are described by (2.1). The reset band surface Bδ is defined as Bδ = {(x, y) ∈
R

2|(x = −δ ∧ y > 0) ∨ (x = δ ∧ y < 0)}. The parameter δ is a nonnegative value that defines
the reset band. The controller resets when its input (error signal) crosses −δ from below or
δ from above.

C :=







ẋr(t) = Arxr(t) + Bre(t) if (e(t), ė(t)) /∈ Bδ

xr(t+) = Aρxr(t) if (e(t), ė(t)) ∈ Bδ

v(t) = Crxr(t) + Dre(t)

(2.1)

The advantage of using a reset band is that it may improve the stability and performance in
systems with a time delay, since a reset band may improve the phase lead, see [15] and [2].
Besides using a fixed reset band, also a variable reset band can be used. In that case the
reset band will be determined based on the error and the derivative of the error [2, section
3.4]. However, using a reset band is not a robust solution for the limit cycle problem, since
limit cycles can still be present when the reset band is not chosen carefully. An example to
illustrate this is given in Appendix A.2.

2.3 Limit cycle analysis

In [16], Baños et al. presented an approach to predict the amplitude and frequency of limit
cycles when a CI or FORE with reset band is used. The presented method is applicable to
closed loop systems without reference signal. To predict the amplitude and frequency of a
possible present limit cycle, the describing function of the reset controller is used, which is
denoted by Cδ(E, ω). It is shown in the paper that the describing function of a FORE and a
CI with a reset band depends on the ratio of the reset band and amplitude of the input δ/E.

To determine if a limit cycle is present, the Nyquist plot of the plant P (jω) and the critical
locus − 1

Cδ(1,ω) are created for different δ/E ∈ (0, 1). If P (jω) and − 1
Cδ(1,ω) intersect and the

intersection corresponds to the same frequency for both functions, a limit cycle exists. From
this intersection, the amplitude and frequency of the limit cycle can be determined. A similar
method for nonlinear systems controlled by a reset controller is proposed by Iwai et al. in
[17].
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2.4 Reset control with feedforward 9

Although the method of [16] seems an interesting method to predict limit cycles, it is only
able to predict the limit cycle of closed loop systems without reference signal. The method
highly depends on the model of the system. Furthermore it fails to predict the occurrence of
limit cycles when a nonzero reference is used. This is shown in an example given in Appendix
A.3.

Furthermore, since the method in [16] is based on the describing function of the reset controller
(which considers only the first harmonic), it gives only accurate results when the input to the
controller fulfills a low-pass condition. It also seems to be computational intensive to find the
crossing, if there is one, where the frequency of both curves are equal.

Another proposed method to predict and analyze limit cycles when reset controllers with a
reset band are used is presented by Barreiro et al. in [18]. In this method, instead of using
the describing function of the reset controller, a Poincaré map of the reset system is used to
predict limit cycles. However, also this method considers only the case of closed loop systems
with zero reference and may not be very practical to use during online measurements.

2.4 Reset control with feedforward

A strategy to overcome the problems of steady state errors in reset control, is to combine
reset control with (adaptive) feedforward control. This approach is found in several papers.
The task of the feedforward controller is to correct the control signal in such a way that it
reaches its required steady state value. In this section, two of such controllers are discussed.

2.4.1 Adaptive feedforward

In [11], Panni et al. developed an adaptive feedforward controller, which is combined with a
FORE controller. The adaptive feedforward controller updates the value of the control signal
at the reset instants, such that the control signal converges to the right steady state value
in case of parametric model uncertainties. The adaptive feedforward controller developed by
Panni et al. uses a vector containing independent basis functions and a vector containing
parameters to be adapted. The authors prove and showed that it is possible to asymptoticly
track constant references and reject constant disturbances at the plant input. However, it
might be difficult to find the right basis functions and to determine which parameters have
to be adapted.

Cordioli et al. presented in [12] a generalized version of the feedforward controller of Panni
et al. to track smooth reference signals instead of constant references. The derivative of the
reference signal has to be known for this purpose and is used by the feedforward controller.
However, in the shown responses in [12] it seems that in the final obtained response, the reset
controller does not reset anymore. The adaptive feedforward compensator seems to determine
the control signal. In my opinion, since no reset seems to occur anymore in the final response,
iterative learning control is a more easy approach to track smooth reference trajectories.
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10 Existing reset control methods

2.4.2 Iterative learning control

HosseinNia et al. [9] presented another approach to remove limit cycles. In their approach
a PCI controller is combined with an Iterative Learning Controller (ILC). The PI controller
resets to zero as the error signal is zero. The ILC is activated at the first reset instant. The
task of the ILC in this approach is to correct the control signal, instead of the after reset
value, such that the control cab achieve steady state. The update law defined in [9] is given
in equation 2.2, where ej is the error signal of trial j, T is the final time and P (0) is the DC
gain of the plant). In fact this update law adds a scaled version of the error signal to the
current feedforward signal.

uj+1
ILC =







0 if 0 ≤ t < tr

uj
ILC(t) + 1

P (0)ej(t + ∆) if tr ≤ t < T
(2.2)

Although it is shown that the proposed method is able to remove / reduce the amplitude
of the limit cycle, it takes around 200 iterations before the amplitude of the limit cycle has
become small enough to be not significant anymore. Besides that, it is only applied on a first
order system. For higher order systems, the presented method might not work or the update
law has to be adapted. Another disadvantage is that it does not use the repeating pattern
of the limit cycle within one trial and hence it might take longer than necessary to eliminate
the limit cycle.

2.5 Adaptation of the after reset value

Instead of adapting the control signal by applying a feedforward signal, the control signal
can also be influenced by adapting the after reset value directly. This way, it is possible to
deal with model uncertainties and improve the transient response. Three methods that uses
adaptation of the after reset value will be discussed in this section.

2.5.1 Improved reset controller

Zheng et al. [4], [19] designed an improved PI reset controller for a PZT positioning stage.
This controller resets at fixed time instants and the after reset value is determined at every
reset instant. A similar strategy is used by Guo et al. in [3]. The improved reset controller
as proposed by Zheng et al. determines xr(t+

k ) at every reset instant, by minimizing the
quadratic cost function given in equation (2.3), where P0, P1 and Q0 are positive semidefinite
tuning matrices and e(t) the error signal. The controller equations are given in (2.4), where
Ek, Fk and Gk are determined by the optimization, xp are states of the plant, and r the
constant reference to be tracked.
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2.5 Adaptation of the after reset value 11

Jk = eT (tk+1)P0e(tk+1) + ėT (tk+1)Q0ė(tk + 1) +

∫ tk+1

tk

e(s)T P1e(s)ds (2.3)

RC :=







ẋr = Arxr + Bre, t 6= tk

xr(t+
k ) = Ekxp + Fkxr + Gkr, t = tk

u = Crxr + Dre

(2.4)

In Appendix A.4, a reproduction of the obtained results of Zheng et al. is shown, since this
control strategy seems to be a promising method. The reproduction shows that although the
overshoot and transient response are improved compared to standard PI and conventional re-
set control, a steady state error and limit cycle can still be present in case of small mismatches
in the controller parameters. This clearly shows the sensitivity to parameter uncertainties
when reset control is used.

Although the method is promising, the required optimization can be seen as disadvantage.
This is for reason that the optimization depends on system matrices and tuning matrices. In
case of model uncertainties, this may have an influence on the performance and limit cycles
may appear as well. Furthermore, as stated in [2, section 1.7], the improved reset controller
of Zheng et al. may be more sensitive to model uncertainties when an observer is needed to
estimate states that cannot be measured.

Although this is the case, resetting at fixed time instants, seems to have some benefits. The
number of reset actions can be influenced and it is sure that the controller will reset, no
matter if the error crosses zero or not. This avoids the need of temporary regulation and
creating aggressive transients like in [10].

2.5.2 General reset controller

In [20], HosseinNia et al. introduces a general reset controller that also resets at fixed time
instants. This reset controller is mathematically represented by (2.5).

C :=







ẋr(t) = Arxr(t) + Bre(t), t 6= tk

xr(t+) = ARrxr(t) + BRr(Kr(t)−Dre(tk)
nRcr

), t = tk

ur(t) = Crxr(t) + Dre(t)

(2.5)

In this equation ARr ∈ R
nr×nr selects the last R states of xr(t), (which are the states that will

be reset) and has the form ARr =

[
In

R̂
0

0 0nR

]

, with n
R̂

= nr −nR and nR the number of states

that are reset. Furthermore BRr =
[

0
1

]
, Cr = cr

[
0 1

]
, cr ∈ R where I and 0 are identity and

zero matrices with proper dimension. The parameter K is a feedforward gain and is chosen
equal to the inverse DC gain of the plant. This gain is multiplied by the reference signal r(t).
By doing this, the control output ur(t) at the reset instants becomes Kr, which is equal to
the DC value of the control signal (when disturbances are not present).

HosseinNia et al. noticed that the control signal ur(t) of the improved reset controller of
Zheng et al. in [4] tends to the inverse DC gain of the plant for a unit step reference. Since
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12 Existing reset control methods

the general method does not use an optimization and has less tuning parameters, this general
method seems more easy to tune and implement. The performance of this general reset
controller is also compared by HosseinNia et al. [20] with the improved reset controller of
Zheng et al. [4]. The comparison shows that similar performance is achieved with the general
fixed instant reset controller.

However, in the comparison made by HosseinNia et al. model uncertainties and disturbances
are not considered. In case of model uncertainty, limit cycles can also be present when this
controller is used. This is shown in an example given in Appendix A.5.

2.5.3 Robust hybrid PI controller

Recently, Scola et al. presented a simple and robust PI controller in [21]. This method is an
adaptive version of the algorithm as proposed in [22] for a FORE. The controller in [21] can
be represented by equation (2.6), where α is a tuning parameter that determines how fast
the after reset value is adapted. Furthermore, ζ = xr − xeq, xeq = Fr with F the inverse DC
gain of the plant and τ is a time parameter to avoid Zeno solutions.

C :=







ẋr(t) = e(t)

τ̇ = 1

}

if 2eζ + ζ2 ≥ 0 or τ ≤ ρ

xr(t+) = xr(t) − αζ

τ+ = 0

}

if 2eζ + ζ2 ≤ 0 and τ ≥ ρ

u(t) = kixr(t) + kpe(t)

(2.6)

The results that are shown in [21] show that the algorithm is able to adapt the after reset
value in such a way that steady state errors are removed. The presented method seems also
easy to tune, since only one parameter for the adaptive part is present. However, it might be
difficult to find a good value for α. Furthermore, the after reset value is adapted every time
a reset is applied. In fact, the after reset value should only be adapted in case it results in a
limit cycle. Besides that, the parameter α makes the controller a compromise between linear
and nonlinear control, which may lead to a less fast transient response.

2.6 Non-overshoot reset control

Another available reset control method is presented by Zhao and Wang in [10] and Zhao in
[23]. The algorithm in these papers makes it possible to achieve non-overshoot step responses
while the rise time of the system can be tuned arbitrarily. The block diagram of the feedback
loop used in [10] is shown in Figure 2.2.
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2.6 Non-overshoot reset control 13

Figure 2.2: Control loop for nonovershoot reset controller.

The plant should be minimum phase and at least have one zero. The plant is transformed
into state space form by applying the concept of zero dynamic transformation (see e.g. [24]).
The matrices cc, Dc seems to defined such that the original plant given by (2.7) is transformed
into (2.8).

G(s) =
bmsm + bm−1sm−1 + ... + b0

sn + an−1sn−1 + ... + a0
(2.7)

H(s) =
αh−1

s(ch−2α−1sh−1 + ch−3α−2sh−2 + ... + c0α1−h)
(2.8)

In (2.8), α is a tuning parameter that defines the location of the poles of the transformed
plant H(s). The constants ci are defined as ci = (h−1)!

i!(h−1−i)! , where h is the relative degree of
the original plant G(s)

The reset controller is an unstable FORE, with a state dependent reset law. The equations
of the reset controller are given in (2.9) where ac, bc > 0, ǫ > 0 is a parameter that defines
the tilt of the boundary between the flow and the jump mode and ρ defines the minimum
amount of time between two consecutive reset instants. Results of Nesic et al. [25] were used
to prove stability.

τ̇ = 1
ẋr = acxr + bc(e + Bcxp)

}

if ǫ(e + Bcxp)2 + 2(e + Bcxp)xr ≥ 0 or τ ≤ ρ (2.9)

τ+ = 0
x+

r = 0

}

if ǫ(e + Bcxp)2 + 2(e + Bcxp)xr ≤ 0 and τ ≥ ρ

uc = ccxr + Dcxp

The matrix Bc is defined such that xr = ẋe and xe is defined as xe = −(Bcxp + e). It is
proven in [10] that when α is chosen small enough and the initial conditions fulfill a certain
condition, a stable non-overshooting response with zero steady state error is obtained.
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14 Existing reset control methods

The responses shown in [10] and [23] have indeed no overshoot and the rise time can be tuned
arbitrarily by changing the controller parameters ac and bc. Therefore, this control strategy
seems an interesting method. However, in practice a perfect cancellation of the zero dynamics
will be difficult due to the presence of uncertainties. Furthermore, the state feedback part
and the tuning of the rise time may lead to high control actions, which cannot be realized in
practice and may lead to an unstable response.

2.7 Summarized

A PI+CI controller is able to remove/avoid limit cycles in the response, but it is a trade-off
between linear and non-linear control. Hence, it does not use the full advantage of reset
control. The reset controllers with a reset band may improve the performance, but is not a
robust solution since limit cycles can still be present. The method in [16] can predict limit
cycles, but only for autonomous systems controlled by reset controllers with a reset band.

The reset controllers with an adaptive feedforward controller [11] and [12] adapts the feed-
forward gain at every reset instant, which might not be needed. Besides that, it might be
difficult to find right base functions for the adaptive part. Furthermore, in [12], the reset
controller seems not to reset anymore in the final response, since the adaptive controller has
learned the right control signal.

The ILC approach in [9] is able to remove / reduce the amplitude of limit cycles, but it does
not use periodic pattern of limit cycles and hence the convergence is slower than it could be.
Furthermore, only first order systems were considered. The hybrid PI controller in [21] is
easy to tune and can be seen as a solution to overcome the limit cycle problem. However, the
after reset value is changed at every reset instant, which is not necessary. Furthermore, the
tuning parameter makes it a trade-off between linear and nonlinear control.

The non-overshoot reset controller in [23] and [10] is interesting, but not very realistic to
use in practice. The reason for this is that the algorithm may lead to high control inputs.
Furthermore, uncertainty is not considered, so probably limit cycles will be present in case of
uncertainty. The general reset controller in [20] and the improved reset controller in [4] and
[19] seems to be better options, since the responses obtained with these controllers are fast
and has almost no overshoot. Moreover, they are easy to tune. However, limit cycles can still
be present with these methods. Hence, they are not robust.

So, based on the studied literature, no robust solution for the occurrence of limit cycles in the
closed loop response when tracking nonzero constant references exists. In the next chapter,
a possible more robust solution for the limit cycle will be proposed.
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Chapter 3

Proposed solution

In this chapter a solution for the limit cycle problem is proposed. First a reset control method
is selected based on the reviewed literature. In section 3.2 a strategy to solve the limit cycle
problem is introduced and explained. A simulation with the proposed algorithm will be
performed in section 3.3 and preliminary results are given.

3.1 Selection of reset control method

Based on the studied reset control methods, the general PI reset controller with fixed reset
instants (HosseinNia et al. [20]), given in (3.1) seems a promising method. It is a general
and easy to tune method and can be extended to PID control as well. Furthermore, no
optimization is required as is the case for the fixed instant reset controller of Zheng et al. in
[4] and [19].

C :=







ẋr(t) = e(t), if t 6= tk

xr(t+) = K τi

kp
r(t) − τie(t), if t = tk

ur(t) =
kp

τi
xr(t) + kpe(t)

(3.1)

Besides that, it is expected that a fixed instant reset controller is less sensitive to noise. This
for reason that the controller is not resetting every time the error crosses zero, which might be
due to noise as well. Also the need of including temporary regulation is avoided. Furthermore,
stability of the closed loop system can more easily be guaranteed using the work of Zheng et
al. [4], [19] and [26].

Another advantage is that the reset interval can be chosen, which makes it possible to have
some influence on the period of a present limit cycle. Due to these advantages, a strategy
to solve the limit cycle problem for fixed instant reset control will be developed. The final
proposed algorithm will however also be tested for zero crossing reset. Since the principle of
resetting is the same, it is expected that algorithm that will be proposed in the next section
works for zero-crossing reset as well.

Master of Science Thesis M.C.F. Ivens



16 Proposed solution

3.2 Strategy to solve the limit cycle problem

Since limit cycles are usually present when the after reset value does not match the steady
state value of the control signal, an algorithm that adapts the after reset value is a good
approach. This idea is already used in, [4], [19] and more recently in [21]. However, in these
methods, the after reset value is changed every reset instant. In fact, the after reset value
should only be adapted if a limit cycle is present. In (3.1), the after reset value can easily be
adapted by changing gain K. Inspired by the methods in [4], [20], [9] and [21], the idea is to
develop a robust algorithm that performs the following steps:

1. Detect if a limit cycle is present in the response during simulation/measurement (trial).

2. Adapt xr(t+) by changing gain K if a limit cycle is present.
Repeat step 1 (during trial).

3. Optional: use the new found K as initial value for K in a next run.
Repeat step 1 and 2 during this new trial.

The above idea can be considered as a combination of adaptive and iterative learning control.
During one measurement, the gain K will be adapted if a limit cycle is detected. After
adapting gain K, it is checked during the same measurement if the limit cycle is removed.
If not, K is adapted again. So the gain is adapted in an iterative way during one trial. If
no (input) disturbances are present, the last found K can be used as initial value in a next
run. This way, every new run the response becomes better (as long as disturbances are not
present). In Figure 3.1, a block diagram of the algorithm is shown. In the next two subsections
a method to detect limit cycles and an update law for K will be proposed and explained.

Figure 3.1: Block diagram of algorithm.
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3.2 Strategy to solve the limit cycle problem 17

3.2.1 Detection of limit cycles

Since a limit cycles are periodic, a repetitive pattern is observable in the the response, but
also in the control signal. If a limit cycle has a period of one reset interval (time between two
resets), the jumps at two consecutive reset instants will be equal from the moment the limit
cycle is present. This can be observed in Figure 1.5 and A.8. Hence, to detect limit cycles,
jumps in the control signal at the reset instants can be used. Therefore, the idea is to detect
a limit cycle by comparing two consecutive jumps in the control signal. In Figure 3.2, the
idea of comparing jumps is illustrated. The red lines indicate the jumps that are compared.
In this figure the zoomed control signal of Figure A.8 of Appendix A.5 is shown.

Figure 3.2: Detection of limit cycle in control signal.

Comparing two consecutive jumps will only work to detect a limit cycle if the period of
the limit cycle is equal to one reset interval. However, for fixed instant reset control it is
expected that this condition can be achieved by taking a small enough reset interval. Since
the algorithm will be designed for fixed instant reset control in the first place, this is a
reasonable assumption.

Due to numerical errors and noise that is present in practice, the jumps in case of a limit
cycle will not exactly be equal. Hence, the condition in (3.2) will be considered to determine
if a limit cycle is present. In this equation Jk denotes the jump in the control signal at reset
instant k and the value ǫ is a small threshold value which can be seen as a tuning parameter.

0 ≤ |Jk − Jk−1| ≤ ǫ (3.2)

The above method might fail to detect limit cycles when zero-crossing reset is used, because
limit cycles can have a period of more than one reset interval in that case. This may happen
due to the fact that a reset can occur when the error is crossing zero from above and/or below.
However, it is expected that the above method can also be used in that case, but instead of
comparing two consecutive jumps, jumps that are spaced by the period of the limit cycle have
to be compared. Another option is to force a certain minimum amount of time between two
resets in order to realize a limit cycle with a period of one reset interval.
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18 Proposed solution

3.2.2 Adapting the after reset value

After detecting a limit cycle, the after reset value should be adapted. Normally, if the closed
loop linear base system is asymptotically stable, an integrator steers the control signal to its
required steady state value. When constant references are tracked, it can easily be verified
that this steady state value is equal to uss = Kr(t) with K the inverse gain of the plant
and r(t) the reference. This is also the underlying idea of the controller in [20]. However, if
the integrator in equation (3.1) resets to a value which is not equal to the required steady
state due to a wrong value for K, the reset actions are counteracting the steering process at
a certain moment, resulting in a limit cycle.

Since it is assumed that the system is asymptotically stabilized by a linear PID controller,
the control input ur(t) will converge to uss if no reset is applied. Hence, the idea is to adapt

K to
ur(t−

k
)

r(t) if a limit cycle is present, which is the value the control signal has before reset,
divided by the value of reference.

By adapting K to
ur(t−

k
)

r(t) , the control signal ur(t) becomes ur(t−) at reset, so in fact one
reset instant is skipped. This gives the integrator one more reset interval of time to steer the
control signal. At the same time K is adapted in the direction the integrator was steering the
control signal before it was reset. This way, the after reset value will converge iteratively to
the required steady state value, also in case a constant input disturbance is present. Hence,
limit cycles are removed.

In Figure 3.3, the value used to adapt K is indicated by the green arrow, which is the value
the control signal has before reset. This value should be divided by the reference signal, in
order to have ur(t) = Kr(t) at reset in equation 3.1.

Figure 3.3: Control signal with limit cycle and value used to adapt K indicated.
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3.2 Strategy to solve the limit cycle problem 19

3.2.3 Mathematical formulation of the proposed algorithm

A mathematical formulation of the proposed algorithm for the fixed instant PI reset controller
is given in equation (3.3). The blue lines define the proposed adaptive part. It is assumed
that the closed loop linear base SISO system is minimum phase and asymptotically stable.
Furthermore, it is assumed that the limit cycles have a period of one reset interval.

C :=







ẋr(t) = e(t) if t 6= tk

Jk = |ur(t−

k ) − Kk−1r(t)|

Kk =







Kk−1 if |Jk − Jk−1| > ǫ or r(t) = 0
ur(t−

k
)

r(t) if 0 ≤ |Jk − Jk−1| ≤ ǫ and r(t) 6= 0

xr(t+) = Kk
τi

kp
r(t) − τie(t)







if t = tk

ur(t) =
kp

τi
xr(t) + kpe(t)

(3.3)

Since the after reset value is updated in the direction of the linear control signal, the value of
K also converges to the required steady state value. This makes it possible to track piecewise
constant references and to reject constant input disturbances.

Notice that only one additional tuning parameter (ǫ) is introduced. Therefore, the proposed
algorithm may seem comparable to the controller in [21]. However, in that algorithm the
after reset value is updated every reset instant, while in the algorithm proposed in this thesis,
the value is adapted only if a limit cycle is detected.

The above controller algorithm can be extended to PID control by connecting the PI controller
in series with a lead/lag filter as shown in Figure 3.4. This way, K will still converge to the
right value.

Figure 3.4: Structure of adaptive PID reset controller with low-pass filter.
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3.3 Preliminary results

In the example given in Appendix A.5, it was illustrated that a limit cycle and a steady
state error can be present when the controller as given in equation (3.1) is used. To see if
the proposed idea works, the controller given in (3.3) is applied, with K = 1

3 , kp = 0.08,

τi = 8
3 · 10−4, ∆tk = 1 ms and ǫ = 1 · 10−3. For the plant P (s) = 3·106

s2+1810s+0.8·106 is taken
again, which is a slightly perturbed version of the plant used in Zheng et al. [4] and [19]. By
performing a simulation with the new proposed adaptive controller, the results as shown in
Figure 3.5 are obtained.
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Figure 3.5: Step response with new reset
controller.
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Figure 3.6: Step response with new reset
controller, second trial.

It can be observed that the algorithm is able to remove the steady error and is also able to
remove the limit cycle (periodic jumps with equal amplitude are not present in the control
signal at the end). In Figure 3.6 it can be observed that the value of K converges to the right
steady state value of 1

P (0) = 0.8
3 ≈ 0.2667.

If this value is used in a second run as initial value for K, the response in Figure 3.6 is
obtained. The response has almost no overshoot and also the steady state error is removed.
Using the last found value for K is a good idea if no large disturbances are present. In most
precision systems small disturbances are seen from cross-coupling and ground vibrations, so
in all those applications the last found value of K can be used. However, if large constant
input disturbances are expected to be present, it is better to use the expected inverse DC
gain of the setup as initial value for K.
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3.3 Preliminary results 21

To see what happens when a constant disturbance with an amplitude of 0.1 is added at the
plant input at t = 0.05 seconds, a new simulation is performed. As initial gain, K = 1

3 is
taken. This gives the results shown in Figure 3.7. Clearly the algorithm is able to reject the
disturbance. The gain K at the end of the simulation is converged to K = 0.1667. This is
equal to the final value of the controller output, which is equal to the inverse DC gain of
the plant minus the constant input disturbance of 0.1 scaled by the inverse of the reference
(which is 1 in this case).
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Figure 3.7: Disturbance rejection with
adaptive reset controller.
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Figure 3.8: Disturbance rejection with
adaptive reset controller, second trial.

If the final found K = 0.1667 is used as initial value for K in a second trial with the same
constant input disturbance applied, the response shown in Figure 3.8 is obtained. Compared
to the result shown in Figure 3.6, the response is slower. This is caused by the fact that during
the first 0.05 seconds, the right gain is the inverse DC gain of the plant, which is K ≈ 0.2667
and not K = 0.1667. Hence, during the first 0.05 seconds the algorithm adapts K first to
K = 0.2667 and after the disturbance is applied, K is adapted back to K = 0.1667.

In fact, during the first 0.05 seconds in this second trial K = 0.2667 should be used and
after t = 0.05 seconds, K = 0.1667, assumed the same disturbance is applied at the same
time. Using such a time scheduled value for K might for example be useful in pick and place
applications, which involve repetitive action. However, this procedure will not be incorporated
in the this thesis and is left for future work.

Since the preliminary results in this section showed that the proposed algorithm is able to
remove limit cycles, the algorithm will be tested in practice on a real setup. The setup that
will be used is discussed in the next chapter.
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Chapter 4

Setup & System identification

In this chapter, a description of the setup that will be used is given. After the system is
described, a system identification is performed which will result in a transfer function of the
setup. As will become clear after the system identification, the chosen setup needs a controller
with integrator and hence it is a suitable setup to test the proposed adaptive reset controller
on.

4.1 Description of the setup

The setup is shown in Figure 4.1. It is a 3-DOF system (x, y, θ) consisting of three Lorentz
actuators (1A, 1B and 1C). These actuators can be used to control the position of the mass
in the middle (3). This mass is connected to three additional masses (2). The encoder (4)
measures the movement of one of the additional masses.

Figure 4.1: Setup on which proposed algorithm will be tested.
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24 Setup & System identification

In this thesis, only actuator 1A will be actuated, so the system will be used as a SISO
system. Therefore, the system will act as a collocated double mass spring damper system.
Furthermore, since the position of only one mass is controlled, the other masses add additional
dynamics at higher frequencies.

4.2 Hardware & software

The setup will be controlled by LabVIEW 2016 and a myRIO 1900 system, which will also
log the data. The post-processing is done with Matlab R2015b. Initially, dSPACE was used
to control the setup, but the results obtained with dSPACE turned out to be noisy and not
good enough. After wasting a lot of time trying to obtain good results with dSPACE, it was
decided to switch to LabVIEW and a myRIO system.

The myRIO system is connected to an amplifier which powers the actuators of the setup. The
encoder output of the setup is sent to the myRIO and the myRIO system interacts with a host
computer. The LabVIEW files that will be used are separated in an FPGA part which runs
on the myRIO and a target file, which is hosted by the computer. This way it is possible to
interact with the system via the host computer. A scheme of the above described interactions
is given in Figure 4.2.

Figure 4.2: Hardware scheme

4.3 System identification

An open loop system identification is performed in order to obtain a mathematical model
of the system. For the identification, the response of the system to a chirp input signal is
measured. The frequency of the chirp is varied from 0.1 to 500 Hz and is increased by 3%

every second. The amplitude of the chirp is set to 256 (raw value), which corresponds to an
output value of the myRIO of approximately 1.25 Volt. Data is logged by the myRIO every
50 · 10−6 seconds. The LabVIEW files used to perform the system identification were written
by Niranjan Saikumar.
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4.3 System identification 25

Based on the measured data, a Bode and coherence plot are created with Matlab, which are
shown in Figure 4.3. The Matlab code can be found in Appendix B. Since the coherence is
around 1 in the interested control region, the measurement can be used to estimate a linear
model of the system. In the Bode plot, it can be observed that the there are two complex
pole pairs and one complex zero pair. However, the main shape of the magnitude and phase
curve looks similar to a collocated double mass-spring-damper system with only one complex
pole pair and no zeros.
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Figure 4.3: Identified Bode and coherence
plot of setup.
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and estimated plant.

Hence, a second order transfer function without zeros is estimated to describe the main
dynamics of the system. A transfer function of the setup is estimated based on the estimated
Bode plot data using Matlab. The obtained second order transfer function is given in
equation (4.1). This transfer function relates the raw output value of the myRIO to the
number of encoder ticks. So the conversion of the raw input value to volts and the amplifier
gain are included in this transfer function. For the estimation, only Bode plot data up to
50 Hz was considered. After 50 Hz, jumps in phase are present and the data becomes noisy,
which would lead to a less accurate model estimation.

H(s) =
7.606 · 105

s2 + 46.58s + 7254
(4.1)

In Figure 4.4 a Bode plot of the estimated transfer function is compared with the Bode plot
based on the measured data. As can be observed, the second order model describes the main
dynamics of the system pretty well. Furthermore, it can be observed that the controller needs
an integrator in order to have a high loop gain at the lower frequencies and to be able to
track constant references. Hence, this setup can be used to test the proposed adaptive reset
controller on.
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Chapter 5

Results

In this chapter, several experiments are performed to investigate if the proposed algorithm
works in simulation and in practice. In Section 5.1 the final controller algorithm is presented
first. In Section 5.2 the results for the fixed instant adaptive reset controller are presented.
In Section 5.3, the algorithm is tested for zero-crossing reset.

5.1 Final controller algorithm

The final controller is a slightly extended version of the in Chapter 3 proposed algorithm. In
Chapter 3, a fixed instant adaptive PI reset controller was presented. The setup will however
be controlled by a PID base controller with low-pass filter in order to obtain bandwidth of 60
Hz. To overcome the addition of the derivative action and low-pass filter, the PID controller
is split into a PI part and a lead/lag part with low-pass filter as was shown in Figure 3.4.
This way, the proposed adaptive PI reset controller structure can still be used and it the
process of adapting K will still work. In Figure 5.1, the way in which the final controller will
be implemented is shown again, where e(t) represents the error signal and r(t) the reference
signal. The structure of the PID controller that will be used, is given in equation (5.1).

kp

(

1 +
2πfi

s

)

︸ ︷︷ ︸

PI

( s
2πfd

+ 1
s

2πft
+ 1

)(
1

s
2πfl

+ 1

)

︸ ︷︷ ︸

lead/lag + low-pass filter

(5.1)
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Figure 5.1: Structure of adaptive PID reset controller with low-pass filter.

Splitting the base controller into a PI controller and lead/lag compensator with low-pass filer
leads to the final controller equations given in equation (5.2), where the blue lines indicate
the adaptive part. These controller equations will used for simulations and measurements in
this chapter.

CP Ireset :=







ẋr(t) = e(t) if t 6= tk

Jk = |ur(t−

k ) − Kk−1r(t)|

Kk =







Kk−1 if |Jk − Jk−1| > ǫ or r(t) = 0
ur(t−

k
)

r(t) if 0 ≤ |Jk − Jk−1| ≤ ǫ and r(t) 6= 0

xr(t+) = Kk
τi

kp
r(t) − τie(t)







if t = tk

ur(t) =
kp

τi
xr(t) + kpe(t)

(5.2)

CDLF =

( s
2πfd

+ 1
s

2πft
+ 1

)(
1

s
2πfl

+ 1

)

︸ ︷︷ ︸

lead/lag + low-pass filter

5.1.1 Control loop and parameters

The control loop that will be used for simulations and measurements is shown in Figure 5.2.
In this figure r(t) represents the reference, e(t) the error, u(t) the controller output, uA(t)
the amplifier input, d(t) a disturbance and y(t) the output. Furthermore, H(s) represents
the plant (including the amplifier) and C(s) represents the controller. The controller will
be implemented as a discrete controller and will be discretized using zero-order-hold. The
parameters of the PID controller are tuned using the rules of thumb given in [27]. The cut-off
of the low-pass filter is set to 600 Hz and the gain kp is tuned such that a stable controller
and a bandwidth around 60 Hz is obtained.
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Figure 5.2: Negative feedback loop.

In Table 5.1, the controller, simulation and measurement parameters are listed. These pa-
rameters are used for simulation and measurements that are performed in the remainder of
this chapter. All simulations are performed in Matlab Simulink R2015b. The LabVIEW
files to perform the measurements are based on the LabVIEW files of Niranjan Saikumar.

Table 5.1: Controller, simulation and measurement paramaters.

Parameter Value Units Description

fi 6 Hz Break-point of integrator
fd 20 Hz Beginning point of differential action
ft 180 Hz Taming frequency of differential action
fl 600 Hz Cut-off frequency of low-pass filter
kp 0.06 (encoder ticks)−1 Proportional gain
τi

1
2πfi

s Time constant of integrator
Ts 0.4 ms Sampling time

∆tk 4 ms Time between fixed reset instants
∆tk = tk − tk−1

ǫ 0.1 - Threshold to decide if two consecutive
jumps are considered as a limit cycle.

A sample time of 0.4 ms is chosen, since it turned out that this is the fastest sampling time
that can be used in the Control & Simulation Loop of LabVIEW in combination with the
myRIO system. When a higher sampling rate is used, computations are not finished in time
anymore.

The threshold ǫ is set to 0.1. The results obtained for different ǫ are shown in Figure 5.3
and 5.4. The responses are measured for K = 0.5KDC and K = 1.5KDC , where KDC =
0.009537207467789 is the inverse DC gain of the identified plant in equation (4.1). As can be
observed, the adaptation will be slow if ǫ is too small. By taking a large value for ǫ, K will
be updated every reset instant, also when there is no limit cycle present. A value of 0.1 is a
good compromise.
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Figure 5.3: Influence of ǫ on step response.
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The reset interval is set to ∆tk = 4 ms. This value is chosen based on several test simulations
for different values, see Figure 5.5 and 5.6. Using a large ∆tk will result in a more linear
response, while for a very small ∆tk the integrator is integrating for a short period before it
is reset, so in that case the integral action is not really used anymore. It turned out that for
∆tk = 4 ms the response is smooth, while still having an active integral action.
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5.2 Fixed instant (adaptive) reset control

In this section the simulation and measurement results for the fixed instant (adaptive) reset
controller are shown. First, step responses will be considered. After that, the ability to reject
constant input disturbances is studied. Furthermore, it is investigated if the controller is able
to track a piecewise constant trajectory. All mentioned values for K in the legends of the
plots indicate the initial value for K. The Simulink implementation to obtain the simulation
results can be found in Appendix C.

5.2.1 Step responses

The response for a step reference of 6000 encoder ticks applied at t = 1 second is simulated and
measured. First, simulations and measurements are performed for the case without adaptive
algorithm applied. After that, the same experiment is performed with adaptive algorithm.

Step response without adaptive reset algorithm

The step response is simulated and measured for K = KDC , K = 0.5KDC and K = 1.5KDC ,
where KDC = 0.009537207467789 is the inverse DC gain of the identified plant in equation
(4.1). The response is simulated and measured for 10 seconds. The results for 0.9 to 1.2
seconds are shown in Figure 5.7. In the figures, fixed instant reset control is abbreviated as
FR.
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Figure 5.7: Simulated step response, fixed
instant reset control without adaptation.
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Figure 5.8: Measured step response, fixed
instant reset control without adaptation.

As can be observed, the simulated and measured response are almost identical. For a wrong
value of K (K = 0.5KDC and K = 1.5KDC), a large steady state error is present. Further-
more, in the control signal a periodic saw-tooth pattern with equal amplitude is observable.
This indicates that a limit cycle is present, although this limit cycle is not clearly observable
in the response due to its small amplitude. In the measured response, also a steady state
error is present for K = KDC , even as a small limit cycle.
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This is caused by the fact that KDC is based on the identified transfer function and is not
exactly equal to the right inverse DC value of the setup for each measurement. So without
the ability to adapt K the response is sensitive to model uncertainties.

Step response with adaptive reset algorithm

The above experiment is repeated, but this time the proposed adaptive reset algorithm is
applied. The responses were simulated and measured again for a duration of 10 seconds. The
results for 0.5 to 2 seconds are shown in Figure 5.9 and 5.10. The fixed instant adaptive reset
controller is abbreviated as FAR.

As can be observed, the simulation and measured results show similar behavior. In simulation
and practice, the fixed instant adaptive reset controller removes the limit cycle and steady
state error over time for all three considered initial values for K. In the measured response,
small fluctuations around the desired set-point of 6000 are observable. Also in the measured
control signal, small fluctuations are observable. These fluctuations are caused by noise and
by the fact that the output of the myRIO is mapped into an integer value. However, these
fluctuations are not a limit cycle, since they are non-periodic. In the simulation results these
fluctuations are not present due to the absence of noise and the fact that the control signal
is not mapped into an integer value.
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Figure 5.9: Simulated step response, fixed
instant reset control with adaptation.
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Figure 5.10: Measured step response, fixed
instant reset control with adaptation.

In Figure 5.11 the simulated adaptation of K is shown for the three different initial values of
K for the complete duration of 10 seconds. For all three cases, K converges exactly to the
inverse DC gain of the plant in equation (4.1) as should be the case. For initial K = KDC , the
value of K stays (almost) constant. The value of K for initial K = KDC is however slightly
adapted around t = 1.1. This is caused by the used threshold of ǫ = 0.1. Around t = 1.1
the difference between two consecutive jumps in the output of the PI part of the controller
turns out to be less than 0.1 (see also Figure 5.1 and equation 5.2). Hence these jumps are
considered as a limit cycle and K is adapted. By using a smaller value for ǫ, this adaptation
will not happen.
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5.2 Fixed instant (adaptive) reset control 33

Since noise is present in practice, two consecutive jumps will never be exactly equal if a limit
cycle is present. Hence, taking a too small value for ǫ in practice will prevent the algorithm
to adapt K. A smaller value for ǫ could be used in simulation, since noise was not added.
However, in Section 5.1 it was shown that ǫ = 0.1 is a good value in practice. Therefore, this
value is used in simulation as well in order to compare the results.

Although K is slightly adapted for initial KDC in simulation, the final found value of K is
exactly equal to KDC . Also for the other initial values for K, the value converged to KDC in
simulation. This shows that the proposed adaptation law for K works in simulation for the
used PID base controller with low-pass filter.
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Figure 5.11: Simulated adaptation of K,
fixed instant reset.

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

0.004

0.006

0.008

0.01

0.012

0.014

0.016

V
al

ue
 (

1/
tic

k)

Value of K

FAR, 0.5K
DC

FAR, 1.5K
DC

FAR, K
DC

Figure 5.12: Measured adaptation of K,
fixed instant reset.

In 5.12 the measured adaptation of K is shown. It can be observed the algorithm adapts
K to almost the same value for all three considered cases. For initial KDC , the value of K
is slightly adapted, since KDC is not exactly equal to the inverse DC gain of the identified
model of the setup. Furthermore, due to noise, nonlinearity of the amplifier and setup and the
used threshold of ǫ = 0.1, the final value of K will never be the same for each measurement.
Although this is the case, the adaptive reset algorithm adapts K in the right way, since limit
cycles and steady state error are removed as observed in Figure 5.9 and 5.10.

Step response, second trial

Based on the results obtained with the adaptive reset algorithm, the value of K at t = 10, for
the case started with KDC is taken as initial value for K in a second measurement. This value
is K = 0.009842 for the measured response. For the simulated response K = KDC , which
will give the same response as already shown. Hence, only a new measurement is performed
for initial K = 0.009842. The results are shown in Figure 5.13 and 5.14. For comparison,
also the response of the measurement for initial K = KDC is shown.

As can be observed in Figure 5.13, the response with the adapted K as initial value is slightly
faster and has a slightly higher overshoot. This is what is expected since the initial K is
slightly higher than the initial KDC used in the first measurement and is closer to the right
inverse gain of the system. The response converges to the desired set-point of 6000 encoder
ticks, although a small fluctuation is observable due to noise. The fluctuations in the control
signal are also caused by noise and the fact that the output of the myRIO (amplifier input)
is an integer value.
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Figure 5.13: Measured step response,
second trial.
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Figure 5.14: Measured step response,
second trial.

In Figure 5.14 the adaptation of K for the complete measurement duration is shown. The
value of K is slightly adapted during this second measurement in order to overcome nonlin-
earities of the system and the presence noise. However, no large adaptations are observable.
This experiment shows that it can be beneficial to use the last found K as initial value for K
in a next measurement.

5.2.2 Disturbance rejection

To check whether or not the adaptive algorithm is able to reject constant input disturbances,
a step disturbance is applied at the plant input. A step reference of 6000 encoder ticks is
taken again. For the disturbance, a step with an amplitude of 30 (raw value) is applied. This
value is around 50% of the steady state control signal. First, the case without adaptation
of K is considered. After that, the same experiment will be performed with the adaptive
algorithm.

Disturbance rejection without adaptive reset

In case of a perfect model and in the absence of disturbances, using K = KDC will result in
perfect step reference tracking and no adaptation of K is required. However, in case of model
mismatches and disturbances, this is not the case anymore. Therefore, the purpose of this
experiment is to show the need of an adaptive algorithm in case disturbances are present.

A measurement with input disturbance is performed for initial K = KDC . This value may
not exactly be equal to the inverse DC gain of the setup and may result in a steady state
error and limit cycle already before the constant input disturbance is applied. This is not an
issue, since the disturbance will create another limit cycle and a steady state error in that
case.
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5.2 Fixed instant (adaptive) reset control 35

The obtained measurement results are shown in Figure 5.15 and 5.16. The ’amplifier input’ is
the perturbed control signal (so with disturbance included). As can be observed, a limit cycle
is present after the disturbance is applied. This is clearly observable in the control signal,
since a periodic pattern with equal amplitude is present from that moment on. Besides that,
a large steady state error becomes present in the response. This is very unwanted.
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Figure 5.15: Simulated disturbance rejec-
tion, without adaptation.
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Figure 5.16: Measured disturbance rejec-
tion, without adaptation.

Disturbance rejection with adaptive reset

The above experiment is repeated, but this time with the adaptive algorithm enabled. As
initial value K = KDC is taken again. Since the adaptive algorithm is enabled, the value of
K can adapt to the right value before the disturbance is applied at t = 4. Instead of only
adding a positive step disturbance of 30 at t = 4, also a step disturbance of -30 is applied
at t = 7 in order to see if the controller is able to adapt in both cases. The simulation and
measurement results are shown in Figure 5.17 and 5.18. As can be observed, it take some
time to reject the disturbances, but they are rejected.

In Figure 5.19 and 5.20 the adaptation of K is shown. To reject the first disturbance, K
should adapt to K = KDC − disturbance

r(t) ≈ 0.004537. In simulation, this is exactly the case.
In the measurement, K is adapted to K ≈ 0.004547 at t = 7, which is close to the expected
value. To reject the second disturbance, the value of K should finally be adapted back again
to the value before the first disturbance was applied. In simulation, K = KDC again at t = 10.
In te measurement K = 0.009567 at t = 4, so between T = 7 and t = 10 the value should
adapt to this value. This is indeed the case, since the value is at t = 10 is K = 0.009567
again. Due to the fact that the algorithm is able to adapt K to the required value, the limit
cycle and steady state error are removed even as the applied disturbances.
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Figure 5.17: Simulated disturbance rejec-
tion, with adaptation.
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Figure 5.18: Measured disturbance rejec-
tion, with adaptation.
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Figure 5.19: Simulated adaptation of K,
fixed instant reset.
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Figure 5.20: Measured adaptation of K,
fixed instant reset.

5.2.3 Piecewise constant reference tracking

In the foregoing experiments, it is shown that the adaptive reset controller is able to adapt
K in case of a constant step reference. In this section, a last experiment is performed where
a piecewise constant reference is used. At t = 1, a reference of 6000 encoder ticks is applied.
At t = 4, the reference is changed to -3000 encoder ticks (3000 encoder ticks in the opposite
direction), at t = 7 to 4500, at t = 10 to -6000 and at t = 13 to 0. The response is measured
for initial K = 0.5KDC , K = 1.5KDC and K = KDC . The simulation and measurement
results are shown in Figure 5.21 and 5.22.

The results in both figures show that the reference signal is tracked for all three cases. For
the cases with initial K = 0.5KDC and K = 1.5KDC , the algorithm has to adapt K first
to the correct value. Therefore, the response at t = 1 is different than at the other instants
where the reference changes.
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Figure 5.21: Simulated piecewise constant
reference tracking with fixed instant adap-
tive reset controller.
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Figure 5.22: Measured piecewise constant
reference tracking with fixed instant adap-
tive reset controller.

In Figure 5.23 and 5.24, the adaptation of K is shown. It can be observed that at t = 1,
K starts adapting. In simulation, K converges to KDC as should be the case. Around the
instants where the reference changes, K is slightly adapted, also when KDC is used. In
the measured response, it is better observable that K is adapted around the moments the
reference changes. This is caused by the used threshold of ǫ = 0.1. Lowering this value will
avoid this, but if an uncertainty or noise is present, the adaptation process of K will be slower
or K will not be adapted at all as explained earlier.

The measurement also shows that K is more often adapted and does not exactly converge to
the same value for the three measurements. This is caused by noise and nonlinearity of the
amplifier and setup. However, the reference is tracked, without a steady state error and limit
cycle, which would not be the case if K was not adapted or not adapted to the right value.
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Figure 5.23: Simulated adaptation of K,
fixed instant reset.
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Figure 5.24: Measured adaptation of K,
fixed instant reset.

5.3 Zero-crossing (adaptive) reset control

Since zero-crossing reset is most popular in literature, the adaptive algorithm will also be
tested for zero-crossing reset. The proposed adaptive algorithm is initially developed for a
fixed instant reset controller, but since the principle of resetting is the same, it is expected
that the adaptation process will work for zero-crossing reset as well. In this section, the
same experiments as done for the fixed instant reset controller will be performed in order to
investigate if this is indeed the case.

For the experiments, the same tuned PID controller with low-pass filter is used, so the con-
troller parameters stay the same, see Table 5.1. However, the reset law is changed to e(t) = 0.
Furthermore, to avoid resetting every sample instant and limit the number of resets due to
noise, the minimum amount of time between two resets (τ) is set to ρ = 0.0012 seconds,
which is three times the used sampling time of 4 ms. Hence, the PI part of the adaptive PID
reset controller is changed to (5.3). Notice that the update process for K (blue lines) is not
changed.

CP Ireset :=







ẋr(t) = e(t) if e(t) 6= 0 or τ < 0.0012

Jk = |ur(t−

k ) − Kk−1r(t)|

Kk =







Kk−1 if |Jk − Jk−1| > ǫ or r(t) = 0
ur(t−

k
)

r(t) if 0 ≤ |Jk − Jk−1| ≤ ǫ and r(t) 6= 0

xr(t+) = Kk
τi

kp
r(t) − τie(t)







if e(t) = 0 and τ ≥ 0.0012

ur(t) =
kp

τi
xr(t) + kpe(t)

(5.3)

Due to the fact that zero-crossings might be caused by noise as well, band limited white noise
is added to the control signal in the simulations. For this purpose the ’band limited white
noise’ block in Simulink is used with the following settings: noise power 0.001, sample time
(of the noise only) 0.01 seconds and seed 23343. The Simulink implementation to obtain the
simulation results can be found in Appendix D.
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5.3.1 Step responses

In this section, the step responses for a reference of 6000 encoder ticks are shown for the
zero-crossing PID reset controller. First simulation and measurement results are given for
the case without adaptation. After that, the same experiment is performed with adaptive
algorithm. Since it is conventional in zero-crossing reset to reset to zero, K = 0 is taken as
initial value. All values of K mentioned in the plot legends indicate the initial value for K
that is used.

Step response without adaptation

The simulation and measurement results for a step of 6000 encoder ticks applied at t = 1
are shown in Figure 5.25 and 5.26. Clearly, a limit cycle is present in the responses. This is
also what is expected, because the after reset value is not right for K = 0. Since K is not
adapted, the limit cycle stays present.
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Figure 5.25: Simulated step response for
zero-crossing reset without adaptation.
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Figure 5.26: Measured step response for
zero-crossing reset without adaptation.

A difference between the simulated and measured response is the overshoot. In the simulated
response, an overshoot is present, while there is not in the measured response. The reference
is zero from t = 0 to t = 1. In this interval, the error may cross zero due to noise and a reset
occurs. Due to the restriction of 0.0012 seconds between two resets, the next reset may occur
after t = 1, which can increase the control signal. This is what happened in simulation.

However, if due to noise the error is less than 0 at t = 1 and the last reset is more than
0.0012 seconds ago, the error crosses zero at t = 1 since the reference changes to 6000 at
that time instant. Hence the integrator resets to zero directly at t = 1. This may lower the
control signal and result in a slower response with less overshoot. This is what happened in
the measurement and therefore, no overshoot is present in the measured response.

To show that the above explanation is right, a new simulation is performed for different noise
settings (power 0.001, sample time 0.1 seconds, seed 23326). For these noise settings, a reset
occurs at t = 1. The results are shown in Figure 5.27. As can be observed, no overshoot is
present due to this reset at t = 1.
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Figure 5.27: Simulated step response for zero-crossing reset without adaptation, different noise.

Step response reset with adaptation

The obtained results for a step of 6000 encoder ticks at t = 1 with the adaptive algorithm
enabled are shown in Figure 5.28 and 5.29. As can be observed, the limit cycle is removed
in simulation and also in the measured response. The difference in overshoot can still be
explained by the presence of noise and the restriction to have at least 0.0012 seconds between
two resets.
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Figure 5.28: Simulated step response for
zero-crossing reset with adaptation.
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Figure 5.29: Measured step response for
zero-crossing reset with adaptation.
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The adaptation of K for the complete experiment duration is shown in Figure 5.30 and 5.31.
In simulation, K is adapted at t = 1.443. In Figure 5.25 it can be observed that this is the
moment the limit cycle has completed one cycle. Hence, the adaptive algorithm adapts K
at that moment, as expected. In the measurement, K is also adapted around t = 1.424. In
Figure 5.26 it can be observed that this instant corresponds also to the instant where the
limit cycle would normally repeat itself in the measurement. Hence, also in this case, K is
adapted in the right way. Furthermore, the convergence of K is faster for zero-crossing reset
than for the fixed instant reset controller. It takes only one iteration before the right value is
found.
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Figure 5.30: Simulated adaptation of K,
zero-crossing reset.
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Figure 5.31: Measured adaptation of K,
zero-crossing reset.

5.3.2 Step response, second trial

The value of K at t = 10 is used as initial value for K in a second measurement. This value
is K = 0.009525738974238 in simulation (which is close to KDC) and K = 0.009796 in the
measurement. Again, a step response for 6000 encoder ticks is measured. For comparison,
also the response for the case with initial K = 0 is shown again.

As can be observed, in Figure 5.32, the response with the adapted value for K as initial value
has a higher overshoot, but is faster than started with KDC . This is caused by the fact that
the controller does not directly reset at t = 1 and the initial value of K is higher than K = 0.
Due to this, it turns out that the control signal is increased at the first reset after t = 1,
which results in a higher overshoot.

In Figure 5.33 the measured response is shown. It can be observed that the response with
the adapted K as initial value for K is faster than for initial K = 0. However, it may happen
that the controller resets directly at t = 1 if the error crosses zero at t = 1 and the last reset
is more than 0.0012 seconds ago. This reset at t = 1 decreases the control signal, which leads
to a slower response. If this reset does not occur, it turns out for the considered controller
and setup that the first reset after t = 1 increases the control signal. This leads to a faster
response, but with a higher overshoot. Although this is the case, the results show that a limit
cycle is not present anymore in this second trial for initial K = KAdapted.
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Figure 5.32: Simulated step response,
second trial.
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Figure 5.33: Measured step response,
second trial.

Figure 5.34 and 5.35 show the adaptation of K. In simulation, K stays (almost) constant
over time as expected, since KAdapted is almost equal to KDC . In the measurement, it can
be observed that K is adapted to a slightly lower value than started with. This is caused by
noise and nonlinearity of the amplifier and setup.
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Figure 5.34: Simulated adaptation of K,
zero-crossing reset.
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Figure 5.35: Measured adaptation of K,
zero-crossing reset.

5.3.3 Disturbance rejection

To investigate if the PID reset controller is able to reject a constant input disturbance in
case of zero-crossing reset, a step disturbance is added to the control signal. The reference
is still set to 6000 encoder ticks and as initial value K = 0 is taken. The simulation and
measurement results are shown for the case without and with adaptation of K.
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Disturbance rejection without adaptation

The disturbance rejection results for the case without adaption are shown in Figure 5.36
and 5.37. The step input disturbance with an amplitude of 30 is applied at t = 4. As
expected, a limit cycle is present in the obtained responses, since K is set to K = 0 and is not
adapted. After the disturbance is applied, the amplitude of de limit cycle decreases, because
the disturbance brings the amplifier input closer to its required steady state in this case.
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Figure 5.36: Simulated disturbance rejec-
tion, without adaptation.
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Figure 5.37: Measured disturbance rejec-
tion, without adaptation.

Disturbance rejection with adaptation

The disturbance rejection is again investigated for zero-crossing reset, but this time with
adaptation of K. An input step disturbance with an amplitude of 30 is applied at t = 4
and at t = 7 an input step disturbance of -30 is applied. The obtained simulation and
measurement results are shown in Figure 5.38 and 5.39.

As can be observed, in simulation it takes longer before the disturbances are rejected. This is
caused by the added white noise and the used threshold of ǫ = 0.1. As long as the difference
between two consecutive jumps in the output of the PI part of the controller is not smaller
than 0.1, K is not adapted. Hence, it may take some time before the condition to adapt K is
fulfilled and the disturbance is rejected. In practice, the noise is not the same as in simulation
and the adaptation condition is fulfilled earlier. This results in an earlier adaptation of K
and a faster rejection of the disturbance. Although this is the case and the speed of rejection
of a constant input disturbance is a bit unpredictable, limit cycles are removed.
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Figure 5.38: Simulated disturbance rejec-
tion, with adaptation.
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Figure 5.39: Simulated disturbance rejec-
tion, with adaptation.

The adaptation process of K in simulation and practice is shown in Figure 5.40 and 5.41.
In simulation, K is first adapted to approximately the inverse DC gain of the plant around
t = 1.443 as should be the case since no significant disturbance is present until t = 4. However,
since noise is added, the value of K will not be exactly equal to KDC . At t = 4.966, the value
of K is adapted to K ≈ KDC − disturbance

r(t) ≈ 0.0045 as is to be expected. Then at t = 7 the
second step disturbance of -30 is applied and K is adapted again to K ≈ 0.0095 ≈ KDC at
t = 8.924. This is exactly what should happen, since the two applied disturbances will cancel
each other, hence K should be adapted to the correct value for the case no disturbance is
applied, which is (very close to) KDC in simulation. Wwithout noise added, it is exactly equal
to KDC .

In the measurement the same adaptation process of K can be observed. The only difference is
that the adaptation takes place at different time instants. This is caused by the fact that the
limit cycle has a different period in practice, since the resets occur at different instants due
to noise. At t = 1.584, K is adapted to 0.009842. Then at t = 4.515 the value of K changes
from 0.009888 to 0.004837, which is around the theoretical expected value. At t = 7.49 the
value is adapted from K = 0.004822 to 0.009811. At t = 10, K = 0.009842 which is close to
the value K was adapted to at t = 1.584 before any disturbance was applied. Furthermore,
K is also slightly adapted over time although the disturbance stays constant. This is caused
by noise, since the update condition for K can be satisfied by noise due to the used threshold
of ǫ = 0.1.
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Figure 5.40: Simulated adaptation of K,
zero-crossing reset.
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Figure 5.41: Measured adaptation of K,
zero-crossing reset.

5.3.4 Piecewise constant reference tracking

The last experiment that is performed is tracking a piecewise constant reference. The same
reference as used for the fixed instant adaptive reset controller is used. The initial value of K
is set to 0. This resulted in the results shown in Figure 5.42 and 5.43. As can be observed,
the trajectory is properly tracked in simulation and in practice. There are some differences
in overshoot observable at the instants the reference changes. These differences are due to
the fact that the controller resets when the error crosses zero and at least 0.0012 seconds is
passed after the last reset.
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Figure 5.42: Simulated piecewise constant
reference tracking, zero-crossing reset.
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Figure 5.43: Measured piecewise constant
reference tracking, zero-crossing reset.

In simulation, it turns out that the controller resets at the moments the reference changes,
except for the first step due to te applied restrictions. A reset at the time instants where the
reference changes, results in a lower control signal and a lower overshoot. In the measurement,
the same behavior is observable, but at t = 7, the controller does not reset due to the applied
restrictions. It turns out that the control signal is increased by the first reset after t = 7,
which leads to a higher overshoot. So, the responses for the zero-crossing reset controller
is sensitive to the moment the reference changes and if a reset is directly applied at that
moment or not. This is in fact also the case for fixed instant reset control, but there it can
be predicted if a reset will occur at the moment the reference changes.
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In Figure 5.44 and 5.45 the adaptation of K is shown. The value of K is adapted from
K = 0 to K ≈ KDC and is fluctuating a bit around this value due to the added noise. In the
measurement, K is also close to this value and is also fluctuating a bit. The value of K stays
almost constant after it is adapted to KDC as should be the case.
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Figure 5.44: Simulated adaptation of K,
zero-crossing reset.
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Figure 5.45: Measured adaptation of K,
zero-crossing reset.

Although the above experiments show that the algorithm is able to adapt K and remove
limit cycles also in case of zero-crossing reset, it cannot be guaranteed that it works for every
minimum phase SISO system. For the system and tuned controller used in this thesis it
turned out that the proposed algorithm is able to remove limit cycles when zero-crossing
reset is used. However, in case a limit cycle has a period of more than one reset interval, this
might not be the case as explained in Chapter 3. Increasing the minimum amount of time
between the resets or by comparing jumps spaced by the period of the limit cycle have to be
considered in that case.
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Chapter 6

Conclusion

The goal of this thesis was to develop a robust reset controller algorithm for minimum phase
SISO systems that is able to reject limit cycles in case of model uncertainty and constant
input disturbances when tracking piecewise constant references. The proposed adaptive PID
reset controller in this thesis adapts the after reset value if two consecutive jumps in the
control signal are (almost) equal. The after reset value is changed by adapting a gain K to
the value the output of the PI part of the controller has before reset, scaled by the inverse of
the reference.

The presented algorithm is based on the assumptions that the system is a minimum phase
SISO system that can asymptotically be stabilized by a standard PID controller and that
a present limit cycle has a period of one reset interval. Although no mathematical proof is
given, an explanation behind this approach was given. Based on obtained simulation and
measurement results, it can be concluded that the proposed fixed instant adaptive PID reset
controller is able to remove limit cycles when uncertainties in the steady state gain are present.
Besides that, the fixed instant adaptive reset controller is able to adapt the after reset value
in such a way that constant input disturbances are rejected as well.

The controller was also tested for zero-crossing reset. The results showed that the algorithm
is also able to adapt K in the right way for zero-crossing reset, at least for the setup and
controller used. It can however not be concluded that the algorithm works for zero-crossing
reset in general. The reason for this is that limit cycles can have a period of more than one
reset interval when zero-crossing reset is used. In that case, it does not work to compare two
consecutive jumps to detect a limit cycle. Although this might be the case, the shown results
prove that the proposed adaptive algorithm works for fixed instant reset control and might
work for zero-crossing reset control as well.
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Chapter 7

Recommendations

The results obtained with the proposed adaptive algorithm in this thesis showed that the
adaptive reset controller is robust against model uncertainties. Furthermore, the controller is
able to reject constant input disturbances. Although the results are promising, the algorithm
can still be improved to make it more robust and to improve the performance.

Although constant input disturbances are rejected, the sensitivity and rejection speed can be
improved. A suggestion to improve the disturbance rejection is to detect and log the time
instant at which a disturbance is applied and the moment when it is (almost) rejected. If
also the values of K are logged at these instants, they can be used in a next run in order to
speed up the disturbance rejection. In order to detect disturbances, a disturbance observer
is probably needed or changes in the error signal can be used. This procedure will make the
controller more valuable for pick and place applications.

A second suggestion for future work is to investigate what the most optimal time instants
are to reset the controller states in case fixed instant reset control is used. For this, the
work of Guo et al. in [3] can be considered. Another suggestion is to test the algorithm
for smooth references and trajectories, non-constant disturbances and for different types of
systems. Furthermore, giving a mathematical proof of the proposed algorithm can also be
considered as part of future work.
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Appendix A

Examples of existing strategies

In this appendix examples of existing reset control methods are given. The examples will
show that the current existing strategies are not robust or does not really provide a solution
for the limit cycle problem.

A.1 Example of PI+CI controller

Consider a standard negative feedback loop as was shown in Figure 1.2. Let C(s) represent
a PI+CI controller as shown Figure 2.1 with kp = 2, τi = 0.1, x(t+) = 0 and pr = 0.5 and
consider a plant given by H(s) = 1

s+0.5

Simulating the closed loop system for a unit step reference gives the results shown in Figure
A.1. For comparison also the case for pr = 0 (only linear integration) and for pr = 1 (only
CI) is shown. As can be observed, the response with PI+CI control is faster than the with a
normal PI controller and has less overshoot.

Furthermore it can be observed that although an oscillation is present in the PI+CI response,
the amplitude decreases over time. This is due to the linear integrator, that takes care of the
steady state error (as long as pr 6= 1) and hence avoids the occurrence of a limit cycle. It can
also be observed that when the linear integrator is not included in the controller (pr = 1), a
limit cycle is present which stays present. Since the controller is a trade-off between linear
and nonlinear control, the response with PI+CI is not as fast as could be with pure reset.
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Figure A.1: Response with PI+CI controller

A.2 Example of reset controller with reset band

This example illustrates the concept of reset control with a reset band as presented in [2].
Consider a negative feedback loop as was shown in Figure 1.2. A PI reset controller with a
reset band of δ = 0.1 is used, which is defined in (A.1). Let the plant be given by H(s) = 1

s+0.5 .
Simulating the system gives the response shown in Figure A.2. As can be observed, a limit
cycle is present at the lower bound of the reset band.

C :=







ẋc(t) = e(t) if (e(t), ė(t)) /∈ Bδ

xc(t
+) = 0 if (e(t), ė(t)) ∈ Bδ

u(t) =
kp

τi
xc(t) + kpe(t) kp = 2, τi = 0.1

(A.1)

However, when a reset band of δ = 0.2 is used, a limit cycle is not present, see Figure A.3.
So, using a reset band can avoid limit cycles, but it depends on the value of the reset band,
which makes it less robust against model uncertainties. Furthermore, as can be observed in
Figure A.3, one reset is applied and after that, the response stays within the reset band where
the controller acts just like a linear controller, which makes the transient response less fast
than it could be.
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Figure A.2: Response with PI reset con-
troller with reset band, δ = 0.1
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Figure A.3: Response with PI reset con-
troller with reset band, δ = 0.2

A.3 Limit cycle analysis

This example will show that the limit cycle analysis as proposed by [16] is not accurate for
non-autonomous systems. Consider the negative feedback loop as was shown in Figure 1.2.
Let the plant be given by H = 1

s+0.5 and take a CI with reset band, which has a describing
function as given in (A.2) (see [2, p.132]). The normal time domain equations are given in
A.3.

CIδ(E, ω) =
1

jω

(

1 +
j4(

√

1 − ( δ
E

)2)

π
ejsin−1(

δ
E

)
)

(A.2)

CIδ :=







ẋc(t) = e(t) if (e(t), ė(t)) /∈ Bδ

xc(t
+) = 0 if (e(t), ė(t)) ∈ Bδ

u(t) = xc(t)

(A.3)

Using the method of [16] for ω = 0.5, ω = 1 and ω = 1.5 gives the plot shown in Figure A.4.
There are no crossings, so based on this analysis no limit cycles should be present. However,
the closed loop step response for the considered system with a reset band of δ = 0.1 shows
the presence of a limit cycle as can be seen in Figure A.5.
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Figure A.4: Limit cycle analysis
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Figure A.5: Response with CIδ

A.4 Example of improved reset controller

The work of Zheng et al. [4] is reproduced here, since it is an interesting control strategy.
A constant reset interval of ∆tk = 1 ms is taken. The plant as used in [4] is defined as
(A.4), with a1 = 106, a2 = 1810 and b = 3 · 106. The reset controller is given by (A.5),
with kp = 0.08 and ki = 300 (which is a PI controller with reset). Furthermore, for the
cost function P0 = 2.1, Q0 = 10−6 and P1 = 0 is taken, which according to [4] leads to
E1 = −2.8 · 10−4, E2 = −6.8 · 10−7 and G = 0.0014.

P :=







ẋ1 = x2

ẋ2 = −a1x1 − a2x2 + bu

yp = x1

(A.4)

RC :=







ẋr = e, t 6= tk

xr(t+
k ) = E1x1 + E2x2 + Gr, t = tk

u = kixr + kpe

(A.5)

The reproduced results of the work of Zheng et al. with the aforementioned values is shown
in A.6, where it is also compared with conventional reset PI reset control (reset to zero) and
standard PI control. As can be observed, the response with the improved reset controller is
faster than the response obtained with a normal PI controller. Furthermore, the response has
(almost) no overshoot.

If conventional reset is applied, a limit cycle is present in the response. With the improved
reset controller there seems to be no limit cycle at first sight, but a detailed view in Figure A.7
shows that a limit cycle with small amplitude is present, even as a steady state error. Probably
this comes due to the fact that the authors mentioned rounded off values for the controller
parameters in the paper. This clearly shows the sensitivity to parameter uncertainties when
reset control is used.
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Figure A.6: Reproduced results of the improved reset controller of Zheng et al. (2007).
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Figure A.7: Limit cycle in step response with improved reset controller.

A.5 Example of general fixed instant PI reset control

This example is performed to check the robustness of the general fixed instant reset controller
as proposed by HosseinNia et al. in [20]. Consider the fixed instant reset controller given by
(A.6) that was used in [20], with K = 1

3 , kp = 0.08, τi = 8
3 · 10−4 and ∆tk = 1 ms. In fact

it is a PI reset controller which resets at fixed time instants. This controller was tuned for a
second order system, given by P (s) = 3·106

s2+1810s+1·106 , which was used in [4].

C :=







ẋr(t) = e(t), if t 6= tk

xr(t+) = K τi

kp
r(t) − τie(t), if t = tk

ur(t) =
kp

τi
xr(t) + kpe(t)

(A.6)
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Now consider the situation that the actual plant is given by P (s) = 3·106

s2+1810s+0.8·106 . Then
the gain K = 1

3 is not equal anymore to the steady state value of the control signal (the
right value is K = 0.8

3 for this case). Simulating the system with the controller as defined in
(A.6) gives the response shown in Figure A.8. As can be observed, a limit cycle and a large
steady state error is present. The limit cycle is best observed in the control signal. Hence,
this method is not robust against model uncertainties.
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Figure A.8: Step response for fixed instant reset control in case of model mismatch.
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Appendix B

M-file for System Identification

1 %% System identification

2 % This file is used to obtain a transfer function of the setup , based on

3 % an open loop input output measurement for a 0.1 - 50 Hz chirp signal.

4

5 close all

6 clear all

7 clc

8

9 % Load data, plot input signal and measured output

10 load ( ’IdentificationData.mat’ )
11 Ts=50e−6; % Sample time [s]

12

13 % Plot identification data

14 figure

15 subplot ( 2 , 1 , 1 )
16 plot ( [ 0 : length ( Input ) −1]∗Ts , Input )
17 title ( ’Input’ )
18 xlabel ( ’Time (seconds)’ )
19 ylabel ( ’Raw value’ )
20 subplot ( 2 , 1 , 2 )
21 plot ( [ 0 : length ( Output ) −1]∗Ts , Output )
22 title ( ’Ouput’ )
23 xlabel ( ’Time (seconds)’ )
24 ylabel ( ’Encoder ticks’ )
25

26 %% Estimate transfer function

27 Ts=Ts ; % Sample time

28 Fs=1/Ts ; % sampling frequency

29 Fmax=Fs /2 ; % Nyquist frequency

30 [ Tio , Fhz ]=tfestimate ( Input ( 1 : end ) , Output ( 1 : end ) , [ ] , [ ] , [ ] , 1 / Ts ) ;
31 M=abs ( Tio ) ; % Magnitude

32 Prad=(angle ( Tio ) ) ; % Phase in radians

33 Frads=2∗pi∗Fhz ; % Frequency in rad/s
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58 M-file for System Identification

34 MdB_dB=20∗log10 ( M ) ; % Magnitude in dB

35 Pdeg=180/pi∗Prad ; % Phase in degrees

36

37 %% Plots of estimated frequency response function

38

39 % Bode plot

40 figure

41 subplot ( 3 , 1 , 1 )
42 semilogx ( Fhz , mag2db ( abs ( M ) ) , ’LineWidth’ , 2 ) ; hold on

43 xlim ( [ 0 . 1 250 ] )
44 xlabel ( ’Frequency (Hz)’ )
45 ylabel ( ’Magnitude (dB)’ )
46 title ( ’Bode plot of plant’ )
47 grid on

48

49 subplot ( 3 , 1 , 2 )
50 semilogx ( Fhz , Pdeg , ’LineWidth’ , 2 ) ;
51 hold on

52 xlim ( [ 0 . 1 250 ] )
53 xlabel ( ’Frequency (Hz)’ )
54 ylabel ( ’Phase (deg.)’ )
55 grid on

56

57 % Coherence plot

58 [ C , w ]=mscohere ( Input , Output , [ ] , [ ] , [ ] , 1 / Ts ) ;
59 subplot ( 3 , 1 , 3 )
60 semilogx (w , C , ’LineWidth’ , 2 ) ;
61 xlim ( [ 0 . 1 250 ] )
62 title ( ’Coherence plot’ )
63 ylabel ( ’Coherence’ )
64 xlabel ( ’Frequency (Hz)’ )
65 grid on

66

67 %% Estimate transfer function

68 data= idfrd ( Tio ( 1 : 5243 ) , Fhz ( 1 : 5243 ) ∗2∗pi , Ts ) ;
69 G=tfest ( data , 2 , 0 )
70 [ num , den ]=tfdata ( G )
71 G=tf ( num , den )
72 [ m , p , w ]=bode (G , Fhz ) ;
73

74 % Compare identified transfer function with measurement

75 figure

76 subplot ( 2 , 1 , 1 )
77 semilogx ( Fhz , mag2db ( abs ( M ) ) , ’LineWidth’ , 2 ) ; hold on

78 semilogx ( w/(2∗ pi ) , squeeze (20∗ log10 ( m ) ) , ’r’ , ’LineWidth’ , 2 ) ;
79 xlim ( [ 0 . 1 250 ] )
80 xlabel ( ’Frequency (Hz)’ )
81 ylabel ( ’Magnitude (dB)’ )
82 title ( ’Bode plot of plant’ )
83 legend ( ’Measured’ , ’Estimated’ )
84 grid on

85

86 subplot ( 2 , 1 , 2 )
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87 semilogx ( Fhz , Pdeg , ’LineWidth’ , 2 ) ; hold on

88 semilogx ( w/(2∗ pi ) , squeeze ( p ) , ’r’ , ’LineWidth’ , 2 ) ;
89 xlim ( [ 0 . 1 250 ] )
90 xlabel ( ’Frequency (Hz)’ )
91 ylabel ( ’Phase (deg.)’ )
92 grid on
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Appendix C

Simulink model of fixed instant
(adaptive) PID reset controller

In this appendix the m-code and Simulink implementation of the fixed instant adaptive PID
reset controller can be found. These files are used to obtain the simulation results for the
fixed instant reset controller that are shown in Chapter 5.

C.1 M-file with model parameters

Below, the m-file with the model parameters is given. This file determines the discrete trans-
fer functions of the plant and the controller that are used in the Simulink model.

1 %% Simulation parameters for fixed instant (adaptive) PID reset control

2

3 % Plant

4 s=tf ( ’s’ ) ;
5 G=7.606e5 /( s^2+46.58∗s+7254) ;
6

7 % PI (reset) controller parameters

8 BW=60; % Desired bandwidth [Hz]

9 kp =0.06; % Proportional gain

10 fi=BW /10 ; % Break -point of integrator [Hz]

11 fd=BW /3 ; % Beginning point of differentiator [Hz]

12 ft=BW ∗3 ; % Taming frequency of differentiator [Hz]

13 fl=600; % Cut-off frequency of low-pass filter [Hz]

14 ti=1/(2∗pi∗fi ) ; % Time constant of integrator [s]

15

16 Cr=kp/ti ; % Parameter of PI reset controller

17 Dr=kp ; % Parameter of PI reset controller

18

19 K=1/dcgain ( G ) ; % Initial value for gain K

Master of Science Thesis M.C.F. Ivens



62 Simulink model of fixed instant (adaptive) PID reset controller

20 epsilon=1e−1; % Threshold to decide if two consecutive jumps are

considered as a limit cycle

21 dtk=4e−3; % Reset interval

22

23 % Lead/Lag + low-pass filter

24 DLP=(s/(2∗ pi∗fd )+1)/( s/(2∗ pi∗ft )+1) ∗ (1/ ( ( s/(2∗ pi∗fl ) )+1) ) ;
25

26 % Sample time and discrete transfer functions

27 Ts =0.0004; % Sample time [s]

28 [ numG , denG ]=tfdata ( c2d (G , Ts ) , ’v’ ) ; % Discretized plant

29 [ numDLP , denDLP ]=tfdata ( c2d ( DLP , Ts ) , ’v’ ) ; % Discretized Lead/Lag + low-

pass

30

31 % All other parameters like reference signal and disturbance(s) have to

be

32 % changed in the Simulink model itself.

C.2 Simulink implementation

In Figure C.1, the overall control loop is shown. In Figure C.2, the implementation of the
fixed instant adaptive PID controller itself is shown.

Figure C.1: Simulink implementation of control loop with fixed instant adaptive PID reset
controller.

M.C.F. Ivens Master of Science Thesis



C.3 Function file to adapt K and to reset the integrator 63

Figure C.2: Simulink implementation of fixed instant adaptive PID reset controller.

C.3 Function file to adapt K and to reset the integrator

Below, the two function files that are used by the Simulink model are given. The first function
shows how K is adapted and the after reset value is determined. The second one shows how
the integrator is reset.

C.3.1 Function to adapt K and to determine after reset value

1 function [ reset , x0 , Jk , K ] = fcn (e , r , trig , Cr , Dr , umin , Jkmin , Kmin , epsilon )
2 % This function determines if two jumps are considered as a limit cycle ,

3 % adapts K and determines the after reset value.

4

5 % Inputs

6 % e = error signal

7 % r = reference

8 % trig = reset controller if true (or 1)

9 % Cr = kp/ti (PI controller parameters)

10 % Dr = kp (PI controller gain)

11 % umin = output of PI controller before it was reset

12 % Jkmin = value of jump in control signal at previous reset instant

13 % Kmin = current value of gain K, before adaptation

14 % Epsilon = threshold to decide if two consecutive jumps are considered

as limit cycle

15

16 % Outputs

17 % reset = is a reset applied (trig is true)

18 % x0 = value to which the integrator resets.

19 % Jk = value of the current jump in the control signal , before K is
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64 Simulink model of fixed instant (adaptive) PID reset controller

20 % adapted.

21 % K = gain

22

23 if trig==1
24 Jk=umin−Kmin∗r ;
25 if abs ( Jk−Jkmin )<=epsilon

26 if r~=0
27 K=umin/r ; % To simulate without adaptation use K=Kmin

28 else

29 K=Kmin ;
30 end

31

32 else

33 K=Kmin ;
34 end

35

36 else

37 Jk=Jkmin ;
38 K=Kmin ;
39 end

40

41 reset=double ( trig ) ;
42 x0=(K/Cr∗r−Dr/Cr∗e ) ;

C.3.2 Function to reset integrator

1 function x0 = fcn ( reset , x0i , state )
2 % This function resets the state of the integrator if the reset law is

3 % satisfied

4

5 % Inputs

6 % reset = if 1, integrator resets

7 % x0i = after reset value

8 % state = current value of the integrator

9

10 % Ouput

11 % x0 = output of the integrator

12

13 if reset==1
14 x0=x0i ;
15 else

16 x0=state ;
17 end
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Appendix D

Simulink model of zero-crossing
(adaptive) PID reset controller

In this appendix the m-code and Simulink implementation of the zero-crossing adaptive PID
reset controller can be found. These files are used to obtain the simulation results for the
zero-crossing reset controller that are shown in Chapter 5.

D.1 M-file with model parameters

Below, the m-file with the model parameters is given. This file determines the discrete trans-
fer functions of the plant and the controller that are used in the Simulink model.

1 %% Simulation parameters for zero-crossing (adaptive) PID reset control

2

3 % Plant

4 s=tf ( ’s’ ) ;
5 G=7.606e5 /( s^2+46.58∗s+7254) ;
6

7 % PI (reset) controller parameters

8 BW=60; % Desired bandwidth [Hz]

9 kp =0.06; % Proportional gain

10 fi=BW /10 ; % Break -point of integrator [Hz]

11 fd=BW /3 ; % Break -point of differentiator [Hz]

12 ft=BW ∗3 ; % Cut-off frequency of differentiator [Hz]

13 fl=600; % Cut-off frequency of low-pass filter [Hz]

14 ti=1/(2∗pi∗fi ) ; % Time constant of integrator [s]

15

16 Cr=kp/ti ; % Parameter of PI reset controller

17 Dr=kp ; % Parameter of PI reset controller

18

19 K=0; % Initial value for gain K
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66 Simulink model of zero-crossing (adaptive) PID reset controller

20 epsilon=1e−1; % Threshold to decide if two consecutive jumps are

considered as a limit cycle

21 rho =0.0012; % Minimum amount of time between resets [s]

22

23 % Lead/Lag + low-pass filter

24 DLP=(s/(2∗ pi∗fd )+1)/( s/(2∗ pi∗ft )+1) ∗ (1/ ( ( s/(2∗ pi∗fl ) )+1) ) ;
25

26 % Sample time and discrete transfer functions

27 Ts =0.0004; % Sample time [s]

28 [ numG , denG ]=tfdata ( c2d (G , Ts ) , ’v’ ) ; % Discretized plant

29 [ numDLP , denDLP ]=tfdata ( c2d ( DLP , Ts ) , ’v’ ) ; % Discretized Lead/Lag + low-

pass

30

31 % All other parameters like reference signal and disturbance(s) have to

be changed in the Simulink model itself.

D.2 Simulink implementation

In Figure D.1, the overall control loop is shown. In Figure D.2, the implementation of the
zero-crossing adaptive PID controller itself is shown.

Figure D.1: Simulink implementation of control loop with zero-crossing adaptive PID reset
controller.
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Figure D.2: Simulink implementation of zero-crossing adaptive PID reset controller.

D.3 Function file to adapt K and to reset the integrator

Below, the two function files that are used by the Simulink model are given. The first function
shows how K is adapted for the zero-crossing reset controller and how the after reset value is
determined. The second function shows how the integrator is reset.

D.3.1 Function to adapt K and to determine after reset value

1 function [ reset , x0 , Jk , K , to ] = fcn (e , r , trig , Cr , Dr , umin , Jkmin , Kmin , epsilon ,
rho , t , ti )

2 % This function determines if two jumps are considered as a limit cycle ,

3 % adapts K and determines the after reset value.

4

5 % Inputs

6 % e = error signal

7 % r = reference

8 % trig = reset controller if true (or 1)

9 % Cr = kp/ti (PI controller parameters)

10 % Dr = kp (PI controller gain)

11 % umin = output of PI controller before it was reset

12 % Jkmin = value of jump in control signal at previous reset instant

13 % Kmin = current value of gain K before adaptation

14 % Epsilon = threshold to decide if two consecutive jumps are considered

as limit cycle

15 % rho = minimum amount of time between resets

16 % t = current time

17 % ti = time of previous reset

18

19 % Outputs

20 % reset = is a reset applied (trig is true)
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21 % x0 = value to which the integrator resets.

22 % Jk = value of the current jump in the control signal , before K is

23 % adapted.

24 % K = gain

25 % to = time instant of previous reset

26

27

28 % Check if it is allowed to reset

29 if (t−ti )>=rho && trig==1
30 trig=1;
31 else

32 trig=0;
33 end

34

35 % Adaptation of K

36 if trig==1
37 to=t ;
38 Jk=umin−Kmin∗r ;
39 if abs ( Jk−Jkmin )<=epsilon

40 if r~=0
41 K=umin/r ; % To simulate without adaptation use K=Kmin

42 else

43 K=Kmin ;
44 end

45

46 else

47 K=Kmin ;
48 end

49

50 else

51 Jk=Jkmin ;
52 K=Kmin ;
53 to=ti ;
54 end

55

56 reset=double ( trig ) ;
57 x0=(K/Cr∗r )−(Dr/Cr∗e ) ;

M.C.F. Ivens Master of Science Thesis



D.3 Function file to adapt K and to reset the integrator 69

D.3.2 Function to reset integrator

1 function x0 = fcn ( reset , x0i , state )
2 % This function resets the state of the integrator if the reset law is

3 % satisfied

4

5 % Inputs

6 % reset = if 1, integrator resets

7 % x0i = after reset value

8 % state = current value of the integrator

9

10 % Ouputs

11 % x0 = output of the integrator

12

13 if reset==1
14 x0=x0i ;
15 else

16 x0=state ;
17 end
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