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Abstract—The new developments in mobile edge computing
(MEC) and vehicle-to-everything (V2X) communications has
positioned 5G and beyond in a strong position to answer the
market need towards future emerging intelligent transportation
systems and smart city applications. The major attractive features
of V2X communication is the inherent ability to adapt to any type
of network, device, or data, and to ensure robustness, resilience
and reliability of the network, which is challenging to realize. In
this work, we propose to drive these further these features by
proposing a novel robust, resilient and reliable architecture for
V2X communication based on harnessing MEC and blockchain
technology. A three stage computing service is proposed. Firstly,
a hierarchcial computing architecture is deployed spanning over
the vehicular network that constitutes cloud computing (CC),
edge computing (EC), fog computing (FC) nodes. The resources
and data bases can migrate from the high capacity cloud services
(furthest away from the individual node of the network) to the
edge (medium) and low level fog node, according to computing
service requirements. Secondly, the resource allocation filters the
data according to its significance, and rank the nodes according
to their usability, and selects the network technology according
to their physical channel characteristics. Thirdly, we propose
a blockchain-based transaction service that ensures reliability.
We discussed two use cases for experimental analysis, plug-
in electric vehicles in smart grid scenarios, and massive IoT
data services for autonomous cars. The results show that car
connectivity prediction is accurate 98% of the times, where 92%
more data blocks are added using micro-blockchain solution
compared to the public blockchain, where it is able to reduce the
time to sign and compute the proof-of-work (PoW), and deliver
a low-overhead Proof-of-Stake (PoS) consensus mechanism. This
approach can be considered a strong candidate architecture for
future V2X, and with more general application for everything-
to-everything (X2X) communications.
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I. INTRODUCTION

Cyber-physical systems (CPS) are turning everything

around us into digital data products and services. CPS are used

to connect all devices through gateways to the central cloud

platform requiring a robust, resilient and reliable architectures

[1]. Vehicular networks are characterized by high mobility

and this leads to latency, reliability and availability challenges.

Next generation vehicular networks require architectures that

are capable of operating in diverse environments with respect

to deployment topology, network type, security and spectral

bands. For example, vehicle-to-everything (V2X) communica-

tion requires large bandwidth and computational resources to

support the large array of sensors and communication chipsets

for the semi- and fully-autonomous vehicles with respect to

the required real applications such as traffic monitoring, fleet

management, distant support for safety and diagnostics [2]–

[5].

In V2X, the in-built vehicle sensor platforms use central-

ization of different functionalities through a built-in server

of the vehicle connected via many actuators, such as CAN,

Wi-Fi, and Bluetooth technologies. The complexity of these

centralized implementation of in-built sensors to the outside

world is dependent on how much services are required from

outside resources. With the emerging setups like vehicle-

to-grid (V2G) [6]–[8], vehicle-to-pedestrian (V2P), vehicle

to industrial internet of things (V2IoT), many features are

needed to connect the in-vehicle sensors and the outside

world for service flexibility. However, the existing supporting

networking functions [9], protocols, consumer technologies

and architectures are not efficient.

Different standardizations have already addressed the

safety-critical applications of the V2X by using redundant

and multiple communication channels and low delay tech-

nologies [10]–[12]. The available solutions have cost and

timing challenges to address as well [13]–[16]. Currently, V2X

rely on multi-technology and multi-network capabilities in

disseminating and collecting information among the vehicles

[17]–[20]. Technical enhancements (network orchestration,

edge computing enhancements, end-to-end security and multi-

connectivity operation) are also big issues. Moreover, the

provision of acceptable levels of services in case of faults,

errors or targeted attacks are big challenges. Therefore, more

than ever before, the new trends and technical enhancements

in V2X communications need a holistic, robust, resilient and

reliable architecture to tackle the current issues [21]–[26].

In a robust vehicular network, the overall system must have
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the ability to cope with the loss of individual nodes and

elements of the network. In communication networks, network

robustness is mostly promoted by redundancy and absence of

leader in the network. The new V2X paradigms may need

scalability to perform well with different sizes and structures

of the network. The introduction or removal of nodes must

not result in drastic change in the overall performance of the

network. To perform many tasks in many different environ-

ments, the architecture must be resilient yet flexible with broad

spectrum and many different technologies available today. In

this paper, a reliable, robust and resilient architecture for V2X

communication is presented. The next subsection provides

the current design and evaluation of available architectures,

discussing their strengths and weaknesses.

A. Related Work

The principle of a vehicular system is related to the swarm

ecosystem. Each node moves independently and has sensing

and communication capabilities. The individual node may or

may not have access to centralized global knowledge and may

consent to cooperate with neighboring nodes to tackle any

given task [27]. In [28], a survey on hybrid architectures for

V2X communication using dedicated short-range communi-

cations (DSRC) and cellular networks is presented. A large-

scale urban road network model is designed for data collection

and dissemination in [29]. The model collects, diffuse and

disseminate the information. The congestion information and

automatic update generation are communicated to the nodes.

The geographical information of the vehicle is taken from

the global positioning system (GPS) and geographic infor-

mation system (GIS) giving travel time and distance covered

by the vehicle. The information is fused to provide compact,

but precise information by checking the congestion, and in

case of slow mobility, the redundant data is removed from

the database. Later, the information is released to the cars

using the broadcast information dissemination procedure. The

update of the information set of the road are analyzed. The

influence of inflow volume on dissemination, effect of con-

gestion information, the number of vehicles on dissemination

of congestion information, coverage time and coverage rate of

information are calculated. In [30], a citywide traffic flow is

predicted using multiple spatio-temporal convolutional neural

networks (MGSTC). Multiple 3D volumes with spatial and

temporal information trained the model using MGSTC and

predicted the inflows and the outflows of the traffic.

Several works came up with various architectures for V2V,

V2I, and I2V communications. Some of these introduced cel-

lular technology for communication while some architectures

followed combinatorial mechanisms. The best combination of

the these technologies were Wi-Fi, 802.11p and cellular so far

as mentioned in [31]. The framework for high performance

vehicular streams for cooperative adaptive cruise control is

presented using transportation and communication layered

architecture. Petri net model for subplatoons is used to provide

fault tolerance using GPS, WiFi, DSRC and cellular tech-

nologies. This research considers communication and stability

challenges concerning communications. However, the archi-

tecture does not consider unplanned human and environmental

factors, and the implementation was focused only to urban

areas and to applications where small coverage areas were

sufficient. The Proposed architecture considers multiple 5G

technologies and the provision of slicing mechanism for EC,

FC and CC. In [32], deep learning (DL) algorithms are used

for distributed intelligent video surveillance (DIVS) system.

Edge computing migrated the data for balanced workload

and computational power at edge node using parallel training,

model synchronization and workload balancing. In [33], cloud

computing algorithms are proposed to improve virtual machine

utilization and scheduling performance.

Geographical migration of processing using fog-enabled

vehicles is proposed in [34] for smart cities. The architec-

ture takes advantage of internet of vehicles to migrate the

task from servers to fog nodes. The selection of vehicle

path is calculated by resource pricing for migration model

and results showed efficiency of the proposed scheme. In

[35], a cellular infrastructure-to-everything application sce-

nario is investigated with three different subarray structures for

massive MIMO, such as fully-connected, sub-connected and

overlapped subarray structures for the comparative analysis

of spectral efficiency, energy efficiency, cost and hardware

complexity. In [36], a scalable IoT datacenter using spine-leaf

topology provided the enhanced fog computing. Smart IoT

applications running on clouds are connected to the fog and

IoT nodes with multilayer virtualization, with infrastructure

monitoring to provide QoS monitoring, performance predic-

tion, data analytics, data mining and cyber security. In [37],

an architecture to disseminate the real time services using

TCP/IP-based single hop connection for vehicular clients,

such as, car parking system. Fog nodes provide bandwidth,

computation, storage and application services to the connected

vehicle clients. Hardware prototype consist of multiple sensors

connected to microcontroller and GSM modules.

In [38], each functional area using deep analysis and mod-

eling of dataset of floating cars and official data is proposed.

The origin-destination (OD) matrix of social vehicles with

a gravity model is predicted, and then the OD matrix is

calibrated with the average growth factor method. Coopera-

tive automated driving architecture is presented for reducing

energy consumption and emissions, and improving the road

safety in [39]. The architecture is platform-independent and

include V2X communication, localization, state estimation,

and longitudinal and lateral control. The architecture uses

data age for predictive control in trajectory tracking. However,

the solution is tested only for two different concept cars for

automated and connected mobility.

Vehicle mobility is exploited to provide the edge assisted

V2X communication in [40]. The proposed solution adopts

a hybrid architecture of convolutional and recurrent neural

networks for customized mobility prediction. The simulated

results from the testbed deployed in Tokyo, Japan validated the

proposed solution when compared with traditional methods.

Adaptive cruise control systems is optimized with vehicle’s

longitudinal dynamics using predicted average driving profile

[41]. The architecture uses cost function and needs to ensure

the real time connectivity to different data sources. However,

the system behavior is tuned using parameter of relative fuel
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consumption reduction. Dynamic services provisioning using

smart hierarchical fog network orchestration are proposed in

[42]. Fog optimizer used cost function and other constraints

to predictive control strategy with respect to reference trajec-

tory. Neural network simulation testbed simulated the SDN

optimization engine that provided the feedback to the neural

network predictive switch controller with a reference fog node

synchronizer. In [43], multiple fixed-cycle traffic light prob-

lems for compound Poisson arrivals provide generalization for

multiple lane, random departure times, left turns, and arrival

rate to be a function of time.

The provision of network security, scalability and relia-

bility is addressed for different architectures, but research

is limited with other parameters. The need of blockchain is

critically analyzed in [44], comparing permissionless (e.g., Bit-

coin/Ethereum) and permissioned (e.g., Hyperledger/Corda)

and central managed databases. In [45], a privacy-aware se-

cure framework for V2X communication is proposed using

blockchain and named data networking. Vehicle plate informa-

tion is used for joining the cluster using a pair of encryption

keys and later verify the information. However, the research

does not include the features of multi-technologies and micro-

blockchain. In [46], a secure LTE-based V2X communication

architecture is proposed. The proposed mechanism focuses on

message delivery and privacy preserving security requirements

in LTE systems. The robustness of the system is maintained

using key distribution mechanisms in which an attacker cannot

predict the international mobile subscriber identity (IMSI)

from listening to the V2X service registration message ex-

change since it is encrypted by a short term symmetric

key. However, the research has an analytical framework to

investigate the secure mechanism by providing the certificates

and encryption mechanisms. In proposed research, we have

exploited the blockchain mechanism to provide the security to

any financial transaction in the whole network. The mechanism

could add transaction value to the block even on the edge.

The mobility of vehicles is inherently a continuous function,

but many architectures use discrete historic data for ranking

data, node and network depending upon the issues of storage

and processing limitation of the nodes. Therefore, several

analytical models and architectures rank the data and nodes

using the transmission range and node connectivity. These

works provide an insight to the possible dimensions of the

V2X communications. So far, to the best of the authors’

knowledge, there is no general architecture available that

tackles not only data and node, but also the network at the

same time. Thus, proposed architecture employs deep learning

based ranking mechanism and considers all three facets (i.e.,

data, nodes and networks) at the same time.

B. Paper Contribution

In this paper, we provide a three-fold contribution by

providing a robust, resilient and reliable architecture for V2X

communication.

1) For V2X communication, we propose a multi-stage com-

putational architecture in which multiple wireless access

technologies are used. A close to user and very low

latency computational mechanism is provided using EC.

A middle layer of FC provides a low-latency network

connection. FC helps in operations of compute, storage

and networking between edge device and cloud resources.

For high bandwidth connections, CC is provided.

2) We introduce multiple access communication technolo-

gies covering Wi-Fi, 802.11p, cellular, controller area

network (CAN), LoRa, and Bluetooth. The architecture

supports multiple streams of data and is designed to

prioritize the data, content type, and network. The data

transferred are ranked among the in-built sensors, out-

board sensors, fog nodes/servers, and the outside remote

world servers depending upon the criticality of the data.

Machine learning algorithms are used to rank the data,

nodes and network for choosing the best ones for for-

warding decisions.

3) The architecture incorporates security and dependability

of the network using the concept of blockchain. The

distributed micro and macro level blockchain solution en-

sures the security by using decentralized SDN controllers

with transparent rules in the network. Blockchain helps

to maintain the integrity of flow rules and encryption

schemes help the confidentiality of the data.

C. Paper Organization

The paper is organized into following sections. Section

II provides the system model and architectural components.

Section III explores multi-stage computing architecture using

5G solutions. The full stack architecture for EC, FC and CC

is explained and the analysis of each stage is given. Section

IV provides the ranking mechanisms for data, nodes, and

networks for communication. The Blockchain architecture is

explained in V and how the electronic transactions are settled

using the blockchain management platform. Practical use cases

of smart grid for plug-in electric vehicles and massive IoT data

services in autonomous cars are outlined in Section VI. Section

VII provides simulation setup, the cross platform integration

and SDN implementation details. The organization of various

layers and APIs’ details of deep learning engine is provided as

well. Section VIII provides the results and the analysis of the

network connectivity, its prediction. Moreover, the simulation

CA(ci, cj) =

{

cai,j
∈ [0, 1]

∣

∣

∣

∣

∣

cai,j
= Z

(

f (ce (ci)× ce (cj))

d (ci, cj)
2

)
∣

∣

∣

∣

∣

}

subject to: f (cei, cej) =

{

rank(cti), if cti = ctj , ∀ci,j ∈ {c(t)}

0, otherwise
(1)
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[CA(t)]n×n =
[{

c(t)ai,j

}]

n×n
∼ (Denter|Ddepart|Ddist), ∀{ci, cj} ∈ U (2)

results of proposed micro-blockchain are compared with the

public blockchain mechanism. Finally, Section IX concludes

this work.

II. SYSTEM MODEL

Let U be the universe of discourse containing cars being

monitored by the implemented sensor network. We assume

the cars are arriving and departing U following a Poisson

distribution [47], [48]. Furthermore, the dynamics of U is

monitored by periodic updates at a fixed interval ∆t, over

a varying window size wt where t is time. Therefore, given

a time window wt = k∆t | k ∈ N and a universe which is

a collection of cars U = C(t) = {ci} such that the indexing

variable i is a unique identifier for each car, regardless of

whether or not the car belongs in U . Thus, {C(t)} models

a stochastic process from a joint distribution of two Poisson

processes (i.e., arrival and departure). Each car ci ∈ {C(t)}
is fitted with communication equipment (CE) with ce(ci) =
{cti} ⊆ P (CT ), where CT = cti is a finite, non-empty set of

available technologies with their respective specifications and

ranks, where rank(cti) ∈ [0, 1]. Each car may be equipped

with several CEs of heterogeneous communication technolo-

gies (CT). Therefore, {cti} can be any possible subset of CT .

The affinity model and system architecture that characterize

the system model are described as follows.

A. Affinity Model

Let CA(cti, ctj , d(ci, cj)) be a real function with bounded

range of [0, 1] and an affinity cost between two cars ci and cj
separated by a distance d(ci, cj). Since each car has multiple

CEs installed, there exists several affinity costs for each CT.

However, the two cars have affinity only if they share at least

one common CT (since, for instance, an LTE module cannot

communicate with highway addressable remote transducer

protocol (HART) module). A compact form of the affinity

cost function is given by (1). In wireless communications,

the intensity of radio waves over distance obeys the inverse-

square law in free space. In a high mobile non free space

vehicular network, the signal can be reflected, scattered or

absorbed by objects in the propagation environment, for which

probabilistic, deterministic models are available [49]–[51].

The affinity cost function CA(ci, cj) returns a set of costs

{cai,j
} bounded by [0, 1] [where |{cai,j

}| = |{cti} ∩ {ctj}|]
corresponding to each data link. [CA(t)]n×n given by (2)

is thus a random, symmetric affinity matrix representing a

stochastic process drawn from a joint distribution of entering

cars Denter, departing cars Ddepart and their varying distances

Ddist due to their respective mobility across U .

As discussed, Denter and Ddepart are assumed to be the

Poisson distribution [52]. However, Ddist comes from a joint

distribution of latitudinal and longitudinal mobility of the cars.

In the worst case scenario, they perhaps converge to Brownian

motion. Consequently, the time series converges to be non-

stationary thus any predictive analysis would be infeasible.

Therefore, we propose to predict the time-series analysis of

the distance for each pair of cars which in turn simplifies the

problem by:

(i) reducing a vector regression for two axes into an uni-

variate time-series analysis problem;

(ii) easing the proximity calculation by expressing it as

distance;

(iii) considering Ddist to be a Brownian motion, thereby

trivializing the proof by using central limit theorem

such that the piecewise distribution of it converges to a

Gaussian distribution. Hence, a recurrent neural network

(RNN) with long-short term memory (LSTM) becomes

an ideal choice to approximate the hidden distribution;

and

(iv) representing the predicted distances of car pairs {ci, cj}

as d
(wh,wf )
i,j based on the historical time window wh

forecasted over wf such that the optimality is expressed

as (3). This returns the optimal pair of cars having the

highest probability to maintain proximity over a period

of time.

argmin
i,j

(

median
(

d
(wh,wf )
i,j

))

(3)

B. System Architecture

The proposed architecture has three major components as

shown by Fig. 1. The first component represents the 5G com-

puting unit with three levels of computing power (i.e, cloud

computing (CC), fog computing (FC) and edge computing

(EC)). The second component employs machine learning to

deal with the prioritization of data, node and network. The

last component features a block chain implementation for

electronic transaction. These three components are described

in the following.

1) 5G, SDN and Edge/Fog/Cloud Computing: 5G and be-

yond network architectures need to meet stringent conditions

with respect to enhanced connectivity and scalability with min-

imal lag times in order to provide services that meet the needs

of the applications. To provide different layers and interfaces

for computing power depending on the peak data rates, latency,

spectral efficiency, mobility and connection density, we pro-

pose three layers of computing in the proposed architecture.

These layers include EC which is the closest to the users,

the FC that bridges the gap between the centralized server

and edge nodes, and CC that has the highest computational

power but are typically far from the users. Virtualized logical

networks provide edge computing services with least time

delays, FC provides connection density and mobility with a

medium latency, and CC for high bandwidth at the centralized

server. Software defined networking (SDN) helps organize the

control and data planes in creating interoperable applications
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Figure 1. Proposed V2X data communication architecture

for the vehicular network ecosystem. The immense increase in

the components and interfaces is to facilitate a secure, robust

and resilient architecture. The resulting challenges brought

about by the increase are explained in Section III.

2) Prioritization of data, nodes, and network: For a net-

work with a massive number of vehicular nodes and sensors,

a huge amount of data is generated. In the architecture, we

propose cleansing and enrichment of the data before content

storage or transmission, and prioritization of data according

to the criticality of the data and the applications. Important

nodes that are critical for the network services are also

ranked depending on the data quality and assurance to work

efficiently and effectively in the network. Since there are

multiple network accesses provided to any node, the priority

of the network is calculated based on the cost function. Further

details on the ranking of the data, nodes and network are

provided in Section IV.

3) Blockchain for Electronic Transactions: To enable fast

and secure electronic transactions in vehicular networks, we

have propose to use blockchain. As soon as a vehicle enters

the network, distributed certification authority assesses and

validates the node information. Then any transaction done by

the vehicle is updated through the help of a distributed ledger

of the blockchain. The detailed working of the blockchain will

be explained in Section V.

III. 5G, SDN AND COMPUTING

How could 5G help provide the computational power de-

pending upon the needs of the users? Three different usages

of the network are taken from 5G cellular communications.

New services and markets need an architecture that could give

solutions for critical communications with ultra-low latency,

ultra-high reliability, and ubiquitous availability, such as in-

dustrial and tactile internet. For massive IoT, the scalability of

sensor nodes and wearable devices can induce new markets,

such as smart utilities, e-Health, smart homes, etc. The other

important features of 5G would be the network mobility,

creation of flexible functions and capabilities to provide higher

data rates and coverage with the optimal resource utilization.

The mathematical modeling is explained thus:

A. Mathematical modeling of Edge/Fog/Cloud Computing

The model of the V2X communication considers three

levels of caching and processing power in the system (CC,

FC and EC), such that CC>FC>EC. The EC contains the

processing on the computational devices, such as group of cars

or even a single car with multiple processing units. The total

computational power (TCP) is the sum of all the computational

power of the network besides the computational resources

needed to migrate the processing from each unit. If migration

of processing between EC and FC is δx and migration between

FC and CC is δy, then the TCP can be written as:

TCP =
∑

(CC + FC + EC)

–
∑

(δx+ δy)
(4)

where TCP (N) = {Nt|t} belongs [0, n − 1] is a finite non-

empty reference string of nodes at any time instant t in the

network. The FC is the section of the network with multiple

EC units inside it. The measure of FC computing power is

higher and is in reference with the number of EC units in the

particular time window.
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FCt =











0, if nt = 0,
n
∑

i=0

(ECi)−
n
∑

i=0

δxi), otherwise
(5)

where FCt is the cumulative EC power at any time instant t.
It is equal to all ECt units and individual units in each section

of the network considered at that particular time. The CC is

the sum of all the resources available at the centralized unit

which can be calculated as:

CCt =











0, if nt = 0,
n
∑

j=0

(FCj)−
n
∑

j=0

δyj), otherwise
(6)

where CCt is the computational power of all the resources

available at any centralized units, the total FCt and ECt in

the network. The net computational worth of the vehicular

network is the sum of all the CC, FC and EC units. Let

function τi return the prediction of the CC, FC and EC

units that provide the predicted computational occurrences

in the network. The forecast network computation (FNC) is

dependent on the prediction of computational nodes in all the

network such that FNCt includes all the predictions done

for the next computation network at any time t and can

be provided by f(
⋃n

i=0 τi). So, the total forecast network

computation is given as:

Power(FNC) = Power(
⋃n

i=0
τi) (7)

If there are ‘f ’ number of CC units, ‘g’ number of FC units

and ‘h’ number of EC units in the network, then (6) can be

written as:

Power(FNC) =

f
∑

k=0

CCk

=

f
∑

i=0

g
∑

j=0

h
∑

k=0

(ECijk − δyij) (8)

Given TNW is the network time, the best and worst case

values of FNC can be calculated from the following equations:

FNCbest = max(FNCt), ∀t ∈ TNW (9)

FNCworse = min(FNCt), ∀t ∈ TNW (10)

B. Selection of Fog Unit for Inclusion

In the traditional vehicular computational network, a normal

node computation or the EC nodes are not considered. In this

case, we chose all those nodes which have minimum criterion

to be a computational node. It may happen that the EC nodes

are computing resources in the network, but not calculated in

the overall strength of the network. So, it may happen that

at a certain time, the EC unit is available in the network and

in future it may not because of the availability of vehicular

resources and nodes leaving the EC network. So, a certain

ECx is selected if it is available for a certain time t. This

will solve the problem of selecting unreliable EC node for

the computational strength of the network. The ECx is most

relative and probable for inclusion if it holds the minimum

criteria function which is given as:

ECx > min(CPt) |t ∈ T (11)

where CP is the minimum computational power of any edge

unit.

1) Priority of Edge/Fog/Cloud: Given that CN is the com-

putational need, PP is the prediction period, SP is the settling

period for a network, L is the latency of the communication, C
is the cost, TL is the traffic load, PreP is the pre-processing

activities (such as data filtering, transformation and clearing),

CO is the computation offload and SR is the storage resource

(cache) of the node. The priority of selecting processing

capability (PCompute) of EC, FC or CC is dependent on the

cost of all the parameters mentioned in (12).

Pcompute = CN + PP + SP + L+ C

+ TL+ PreP + CO + SR (12)

2) Failure of Edge/Fog Computing resource: The process-

ing capabilities of the edge and fog nodes are smaller than that

of the cloud in terms of the storage and processing power of

the platforms. In case the edge computing resource fail to give

the required processing need, the fog node is asked to provide

an alternative of the failed edge node, and if the fog node also

is not able to provide the processing, then the processing load

falls back to the cloud itself.

IV. RANKING OF DATA, NODES AND NETWORK

We consider, IDi is the ID of the vehicle or road infras-

tructure node, Ti is the message periodicity of the sensor, Pi

is the message priority of the sensor, Di is the deadline of the

message, Li is the load of the network at any particular time

and DPi are the dynamic parameters of the network that are

dependent on the vehicle condition and overall system load.

The set of sensor nodes covered within the vicinity of a certain

road side unit (RSU) are S={s1, s2, s3, · · · , sn}, where si is

the number of sensors in the vicinity. The Poisson distribution,

P (x) =
e−λλx

x!
is considered for the arrival and departure of

the any node in the network, where λ is the average arrival

rate per time unit and P (x) is the probability of exactly x
arrivals occurring one time period.

1) Data Priority Function: Given that ∆T is the deadline

by which data must be transmitted otherwise, the data is lost,

Srel is the relative distance between any two nodes and ∆V is

the change in velocity between the receiver and the transmitter

of the data unit. Then, the priority of the data (PD) is a

function given by f(∆T, Srel,∆V ) where the data priority

is defined as:

PD =
(∆v + 1)

(Srel + 1)× (∆T + 1)
(13)

where ∆T and Srel have an inverse relationship with the

priority of the data, and acceleration has direct relation. If
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the deadline of the data is approaching faster, the priority of

that content is higher. And if the distance between the sender

and receiver is short, the priority of the data is higher because

the probability of the accuracy of information is much higher.

Since ∆V can be represented as ∆S/∆T , then (13) can be

written as:

PD =
(Srel +∆T )

∆T × (Srel + 1)× (∆T + 1)
(14)

where (14) is reduced to a function of f(∆T, Srel,∆V ), which

is much faster to calculate than (13).

2) Content Priority Function: When the data is structured

with a specific layout, it contains meaningful information and

contextual knowledge depending upon the objective function.

This organized data is called content. The worth or value

of content varies according to the request for the particular

content. Given that Xi are the interests received at any ith
time and Yj are the total number of interests received by all

nodes across the network, the content priority (PC) can be

defined by (15).

PC =

∑

i=1

Xi

Yj

ti
(15)

3) Network Priority Function: Network priority depends

on the sum of the deterministic network (DNW) parameter

and indeterministic network (IDW) parameter. Let ∆C be the

duration of the contact, QoS is the quality of the network,

and BW is the bandwidth of the network. D is the direction

of the node, A is the availability of the node, and R is the

range of the radio. Then the network priority (PNW ) could be

calculated from (16).

PNW = ∆C +QoS +BW +D +A+R (16)

4) Cost of Network Virtual Function: Any network virtual

function (NVF) is created and sustained if the costs are

reasonable and justified. Let CC be the computational cost

of the function, FS the functional scalability in the network,

I the integrity of the data, and C the centralization or the

decentralization of the functional unit. The cost of network

function virtualization (NFV) (CNFV ) can be calculated from

(17):

CostNFV = CC + FS + I + C (17)

A. Design and Complexity Analysis of Ranking Algorithm of

Nodes

The proposed ML ranking algorithm for ranking the vehic-

ular nodes is provided in 1. Upon initialization the relative

time-stamp is set to 0. The tensor must accumulate adequate

samples to calculate the mean and standard deviation, thus, it

does so for the first window size (w) time stamps. The trend of

varying distance is captured with the rolling (moving) average

and standard deviation (SD), which produces a pair of tensors.

With recursion (19) and (20), the moving average (µ̄
(t)
i,j ) and

SD (σ̄
(t)
i,j ) can be calculated in constant time O(1) for each

pair of vehicles d(i, j)|1 ≤ i, j ≤ n.

Algorithm 1: Proposed ML Ranking Algorithm.

1 Input: [d(i, j)(t)]n×n×n := A tensor time series of

varying distances of window size w.

2 kµ + kσ: weighting coefficients for normalized mean

and SD

3 s.t. kµ + kσ = 1, ∀kµ, kσ ≥ 0
4 Output: [r(i, j)(t)]n×n: A symmetric matrix, rank of

link between each pair of vehicles.

5 Initialize: Set t := 0.

6 if t ≥ w then

7 Go to line 19.

8 Calculate moving mean and SD for capturing the

trend:

9 Set [µ̄(t)]n×n := µ{d(i, j)(t−w)...d(i, j)(t)} as a rolling

mean.

10 Set [σ̄(t)]n×n := σ{d(i, j)(t−w)...d(i, j)(t)} as rolling

SD.

11 if t ≤ 2w − 1 then

12 Go to line 19.

13 Calculate median to capture average trend:

14 Set [µ∗]n×n := Median
t

{[µ̄(t−w)]n×n...[µ̄
(t)]n×n},

median of µ̄(t) over t.
15 Set [σ∗]n×n := Median

t
{[σ̄(t−w)]n×n...[σ̄

(t)]n×n},

median of σ̄(t) over t.
16 Normalization:

17 Set[Zµ∗ ]n×n := Z([µ∗]n×n)
18 Set[Zσ∗ ]n×n := Z([σ∗]n×n)
19 Calculate reliability:

20 Set

[r(i, j)]n×n :=
√

{1− (kµZµ∗)
2
+ {1− (kσZσ∗)

2
}

21 Iteration: Wait for update.

22 Set t := t+ 1.

23 Go to line 6.

24 End.

Figure 2. Sliding window to calculate moving average, SD and their median.

µ
(t+1)
(i,j) =

1

t+ 1
µ
(t)
(i,j) + d(i, j)(t+1) (18)

σ
(t+1)
(i,j) =

[

(σ
(t)
(i,j))

2 + (µ
(t)
(i,j))

2 − (µ
(t+1)
(i,j) )2+

(d(i, j)(t+1))2−(σ
(t)
(i,j))

2
−(d(i,j)(t))2

t+ 1

]1/2
(19)
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Since each µ̄
(t)
i,j and σ̄

(t)
i,j are independent, the iteration to

calculate [µ̄
(t+1)
i,j ] and [σ̄

(t+1)
i,j ] with a multi-threaded (MT)

implementation would take O(1) time and O(n2) otherwise.

In the implementation, a recursive, MT approach is used to

eliminate chances of any abrupt change in (µ̄
(t)
i,j ) and SD

(σ̄
(t)
i,j ) due to outliers, and transforming all

(

n
2

)

time series

in to corresponding scales. Their median is taken into µ∗

(i,j)

and σ∗

(i,j) , an MT implementation with ‘Quick-Sort’; the step

takes O(w log2 w) time. The median can not be calculated

until w number of rolling means and SD are not accumulated.

To calculate the first median, the window has to slide over

itself, which takes w + w − 1 = 2w − 1 samples. Fig. 2

depicts how many time-stamps are required to be sampled

before generating the medians.

Medians are then normalized in the next step with the help

of (20) to scale in a fixed range of [0, 1] which takes O(w)
time with MT.

Z(t)
x =

x(t) −Min({x(t−w)...x(t)})

Max({x(t−w)...x(t)} −Min({x(t−w)...x(t)}
∈ [0, 1]

s.t., x ∈

{

µ∗

(i,j), σ
∗

(i,j)

}

(20)

and finally, the rank r
(t)
(i,j) is calculated as the norm of

[

kµ.Z
(t)
µ∗

kσ.Z
(t)
σ∗

]

. The components are weighted by coefficients kµ

and kσ . The rank represents, reliability of a link based on its

past variations, Z
(t)
µ∗ ≃ 1 denotes the average distance between

the car is increasing, which infers that the vehicles are moving

further apart or the channel cost increases, hence it tends to be

inferior. Z
(t)
σ∗ ≃ 1 denotes the link is very fluctuating hence not

reliable. Therefore, the reliability can be formulated as (21),

which takes O(1) time in MT.

r
(t)
(i,j) =

∥

∥

∥

∥

∥

∥

∥

∥

1−

(

kµ.Z
(t)
µ∗

(i,j)

)

1−

(

kσ.Z
(t)
σ∗

(i,j)

)

∥

∥

∥

∥

∥

∥

∥

∥

∈ [0, 1] (21)

It is trivial to show that for Z∗

µ, Z
∗

σ, kµ, kσ ∈ [0, 1] and

kµ + kσ = 1 yields r
(t)
(i,j) ∈ [0, 1]. Therefore with an MT

implementation, the ranking with a window size of w takes

O(w + w log2 w) time.

The following section will elaborate the use of blockchain

to provide distributed security to the electronic transactions in

vehicular network and its usage in the proposed architecture.

V. BLOCKCHAIN AND ELECTRONIC TRANSACTIONS

Blockchain technology is a digitized, decentralized ledger

that enhances security with the help of a peer-to-peer en-

cryption method of confirming the transactions. The need

for blockchain is ever increasing due to its fundamental

property of immutability and validation. Data is encrypted in

the blockchain. It is possible to prove that data are altered

using the signatures across all ledgers on all the nodes in the

network. The main advantage of electronic commerce through

vehicular mobile network is that it makes the network local

to any user in an ultra-flexible and cost-effective manner;

and blockchain has been used for it [53]. There are many

blockchain solutions available for V2X [53]–[55]. However,

these comes with stringent challenges such as placement

learning for the most efficient tasks completion, coordina-

tion across multiple cars, interaction with onboard and off

board computing, etc. One major concern about these is how

data collection and distribution mechanisms could help build

better electronic commerce systems in vehicular networks

[56]. When it comes to commerce, security comes at the

utmost priority. In the proposed solution, we exploit the use

of blockchain to provide security, decentralized and real time

information as well as transparency.

In the architecture, we adapted the micro-blockchain (MBC)

from [57] to utilize in the solution. The MBC architecture

helps reliability and security in vehicular networks by deploy-

ment in small regions. MBCs reduce the waiting time by small

blocks to do proof of work (PoW) in small regions. Then these

small MBCs combine together to produce a macro-blockchain.

Minimum number of vehicles are needed to create a micro-

block and then these MBCs can be nested repeatedly for quick

response and consensus mechanism.

Since, vehicular data and commercial vehicular transactions

are important for the intelligent transportation system and

these data should not be tampered. PoW is a consensus

mechanism running in the Bitcoin system and it requires all the

blockchain nodes to participate in the auditing process. Thus, it

can be utilized to prevent vehicular data from being tampered.

However, traditional blockchain systems (e.g., Bitcoin) lever-

age one blockchain to audit all the blocks, in which a large

number of blocks have to wait for being audited and cannot

be directly stored in the blockchain. Adopting low overhead

consensus mechanisms can achieve lower latency in terms of

storing a large number of blocks in the blockchain system.

However, low overhead consensus mechanisms are typically

vulnerable to malicious nodes. Therefore, in our proposed

blockchain system, we reduce the waiting time by small blocks

to do the proof of work (PoW) in small regions.

Vehicular data should not be tampered by malicious nodes.

For permissioned blockchains, the number of blockchain nodes

that participate in running a consensus mechanism is typically

small. And the compromising among a few nodes can result

in the tampering to the blockchain system. Comparing to

public blockchains, permissioned blockchains are vulnerable

to malicious nodes. Therefore, permissioned blockchains can

not be considered as alternatives.

Hyperledger Fabric achieves the low latency because it

leverages a small group of nodes to audit blocks. Since the

number of nodes that participate in the consensus process is

small, nodes in Fabric can easily compromise with each other

to tamper data stored in the blockchain system. Comparing

to Hyperledger Fabric, our proposed MBCs leverage the

public blockchain to audit all the vehicular blocks in micro-

blockchains. Many nodes are participating in the consensus

process; thus these nodes are hard to compromise with each

other to attack the blockchain system. Therefore, our proposed

blockchain system is more secure than the traditional permis-
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Figure 3. Micro-blockchain framework for the V2X communications.

sioned blockchain like Hyperledger Fabric.

Moreover, in this work, asymmetric cryptography is used

to ensure the encryption of the data communication between

any nodes in the system. After registering any bid for the

transaction, two possible transactions could be done by any

node in the network, such as to submit a blockchain transaction

or to receive a blockchain transaction. Before doing any of the

these operations, a status checkup is needed from the top of

the blockchain to ensure if the existing transaction is to be

followed or not.

There are different important features of any blockchain

such as ledger, cryptographic hashing and Merkle trees, times-

tamping, consensus with fault tolerance and proof of compu-

tational work. A blockchain containing n blocks, in which

each successive block contains the hash of the previous block,

and other parameters like transaction information, timestamp,

a random number for the mining process and the details for

the protocol to work.

Algorithm 2 describes how the payments of the business

transaction are done. In a vehicular network, when seller x

wants to sell its resources, it identifies itself using a blockchain

address and uses a smart contract to define the terms of sale,

signed with its private key. The seller provides the resources

with a smart lock controlled by a smart contract. Buyer y wants

to buy the resources and signs the contract with its private key.

Agreeing to transfer the money from buyer blockchain address

and id to blockchain address of the buyer. The smart contract

is verified by each node of the blockchain network, checking

if the seller is the owner of the resources and if the buyer has

enough money to pay the seller. If the network agrees that the

conditions are met, the buyer receives the access code for the

smart lock of the smart contract. The blockchain registers the

transaction and the owner of the resources to the buyer list,

and the deduction of the money from the buyer account. The

buyer can now utilize the resources with its private key.

Algorithm 2: Proposed business transaction through

blockchain on Fog/Edge Algorithm.

1 Input: IDs and position of cars, quotation acceptance,

bid

2 Output: Transaction and amount transfer

3 Initialize: Distance between each node

4 while Cluster is predicted do

5 check for minimum requirements for blockchain

unit

6 if BlockchainSell then

7 Forward the transaction to the ledger.

8 else if Blockchainbuy then

9 Forward the transaction to the ledger.

10 Read the ledger updates.

11 Validation of the transaction is needed by

nodes.

12 if TransactionIsV alidated then

13 Block is added to the growing chain.

14 else

15 Block is rejected.

16 Payments are finalized.

17 else

18 Keep Listening for new transactions.

VI. CASE STUDIES

For the case studies, we adopt the proposed architecture for

V2X communication in a robust, resilient and reliable manner.

We chose the following two major case studies depending on

the criticality of communication and massive deployment.
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A. Plugin Electric Vehicles to Smart Grids Communications

Recently, smart grids are facilitating large scale deployment

of renewable energy generators, such as photovoltaic, wind

power generators and Plug-In Electric Vehicles (PHEVs). In

case of V2G communication, appropriate protocols are needed

to communicate between the utility companies and the power

generating units (PHEVs in this case). Security and privacy

issues during the power injection operations among storage

owners and the utility. There are three main actors in this

use case, storage units, broker and utility company. Utility

company wants to buy energy from PHEVs by sending power

prices to the storage units for different time slots. Each storage

unit masks the bid using one-time key shared with the utility.

Power prices are evaluated by each vehicle power unit and

prepares its bid to indicate the power to sell for the specific

time slot with the announced prices. This bid communication

is done between the utility company and individual storage

units, but verified from the distributed nodes. Power can

be purchased in both directions. To avoid the outsiders to

predict and exploit the power injection, utility company and

PHEVs encrypt the communication with shared keys and

use blockchain to validate the bids, acceptance and payment

transactions.

A decentralized ledger with multiple nodes issues public

keys, which removes the threat of spoofing of digital cer-

tificates from one centralized unit. The utility company and

individual storage units have digital certificates with their

identity, public key, expiration date. Due to the blockchain

distributed ledger, a local copy of the entire blockchain is

available for the verification and no signatures need to be

verified. Without the network access, hashes of the certificates

can be looked up. That is why no certificate revocation list

(CRLs) and online certificate status protocol (OCSP) queries

are required, resulting in a better performance.

When a power purchase request for a particular time slot

is made by the utility company, this request is forwarded

to the individual storage nodes and verification is done for

the freshness of the message using a distributed ledger. No

request is allowed to be propagated inside the community if

not verified by the community. In case the storage node does

not accept the proposal, a no interest message is sent to the

utility company. In case of accepting the bid, the request reply

message includes the identities of both parties, timestamp,

and masked bid. This bid is verified by the community and

then the power injection from the node can be calculated. The

proposed architecture can provide privacy preservation of bid

value, location of node, and authenticity of power injection.

B. Massive IoT data services in autonomous cars

In autonomous driving, massive sensing is needed to ensure

the safety of the vehicle, for example, adaptive electronic

braking and steering systems need massive amount of sensors

within a vehicle and from the environment. These sensors

generate enormous data and this data is processed across

different computing units for better results. For offsite migra-

tion of data and processing, higher bandwidths are required.

Moreover, regular daily updates of software, new apps, and 3rd

party software interactions need multiple access technologies

like Wi-Fi, WAVE, and Cellular to provide cost-effective,

robust and resilient communication. For the sake of reliable

and secure mechanism, blockchain is used to validate the

information added by any vehicle to the network. For example,

an accident reported by an autonomous car needs to update

the live map data across different platforms and within the

sensors, and this information is validated by the blockchain

shared data base.

In our daily life, each car has hundreds of sensors, compu-

tational processing units, and storage units, which can vary

with the capacity of car. The computational power of any

car depends on its usage, but have a specific deterministic

configuration. However, when multiple CPUs from the same

car or multiple CPUs of different cars collaborate to create a

small edge CPU (E-CPU) to exchange the resources among

them, the situation is complex. The network provides the

configuration of the car to buy or sell the resources. These

moving small edge units may interact with stable fixed fog and

cloud units placed in the different areas of the city. The quality

of the communication services, such as, standard processing,

memory, bandwidth and delays are also ensured before doing

any business among the cars or edge [58]. These edge and fog

units are registered with the transitive cloud system through the

help of blockchain based secure communication. Randomly

generated pseudonym IDs are provided to the cars and the

E-CPUs to provide the privacy. The IDs are provided to the

transaction of the trade, so that patterns of financial transac-

tions are intact. At any time instant, initialization settings of

the market are broadcast to all the nodes involved and the local

nodes access the blockchain for accepting the pseudonyms

and the network settings. The application diversity of any

vehicle with different resource sharing need more remote V2X

communications, and for which the proposed mechanism can

provide the solution.

VII. SIMULATION SETUP

Microscopic road traffic trajectory database helps to eval-

uate V2X mobility scenarios using various parameters and

attributes such as vehicle coordinate and velocity. In this

section, realistic vehicular traffic data is explained. Moreover,

cross platform integration and experimental settings for the

SDN implementation to calculate the mobility prediction are

elaborated. Moreover, the deep learning engine is briefly

described.

A. Database

In this work, we used a real world 6-lane highway vehi-

cle trajectory database from the U.S. Highway 101 and the

Interstate 80 (I-80) Freeway, known as the Next Generation

Simulation (NGSIM) [59]. The microscopic database includes

the following precise vehicle information for every 100 ms:

vehicle ID, vehicle class (motorcycle, auto, truck), vehicle

dimensions (length, width, and height), frame ID, total frames,

global time, longitude and latitude, vehicle velocity, lane

number (lane 1 to farthest left, lane 5 to farthest right and

lane 6 as auxiliary lane), zone number, section number, and

direction (in terms of left turn, right turn or straight through).
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Figure 4. (a) TSLS-NLS integration framework. (b) Organization of various layers and APIs of deep learning engine with Keras and TF back-end.

B. Cross Platform Integration and SDN Implementation

Among several challenges faced while building an SDN-

NFV based testbed, the major challenge is the implementation

and realistic nature of the results produced. A trivial problem

is cross-platform interoperability, i.e. seamless integration of

the system-level simulation (SLS) such as evaluation of radio

and link layer parameters (SINR, path loss, radio technologies

etc.) and network-level simulation/emulation (NLS) such as

routing, switching, firewall policy and application layer tasks.

In general, tools to perform the said tasks are specialized in

nature, e.g., MATLAB for SLS and GNS3 for NLS. The SDN

philosophy offers a “bird’s eye” view of the network topology,

regardless of the link layer technology used as shown in Fig.

4 (b). Its robust API set and abstraction features enable easy

network automation and programmability. In this work, the

following tools cater for the respective tasks to set up a full-

fledged wireless SDN testbed.

1) MATLAB: System level simulation, evaluation of various

radio parameters.

2) GNS3: A platform for network level emulation. This

allows various network devices such as routers, switches,

firewall, web server, etc. to be virtualised (using Qemu,

Dynamips etc.) or containerized (using Docker). It also

provides load-balancing by scaling the network into a

cluster of multiple compute nodes. In this work, NFV is

implemented by containerizing network devices (Quagga

Routers and OVS) and building networks in GNS3.

3) Mininet-wifi: Mininet-wifi provides easy building of

wireless SDN. It uses MAC_80211_HWSIM drivers to

simulate the Wi-Fi interfaces and provides several mo-

bility and propagation modes. We use Mininet-wifi to

implement a wireless radio interface where users are

mobile and Layer2 connectivity is provided by OVS with

OpenFlow1.3.

4) Opendaylight: It is the openflow controller node that

binds a number of OVSs. This integrates the radio-edge

from mininet-wifi and the wired-core from GNS3, and

exposes a northbound API through which an external

application can read the topology and flow tables, and

customised algorithms may be easily implemented to

process them and results are fed back to the network.

We essentially implemented a custom ranking algorithm

using machine learning to reinforce the dynamic charac-

teristics on the testbed.

5) MySQL: To build a real-time communication between

MATLAB and SDN the environments, we setup a

MySQL database as middleware. Although, there ex-

ists other standard alternatives such as communica-

tion over sockets, real-time unstructured databases like

elastic-Search[60], however, MATLAB only supports

SQL database to export runtime data using ODBC.

Fig. 4 (a) depicts the schematic illustration of integration
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Figure 5. Time and space domain of 4 moving objects over 5 timestamps. (a) Confusion matrix of distance over time. (b) Relative distance between cars in
space domain. (c) Relative distance between cars in time domain.

Figure 6. Determining the ranking of each pair of cars in the discourse. (a) Moving average of varying distance. (b) Moving standard deviation of varying
distances. (c) Z-score of median of moving mean and standard deviation. (d) Rank based on scaled mean and standard deviation.
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Layers

Type Connection Unit(s)

Input LSTM 4
Hidden Dense 4
Output - 1

Activation Sigmoid

Optimizer ADAM

Loss Function Mean Squared Error

Hyper-Parameters
Batch Size 32
Ephochs 200

Early-Stopping Yes
Table I

NEURAL NETWORK ARCHITECTURE PARAMETERS

between SLS and NLS within an SDN framework. Notice

that the VNF containers lie along the overlapped Data and

Control Planes. This is because the container clusters are

further controlled by an orchestration tool such as Docker

Swarm [61] or Kubernetes [62]. There are some custom

APIs that are developed to establish communication between

various components. The SDN Controller exposes RESTFul

API on its northbound, where Inventory and Topology APIs

are used to fetch flow tables and network topology information

respectively.

C. Deep Learning Engine

As the SLS-NLS integration framework establishes a cross-

platform simulation/emulation environment, the deep learning

framework offers intelligence by analysing real-time network

information acquired from the application server. Deep learn-

ing models are capable of resolving any hidden patterns and/or

predicting sequences from historical data. The time-series of

rolling mean (µ∗) and standard deviation (σ∗) of the car-pairs

d(Ci, Cj) over a time-window W are used to calculate their

corresponding rank r(i, j). As the window slides over time, the

varying r(i, j) generates a time series. Cars that are converging

to or diverging from each other produce co-relatable patterns,

and cars having uncorrelated movements leaves no patterns.

The deep learning (DL) model analyses these individual time

series and detect their patterns. The learning problem is a time-

series analysis (TSA) problem with a learning agent, such as, a

RNN with long short-term memory (LSTM). The agent learns

mobility patterns to predict the possible reliability of a car-pair

based on their historical data. A car-par having a high-degree

of correlation results batter prediction. The agents have to learn

the mobility patterns and the optimization function controls the

convergence of the learning algorithm.

Fig. 4 (a) depicts the detailed organisation of various layers

and their interfaces that builds a Deep learning Engine. In this

approach, we opt for a Python3 based development of Deep-

learning models, using Keras [63] v2.3 as a high level API

with Tensorflow [64] v2.0 backend. To accelerate the learning

process, Nvidia RTX2070 GPU with CuDNN library is used.

VIII. RESULTS AND DISCUSSION

1) Data analysis and Ranking: Deep neural network

(DNN) are broadly classified into two special categories based

on their usage, namely: convolution neural networks(CNN)

[65] and RNN, typically used for image processing and time

series prediction problems, respectively [66]. Based on the

type of problem being dealt with, it is trivial to classify it

as a time-series prediction problem, hence RNN is chosen as

a model. In the experimentation, we used the following tuning

parameters as mentioned in Tab. I:

1) Layers: The DNNs consists of total of 3 layers, one input

layer with four inputs (kµ, kσ, µ
∗, σ∗), one hidden layer

with four neurons (selected by trials), and one output

layer with 1 neuron that returns the predicted rank.

2) Activation: The activation function is sigmoid
[

1
1+e−x

]

∈ [0, 1] that bounds the rank within [0, 1]

range.

3) Optimizer: ADAM [67] is a stochastic gradient descent

algorithm, optimal for fast convergence.

4) Loss function: The mean square error (MSE) ǫ =
1
n

n
∑

i=1

(ŷ − y)2 is the heuristic that guides the Gradient

Descent to converge.

5) Hyper-parameters:

Batch Size: Number of samples randomly picked from the

training set at an iteration during the back propagation.

Epoch: Number of times back-propagation runs to tune

the parameters to its optima.

Early Stopping: This feature stops the learning process

one the loss-function converges, hence producing a result

of identical quality without having to iterate for all the

epochs.

Fig. 5 depicts a small scale representation of the problem.

For the sake of simplicity, the universe is assumed to be

consisting of 4 cars and their mobility is captured for 5 times-

tamps. Fig. 5(a) shows the transformation of the confusion

matrix, Fig. 5(b) and Fig. 5(c) illustrates the space and time

domain of the matrix transformation. Hence, the problem is

to approximate the distributions for a given pair of cars.

Fig. 6 depicts the ranking process in four steps; we pro-

pose a Weighted Moving Average based ranking scheme. The

following describes the ranking process.

1) For each pair of cars, generate a vector d(i, j)(t) contain-

ing a time series of varying distance between them.

2) Calculate the moving average and standard deviation

vectors (µ̄(t), σ̄(t)) from d(i, j)(t) for a given window size

(we considered 2 for capturing successive changes) and

a non-zero period (Fig. 6(a) and Fig. 6(b)).

3) Calculate the Median of µ̄(t) and σ̄(t), and perform z-

Transformation to scale them within [0, 1]; let them be

µ∗ and σ∗ (Fig. 6(c)).

4) The rank ri,j is defined as ri,j =
√

1− ((kµµ∗)2 + (kσσ∗)2) (Fig. 6(d)).

The rank is high if the time series is less fluctuating and

median distance is low, hence it is inversely proportional to

both the mean and SD. kµ and kσ are coefficient of µ and σ
respectively such that kµ + kσ = 1.

2) Recurrent Neural Network and Time series Prediction:

After several trials, the hyper-parameters provided in Tab. I

are found to be optimal for Neural network design. Reliability

variation is captured in a time-series and used for training the

network, with the use of multi-threading, the training is made

parallel. To accelerate the training, the Early-Stopping feature
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Figure 7. Determining the Ranking of each pair of cars in the discourse. (a) Loss without early stopping. (b) Loss with early stopping. (c) Comparing accuracy
with respect to reliability of system. (d) Comparing accuracy with respect to deviation from actual reliability.

of Keras library is used which stops the fitting process once

the loss converges (Fig. 7(a) and Fig. 7(b) depict the effect, i.e.

a 98% acceleration for the subjected example). Once trained,

the RNN starts predicting the reliability time series, which

predicts the car pairs having higher probability to maintain

high reliability which further yields a less-fluctuating distance.

Fig. 7(c) depicts the comparison on the actual and predicted

reliability time series of an arbitrary car pair over a common

time domain. Fig. 7(d) shows the deviation from the actual

reliability over time. It is evident that they are out of scale,

but the predicted time series captures the pattern of actual one

successfully.

3) Blockchain analysis: In terms of auditing vehicular data

blocks, the micro-blockchain structure is more efficient than

the traditional public blockchain structure for two reasons.

Specifically, since micro-blockchains will be audited by the

corresponding macro-blockchain, micro-blockchains running

lightweight consensus mechanisms (e.g., proof-of-stake) can

be employed to quickly audit vehicular data blocks. More-

over, in each area, multiple micro-blockchains are employed

to parallelly audit the vehicular data blocks in each area.

To compare public blockchain structure to micro-blockchain

structure, we employ java to simulate micro-blockchain A,

public blockchain B, and public blockchain C. The difficulty

levels of public blockchain B and public blockchain C are set

as 8, and 4, respectively. A higher difficulty level indicates

the public blockchain needs to spend more time on solving

the proof-of-work puzzle. And the simulated micro-blockchain

A is consisting of micro-blockchain A-1 running PoS and

micro-blockchain A-2 employing PoW with a difficulty level

of 6. As shown in Fig. 8 (a), with the lightweight consensus

mechanism and the ability of parallelly auditing data blocks,

micro-blockchain can audit more vehicular data blocks with

less time.

For nodes in a public blockchain, the auditing process

is consisting of signature verification, solving the proof-of-

work puzzle, hashing the previous block, and signing the

verified vehicular data block. For nodes in blockchain running

Proof-of-Stake (PoS), the main time consumption to complete

the vehicular data block auditing process includes signature

verification, previous block hash creation, and verifying data

block signing. As described in Fig. 8 (b), for both micro-

blockchain and public blockchains, time utilized for signing

are almost the same when they audit the same number of

vehicular data blocks; and the signing time grows along with

the number of audited vehicular data blocks. Moreover, since

micro-blockchain A-1 and micro-blockchain A-2 audit blocks

simultaneously, micro-blockchain A and micro-blockchain A-

1 spends equal time on signing data blocks. As presented in

Fig. 8 (c), micro-blockchain and public blockchains spend

almost the same time on hashing the previous blocks when

they have audited the same number of vehicular data blocks.
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Figure 8. Proposed Micro-Blockchain parameters compared with traditional public Blockchains. (a) The relationship between time used to auditing the
vehicular data blocks and the number of data blocks been audited. (b) The relationship between the number of audited vehicular data blocks and the total time
used to sign the audited data blocks. (c) The relationship between the number of audited vehicular data blocks and the total time used to hash the previous
blocks. (d) The relationship between the number of audited vehicular data blocks and the total time used to solve the PoW puzzle.

The blocks in the micro-blockchain are finally audited by the

macro-blockchain. Therefore, micro-blockchain can leverage

a low-overhead PoS consensus mechanism to quickly audit

and store vehicular blocks. Moreover, the proposed blockchain

system contains multiple micro-blockchains. Thus, the system

simultaneously leverage these micro-blockchains to collect and

store vehicular data. Fig. 8 (d) shows less time to solve the

PoW puzzle when the same number of blocks are audited by

the micro-blockchain compared to the public blockchains.

IX. CONCLUSIONS

We have presented a holistic V2X communication archi-

tecture that addresses robustness, resilience and reliability

of the network. The proposed architecture tackles the high

performance vehicle communications with the help of multi-

technology and multi-stage processing, such as cloud, fog and

edge computing. The architecture uses deep learning tool to

rank the data, nodes, and the network selection. The reliability

of the network is handled using blockchain. The results

showed that 98% of the time, car connectivity is predicted cor-

rectly and this eventually helps in organizing the network with

multiple access technologies. The simulation results showed

superiority of proposed micro-blockchain to the conventional

public blockchain with different parameters, such as, signing,

hashing and consumption of PoW. Since the current vehicular

network scenarios are rapidly growing for autonomous cars

and aerial vehicular networks, the requirement for higher data

rates, low latency and reliability are needed in a cost-effective

manner. In these situations, the proposed solution could make

a huge impact when the potential of the proposed models are

fully exploited.
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