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Abstract This study investigates the robust resource-constrained max-NPV project problem with

stochastic activity duration. First, the project net present value (NPV) and the expected penalty cost

(EPC) are proposed to measure quality robustness and solution robustness from the perspective of

discounted cash flows, respectively. Then, a composite robust scheduling model is proposed in the presence

of activity duration variability and a two-stage algorithm that integrates simulated annealing and tabu

search is developed to deal with the problem. Finally, an extensive computational experiment demonstrates

the superiority of the combination between quality robustness and solution robustness as well as the

effectiveness of the proposed two-stage algorithm for generating project schedules compablack with three

other algorithms, namely, simulated annealing, tabu search, and multi-start iterative improvement method.

Computational results indicate that the proactive project schedules with composite robustness not only

can effectively protect the payment plan from disruptions through allocating appropriate time buffers,

but also can achieve a remarkable performance with respect to the project NPV.
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1 Introduction

The max-NPV problem introduced by Russell [31] is a new branch of the resource-constrained project

scheduling problem (RCPSP), in which the project NPV is maximized by advancing activities with cash

inflows as soon as possible whereas delaying activities with cash outflows as late as possible. Many research

efforts on the max-NPV in the project scheduling have received much more attention in the recent years,

compablack with those on the minimization of the project duration. Numberous models and algorithms

for generating a workable baseline schedule under the objective of maximizing the project NPV have

been advocated by various authors, such as Baroum and Patterson [3], Doersch and Patterson [10], Gu et

al. [12], Hartmann and Briskorn [13], He et al. [14], Herroelen et al. [16], Leyman and Vanhoucke [26],

Mika et al. [27], Neumann et al. [30], Tantisuvanichkul and Kidd [34], Waligóra [40], etc. However, the

vast majority of these studies assume a static and deterministic environment with complete information,

where activity durations and resource requirements are known in advance.

It is a well-known fact that in practice the projects are vulnerable to various types of disruptions, such

as resource breakdowns, bad weather conditions, material supplies behind schedule, changes in delivery

date, equipment failures as well as activities that have to be incorporated or abandoned [11, 39, 46]. As

a result, one or more project activities may take more time than anticipated in the baseline schedule,

and the realized project schedule cannot be executed exactly as planned. Moreover, these changes in

the baseline schedule may exert great impacts on the expected project NPV (eNPV) [4, 44] especially

for capital-intensive IT and construction projects, wherein large amounts of money are invested over

long periods. Therefore, it is crucial and practical to generate a stable baseline schedule to ensure that

the realized payment time of cash flows occurs as closely as possible to its original plan in a stochastic

environment.

However, the study on the stochastic project scheduling under the objective of maximizing the eNPV

is comparatively sparse. Buss and Rosenblatt [6] firstly address this problem and aim at maximizing the

eNPV of the Markovian projects-PERT networks where activity durations are exponentially distributed.

This method of the continuous-time Markov decision chain used by Buss and Rosenblatt is still the

basis of some recent studies in this field [7, 33]. Wiesemann et al. [44] deal with activity durations and

cash flows as discrete set of alternative scenarios with different occurrence probabilities and provide an

optimal policy to obtain suitable results. Mohaghar et al. [29] examine project scheduling with the eNPV

maximization through removing the possibility of the increasing in activity durations by the safe floats.

To the best of our knowledge, the research on this problem is basically consideblack as a multi-stage

decision process, which relies on the prior information about the distributions of activity duration. In

addition, the major drawback of the previous studies is that no baseline schedules can be provided for

the project decision makers.

Different from the study above, robust project scheduling, as a popular method of coping with

uncertainties, involves the deployment of a stable proactive schedule to absorb disruptions as much as

possible in the planning phase and of a reactive schedule to react to disruptions that cannot be absorbed

by the proactive schedule during project execution [19, 25, 38]. The literature has distinguished between
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two types of robustness measures: quality robustness and solution robustness. The former refers to the

insensitivity of the objective value to disruptions [18]. The latter refers to the difference between the

baseline schedule and the realized schedule [17].

Despite the popularity of robust project scheduling, the very few works take the project NPV into

consideration, only with the project duration performance or the schedule stability itself. But these

objectives may be unsuitable for capital-intensive projects, wherein financial aspects should be at the center

of the decision maker’s attention. Therefore, we investigate the robust resource-constrained max-NPV

project scheduling problem with stochastic activity durations.

Our contribution is threefold. Firstly, we propose two indices for measuring quality robustness and

solution robustness from the perspective of the project NPV. Secondly, we introduce time buffer allocation

in the stochastic max-NPV problem and propose an EPC procedure to ensure that the payment plan of

cash flows can be achieved as intended in the face of the activity duration variability. Thirdly, we set

up a composite robust scheduling model and develop a two-stage algorithm that integrates simulated

annealing and tabu search to deal with the problem with remarkable performance.

The rest of the paper is organized as follows. The next section is the problem statement. In Section 3,

a time buffer allocation procedure is proposed and a simple project is used as an illustrative example.

In addition, a composite robust scheduling model is constructed. In Section 4, a two-stage algorithm

is developed to solve the model proposed above. In Section 5, an extensive computational experiment

is performed. In the last section, the conclusions of the study are elaborated and a few future research

directions are identified.

2 Problem statement

2.1 Notations and definitions

In this study, we assume that projects are given in an activity-on-node (AoN) representation. That is, a

project is treated as a digraph G = (N,A), where the set of nodes N={0, 1...n+1} represents the project

activities and the set of arcs, A ⊆ N ×N , denotes the zero-lag finish-start precedence relations between

activities. Nodes 0 and n+ 1 are the dummy activities that represent the start and completion of the

project, respectively, which possess zero duration and zero resource usage. In this paper, we limit the

resource category to renewable resources (e.g., machines, manpower or equipment) that are available on a

period-by-period basis and for which a constant amount of the resource type k (k ∈ K) is Rk throughout

project execution. rjk is the resource requirement of activity j for resource type k.

It is known that the baseline schedule determines the start time of each activity, as well as sequences

the activities that use the same resource unit(s) through certain resource-driven precedence relations. An

elegant way to represent those resource-driven relations is a resource flow network, G′ = (N,AR), with N

the same set of nodes as in the original project network G = (N,A) and AR the set of resource flow arcs

[1, 18]. AR connects two nodes i and j if there exists a resource flow f(i, j, k) > 0 for any resource type k

from activity i (when it finishes) to activity j (when it starts).
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We further assume that our NPV problem is consideblack from the contractor’s perspective. Negative

cash flows or cash outflows include different types of costs related to resources, labors, and equipment,

whereas positive cash flows or cash inflows denote payments to be made by the client to the contractor.

Cash flows are associated with the execution of each activity, which is the sum of the contractor’s costs

and the client’s payments for the activity. In this study, cash flows are discounted at the completion time

of each activity with a discount rate α. In the following parts, the basic definitions and notations used

throughout the paper are introduced to help understand the subsequent research.

S
B baseline schedule

S
R realized schedule

sBj planned start time of activity j in the baseline schedule

sRj realized start time of activity j in the realized schedule

dBj duration of activity j in the baseline schedule

dRj duration of activity j in the realized schedule

Pj set of all the direct and indirect pblackecessors of activity j in the arcs A

Sj set of all the direct and indirect successors of activity j in the arcs A

cfj cash flows associated with activity j

cfwj cash flow weight of activity j

MNPV
j margin penalty cost of activity j

ENPV
j expected penalty cost of activity j

L(i, j) longest path between activity i and activity j in the network G ∪G′

δn+1 project deadline

C project completion time

2.2 Robustness types and measures

In this section, we introduce two indices for measuring quality robustness and solution robustness from

the perspective of the project NPV.

2.2.1 Quality robustness

Quality robustness refers to the insensitivity of the baseline schedule to disruptions [37] and is measublack

in terms of the objective function (e.g., project duration, project earliness and tardiness, and project

costs). In our study, we adopt the objective function of the project NPV to evaluate quality robustness,

which is calculated by the following formula.

NPV =

n
∑

j=1

cfje
−α(sBj +dB

j ) (1)
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2.2.2 Solution robustness

Solution robustness or schedule stability refers to the difference between the baseline schedule S
B and the

realized schedule S
R during project execution. The instability cost adopted by Leus and Herroelen [25] is

normally regarded in literature as a common way of measuring solution robustness. This cost is calculated

by the sum of expected weighted deviations in the start times in the realized schedule from those in the

baseline schedule, i.e., ∆(SR, SB) =
∑

j∈N

wjE|sRj − sBj |, where wj denotes the activity disruption cost per

unit time and E represents the expectation operator. However, the obtained values of the instability cost

usually depend on the project execution simulation, which is a computationally demanding especially for

large projects. In addition, this index contains no information of the project NPV [24]. Therefore, we

propose the expected penalty cost of the project NPV index (ENPV) to measure solution robustness.

ENPV
j for activity j is defined as the expected penalty cost incurblack by each activity in delaying the

payment time of cash flows by one-unit time during project execution from its planned payment time in

the baseline schedule.

ENPV
j = MNPV

j × P
(

sRj ≥ sBj
)

(2)

MNPV
j denotes the margin penalty cost that is caused by starting the payment time of activity j

one-unit time later than its planned payment time in the original baseline schedule. Given that the cash

flows are discounted at the completion time of each activity, the MNPV
j value can be calculated by the

following formula:

MNPV
j = cfwj ×

(

e−α(sBj +dB
j ) − e−α(sBj +dB

j +1)
)

(3)

where the cash flow weight, cfwj , of activity j is the sum of the cash flows of the activity itself and the

cash flows of all its successors [3].

P
(

sRj > sBj
)

denotes the probability that activity j cannot be started earlier than planned in the

baseline schedule due to disruptions, i.e.,

P
(

sRj > sBj
)

=
∑

(i,j)∈T (N,A∪AR)

P
(

dRi > sBj − sBi − L (i, j)
)

(4)

Where L(i, j) is sum of the durations of all activities on the longest path between activity i and activity

j in the graph T (N,A ∪AR), which is calculated by the topological sorting method [22, 43]. The set of

arcs AR includes the additional resource arcs that connect two nodes if a resource flow exists between

corresponding activities apart from the precedence relations in the project network. In our study, a

feasible resource network is constructed by extending a parallel schedule generation scheme [1].
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3 Rubust project schedules

3.1 Solution-robust project schedules

To protect the baseline schedule against unanticipated disruptions, researchers have advocated the use

of time buffers in front of project activities so that the uncertainties during project execution can be

compensated to a certain extent [9, 36]. Moreover, a number of time buffer allocation procedures have been

developed for generating stable project baseline schedules [2, 25, 37]. Extensive simulation experiments in

previous studies have revealed the effectiveness of time buffer allocation in providing a solution-robust

project schedule [17, 38].

The activities with greater ENPV
j have more negative effect on the project NPV compablack with

others, and they need more time buffers to protect the propagation of delays in the payment plan

throughout the project. Therefore, we develop an expected penalty cost (EPC) procedure for generating

the solution-robust schedule. The mechanism of the EPC procedure is to iteratively create intermediate

schedules by inserting a one-unit time buffer in front of the activity with the greatest ENPV
j in the current

intermediate schedule until allocating more time buffers no longer improves the schedule stability.

The computational steps of the EPC procedure are designed as follows:

Step 1: Generate an initial unbuffeblack baseline schedule with the minimized project duration by a

branch and bound procedure [8].

Step 2: Calculate the ENPV
j value for each activity in the current schedule following the Equation (2),

and sort all the activities in descending order of the ENPV
j (arbitrary tie-break).

Step 3: Allocate one-unit time buffer ∆ in front of the currently selected activity. Then, increase the

start times of the activity and its direct and indirect successors in the graph G ∪G′ by one-unit time,

and update the current schedule.

Step 4: If the project completion time does not violate the project deadline (C ≤ δn+1), and the
∑

j∈N

ENPV
j results in a lower value, then the update schedule is feasible. Store this one as the input solution

for the next iteration step, and then go to Step2; otherwise, remove one-unit time buffer in front of the

activity and restore the schedule, and then go to Step5.

Step5: If there is no improvement found in the current schedule, take the next activity in the list, and

then go to Step3.

Step 6: If ENPV
j ≤0 and no feasible improvement is found, then the procedure terminates and a local

optimum is obtained.

The EPC procedure allows the managers to mitigate the
∑

j∈N

ENPV
j in the planning phase by wisely

allocating time buffers to improve the schedule stability. However, this procedure without quality robustness

into consideration ignores the optimization of the project NPV.

3.2 Motivating example

In an effort to test the effectiveness of the EPC procedure, we select a simple project example, which

consists of seven activities and only one type of resource with a constant availability of four units in
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per-period. Figure 1 displays the project network of the example in the AoN representation. The number

above each node represents the planned activity duration, while the number below each node denotes

the per-period requirement of each activity for the single resource. Figure 2 depicts a feasible resource

flow network that is expressed by the resource profile representation for the example project. The full

arcs denote the direct precedence relationships in the original project network G, while the dashed arcs

indicate additional precedence constraints imposed by the resource flows in the network G′. The cash

flows (cfj), cash flow weight (cfwj), and margin penalty cost (MNPV
j ) of each activity j are displayed in

Table 1 and the discounted rate α is set at 0.01 for this project.

Fig. 1 A simple project network Fig. 2 A feasible resource flow network

Table 1 Margin penalty cost of each activity

activity cfj cfwj MNPV

j

2 12 12 0.119

3 -17 21 0.209

4 8 38 0.378

5 6 36 0.358

6 30 30 0.299

Table 2 Activity delay

activity activity delay

2 1

3 1

4 0

5 3

6 0

Fig. 3 Unbuffeblack baseline schedule SB
1

Fig. 4 Buffeblack baseline schedule SB
2

An unbuffeblack baseline schedule S
B
1 is depicted in Figure 3, while a buffeblack baseline schedule S

B
2

generated by the EPC procedure is described in Figure 4. The solution robustness values of SB1 and S
B
2

measublack by
∑

j∈N

ENPV
j are 0.480 and 0.348, respectively. Therefore, the baseline schedule S

B
2 with time

buffers is more stable than the unbuffeblack schedule S
B
1 .
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We then suppose that the execution of some activities do not accord with the expectations in the

baseline schedule in a stochastic environment. Hence, the activities may be delayed due to disruptions,

and the activity delay is displayed in Table 2.

S
B
1 and S

B
2 must react to the changes in activity durations and repair the schedule. The corresponding

realized schedules SR1 and S
R
2 are shown in Figures 5 and 6, respectively. However, SR1 and S

R
2 exhibits

the same completion time (C = 9) and the same project NPV (NPV = 35.816). After rescheduling, both

activities 4 and 6 in S
R
1 are affected by their pblackecessor delay (activity 3), whereas the start times

of all activities in S
R
2 remain the same as the original plan S

B
2 . In this sense, the buffeblack schedule

S
B
2 with the protection of time buffers can absorb the unexpected disruptions during project execution

compablack with the unprotected schedule S
B
1 .

Fig. 5 Realized schedule SR
1

Fig. 6 Realized schedule SR
2

Fig. 7 Buffeblack baseline schedule SB
3

Fig. 8 Buffeblack baseline schedule SB
4

As described above, the EPC procedure can build a solution-robust schedule by allocating time buffers,

which protects the payment plan from disruptions. However, the procedure only considers the schedule

stability. In addition, different project deadlines in this procedure will directly affect the schedule stability

and the project NPV for a given baseline schedule. For example, we set the deadline of the project in

Figure 1 as 11 and 10, and the corresponding schedules SB3 and S
B
4 generated by the EPC procedure are

shown in Figures 7 and 8, respectively. SB3 shows an NPV of 35.396 and an
∑

j∈N

ENPV
j of 0.217, while

those for the the NPV and the
∑

j∈N

ENPV
j are 35.741 and 0.293, respectively. In practice, managers not

only expect a satisfactory NPV performance, but also pursue the schedule stability. Therefore, selecting

which between S
B
3 and S

B
4 is a robust schedule is difficult. To obtain a stable baseline schedule that



Robust resource-constrained max-NPV project scheduling with stochastic activity duration 9

considers solution robustness and quality robustness, a composite robustness model is constructed and

presented in the following section.

3.3 Composite robustness model

In the previous section, the objective function of the project NPV is adopted to measure quality robustness.

Meanwhile, the objective function of ENPV, which is defined as the ability to cope with the deviations in

the payment time of cash flows due to the increases in the durations of some activities, is proposed to

evaluate solution robustness. In order to obtain a trade-off schedule between the two robustness measures,

a composite robust scheduling model is constructed. The construction process of this model is displayed

in Figure 9.

Fig. 9 The construction process of the composite robustness scheduling model

The objective function of the model is to maximize the composite robustness (Zcomp) of the schedules,

which is defined as a simple combination of the two single objective functions described above, i.e.,

Max Zcomp =

n
∑

j=1

cfj × e−α(sBj +dB
j ) −

n
∑

j=1

MNPV
j ×P

(

sRj > sBj
)

(5)

Formally, the objective of our model is to determine the start time of each activity j (j = 1, ..., n) in

such a way that:

• The total resource requirements do not exceed the resource availability for each type of renewable

resource in the per-period,
∑

j∈s(t)

rjk ≤ Rk, where s(t) is the set of activities in progress at time t.

• The baseline schedule S
B is generated by the proposed EPC procedure.

• The start time of each activity should satisfy the precedence constraints: sBj = ∆j+maxi∈Pj

(

sBi + di
)

∀j ∈
N\ {0, n+ 1}, where ∆j is the time buffers inserted in front of activity j, and Pj is the set of pblacke-

cessors of activity j in the digraph G ∪G′

• The project completion time should satisfy the negotiated deadline δn+1

• Quality robustness is measublack by
∑

cfj × e−α(sBj +dB
j )

• Solution robustness is measublack by
∑

MNPV
j ×P

(

sRj > sBj
)
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The problem studied in this paper can be consideblack as an uncertain extension of the resource-

constrained project scheduling problem with discounted cash flows (RCPSPDCF), which has been proven

to be NP-hard by researchers [41, 45].

4 Heuristic algorithms

Tabu search (TS) and simulated annealing (SA) are popular metaheuristics and have been applied by

many authors in solving the RCPSP [5, 15, 23, 28]. To avoid falling into a local optimum, SA offers the

probability of accepting a non-improvement move while TS uses a mechanism for exploring wide regions

in the search space. However, TS presents a stronger dependence on the initial solution than that of

SA, i.e., an improved initial solution for TS can contribute to obtaining satisfactory solutions quickly

[21, 42]. In this study, we develop a two-stage algorithm that integrates SA and TS to solve the proposed

composite robust scheduling model.

In the first stage, we utilize SA to obtain the best-found solution. In the second stage, the best-found

solution obtained in the first stage is consideblack as the initial solution of TS for subsequent exploration

of solution space. This method is an attempt to improve the search efficiency of TS with an improved

initial solution. In addition, we present three other standalone algorithms, namely, SA, TS, and multi-

start iteration improvement (MSII, [32]) to provide comparable computational efforts for our two-stage

algorithm, SA+TS.

4.1 Common elements

The common features of the above-mentioned algorithms are illustrated in the following sections.

4.1.1 Solution representation

A feasible solution is represented by two n-element lists below.

• Activity position list, Lposi: This list defines the order that activities are started. It is a precedence-

feasible permutation of activities, in which each activity must be scheduled after all its pblackecessors

and before all its successors so that no precedence constraints are violated. The subscript Lposi denotes

the activity in the pth position of the list L.

• Time buffer list, Bposi: This list indicates the length of time buffers in front of each activity.

A combination of the activity position and time buffer lists, denoted by a pair of lists (Lposi, Bposi),

can be decoded into a precedence and resource feasible schedule S
B = {sB1 , sB2 ...sBn } by exploiting an

extended serial schedule generation scheme. The decoding procedure is described below, in which PLposi

represents the set of immediate pblackecessors of the activity in the pth position of the list Lposi.

Decoding procedure of the extended serial schedule generation scheme

sBL1
= sB0 = 0
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for posi = 2 to n do

sBLposi
= maxj∈PLposi

(sBj + dBj ) +BLposi

while ∃k, t :
∑

j∈s(t)

rjk > Rk do

sBLposi
= sBLposi

+ 1

sBLposi
= sBLposi

+BLposi

while ∃k, t :
∑

j∈s(t)

rjk > Rk do

sBLposi
= sBLposi

+ 1

sBn+1 = max(sBn+1, δn+1)

4.1.2 Initial solution

The initial solution denoted by the pair of lists (Linit
posi, B

init
posi) is obtained by the proposed EPC procedure.

4.1.3 Objective function

For each neighbor solution, the composite objective function Zneig
comp is calculated on the basis of the

neighbor schedule, Sneig = {sneig1 , s
neig
2 ...sneign }, which is characterized by the start time of each activity.

Zneig
comp = Z

neig
qual − Z

neig
stab =

n
∑

j=1

cfj × e−α(sneig
j +dneig

j ) −
n
∑

j=1

MNPV
j ×P

(

sRj > s
neig
j

)

(6)

where Z
neig
qual and Z

neig
stab stand for quality robustness and solution robustness of the neighbor schedule

S
neig, respectively.

In the process of the two-stage algorithm, SA and TS use different mechanisms for generating

neighborhoods. The detailed procedure of the two-stage algorithm will be introduced in the following

sections.

4.2 First stage – simulated annealing

4.2.1 Mechanism of neighbor generation

The neighbor solutions of SA are generated through swapping the activity position, allocating the time

buffer, and operating the combined move. Specifically, three strategies are used in the mechanism of

neighbor generation.

• Activity position swap (APS) - a cyclical shift operates on the activity position list in the following

way:

Step1: Randomly choose one activity A on the pair of lists Lcurr
posi (SA);

Step2: Find the latest pblackecessor B and the earliest successor C of activity A in the current

solution, (Lcurr
posi (SA), B

curr
posi (SA));

Step3: Randomly choose a position D between activity B and activity C;



12 Yangyang Liang et al.

Step4: Move activity A to the position of activity D;

Step5: Obtain a new pair of lists (Lneig
posi (SA), B

neig
posi (SA)) after a cyclical shift of all activities is

applied between the old and the new positions.

This “activity position swap” process is illustrated in Figure 10, in which activity 3 is randomly

chosen to swap the position.

Fig. 10 An example of swapping the position of activity 3

• Time buffer allocation (TBA) - time buffers are allocated into a baseline schedule to offer

protection against disruptions in the following way.

Step1: Randomly choose one activity X on the Bcurr
posi (SA) list;

Step2: Increase the time buffer length for activity X with a discrete value between [−∆,+∆]. First,

the time buffer length ∆ is set at 1 in our implementation. If no improvement is observed after five

iterations, then we use a high ∆ that is set at 3. Then, we change the time buffer length from ∆ = 3

to ∆ = 5 after ten iterations with no improved solution;

Step3: Activity X itself and all its direct and transitive successors correspondingly move forwards

or backwards, and the pair of lists (Lneig
posi (SA), B

neig
posi (SA))is updated;

Step4: After adjustment, if the completion time of the project is beyond the deadline δn+1, then

this neighbor is an infeasible solution; otherwise, it is regarded as a candidate.

• Combined move (CM) - both the activity position swap and the time buffer allocation are operated

simultaneously. CM is performed in the following way:

Step1: Randomly choose one activity Y on the Lcurr
posi (SA) list;

Step2: Swap the position of activity Y following the APS strategy;

Step3: Allocate the time buffer to activity Y following the TBA strategy;

Step4: Update the pair of lists (Lneig
posi (SA), Bneig

posi (SA)) and check whether the neighbor solution is

feasible or not. If C ≤ δn+1, then the solution is feasible; otherwise, generate new ones.

APS, TBA , and CM are chosen randomly with a certain probability. For a given current solution,

neighbor solutions represented by a pair of lists (Lneig
posi (SA), B

neig
posi (SA)) can be generated following the

mechanism proposed above.
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4.2.2 Control parameters

• Initial temperature: The initial value of temperature T init is calculated by the equation, T init =

∆Zinit
comp(SA)

/

ln(χinit) , where ∆Zinit
comp(SA) is the range of change in the objective value after 50

random moves of the initial solution, and the initial acceptance ratio χinit is defined as the assumed

proportion between the accepted moves and all the moves generated for T init.

• Markov chain length: The length of the Markov chain L determines the number of computations

of the objective values at a certain temperature level, which is calculated as LSA
SA+TS = 5N , where N

is the number of activities in the project.

• Cooling scheme: To ensure the selectivity of the procedure, we gradually decrease the temperature

throughout the process following the blackucing function: T curr := µT curr, where µ as the cooling

rate is set at 0.9.

• Stopping criterion: The final temperature T stop is set at 0.01 in this application and the search

process terminates when the current temperature T curr drops to the threshold, i.e., T curr ≤ T stop.

4.2.3 Simulated annealing procedure

Step1: Set the pair of lists (Linit
posi(SA), Binit

posi(SA)) as the initial solution of SA in the first stage, and cal-

culate the corresponding objective value Zinit
comp(SA); set Lcurr

posi (SA) := Linit
posi(SA), Lbest

posi(SA) := Linit
posi(SA),

Bcurr
posi (SA) := Binit

posi(SA), Bbest
posi(SA) := Binit

posi(SA), Zcurr
comp(SA) := Zinit

comp(SA), and Zbest
comp(SA) :=

Zinit
comp(SA); set T

init as the initial temperature, T curr := T init = ∆Zinit
comp(SA)

/

ln(χinit) ;

{The pair of lists (Lbest
posi(SA), B

best
posi(SA)) denotes the best-found solution currently found in SA. In

addition, Zneig
comp(SA) and Zbest

comp(SA) are the objective values that correspond to the neighbor solution

and best known solution in SA, respectively.}

Step2: For a given value T curr, randomly select a strategy to generate neighbor solutions denoted

by the combination of Lneig
posi (SA) and B

neig
posi (SA). If the solution is feasible, then calculate the objective

value Zneig
comp(SA). If the number of computations for the objective value Zneig

comp(SA) is more than 10N ,

then go to Step5; otherwise, go to Step3.

Step3: If∆Zcurr
comp(SA) = Zneig

comp(SA)−Zcurr
comp(SA) > 0, then store Lcurr

posi (SA) := L
neig
posi (SA),Bcurr

posi (SA) :=

B
neig
posi (SA), and Zcurr

comp(SA) := Zneig
comp(SA); then go to Step5; otherwise, go to Step 4.

Step4: Randomly select Rrand ∈ (0, 1); If Rrand < e−∆Zcurr
comp(SA)/T curr

, store Lcurr
acti (SA) := L

neig
acti (SA),

Bcurr
posi (SA) := B

neig
posi (SA), and Zcurr

comp(SA) := Zneig
comp(SA), then go to Step5; otherwise, go to step 2;

Step5: Decrease the temperature following the blackuction function: T curr := µT curr;

Step6: Stopping criterion: If T curr ≤ T stop, then the algorithm terminates, output the best solution

Lbest
posi(SA), B

best
posi(SA) and Zbest

comp(SA); otherwise, go to Step2.
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4.3 Second stage – tabu search

4.3.1 Initial solution

In the second stage, the initial solution of TS that is denoted by the pair of lists (Linit
posi(TS), B

init
posi(TS))

is the best-found solution obtained by SA in the first stage. We set Linit
posi(TS) = Lbest

posi(SA), Binit
posi(TS) =

Bbest
posi(SA), and Zinit

comp(TS) = Zbest
comp(SA).

4.3.2 Mechanism of neighbor generation

In TS, the neighbor solutions are generated by changing the time buffer length without any confliction

to the procedure relations and resource constraints [35]. At each iteration step, a maximum of 2(n− 1)

neighbor solutions exist. For each non-dummy activity in Bcurr
posi (TS), two possible neighbor solutions can

be generated. The first one is obtained by increasing the time buffer length in front of the activity in

the current schedule by one-unit time (plus-move). The other is obtained by decreasing the time buffer

length of this activity by one time period (minus-move). This strategy is called the buffer length change

(BLC), which operates in the following way.

Step1: For each non-dummy activity in Bcurr
posi (TS), increase or decrease the time buffer length of this

activity by one-unit time at a time and keep the time buffers of all other activities unchanged; then

update L
neig
posi (TS) and B

neig
posi (TS);

Step2: Correspondingly move the start times of the activity itself and all its direct and transitive

successors forward or backwards by one-unit time; then update the neighbor schedule S
neig(TS);

Step3: After adjustment, if C > δn+1, then this neighbor solution is infeasible. The others that satisfy

the project deadline are regarded as the candidate set;

Step4: Select a feasible neighbor solution (Lneig∗

posi (TS), Bneig∗

posi (TS)) such that Zneig∗

comp (TS) is the

maximized one for all the neighbor objective values Zneig
comp(TS) in this iteration.

4.3.3 Tabu list

The tabu list that is used to record the steps of neighbor solutions is managed according to the tabu

navigation method [28]. The length of tabu list is set at ⌈√n⌉ in our implementation, where n is the

number of project activities. Whenever a move is performed, its reverse is added to the tabu list in order

to avoid returning to a solution that has been visited. The oldest existing move is removed from the front

of the list following the FIFO (first-in-first-out) policy.

All moves in the this tabu list are forbidden. However, if a solution generated by an improvement

move is better than the best solution that has been found so far, then cancel the forbidden status of the

move.

4.3.4 Stop criterion

A reasonable rule must be set up to end the search process and thus ensure the computational capability

of TS. In order to assure a comparable computation effort for each algorithm, the number of feasible
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solutions visited by SA in the first stage, which is denoted as NumSA
SA+TS , is recorded and taken as the

stop criterion for TS in the second stage. In other words, if the total number of the solutions visited

by TS reaches NumSA
SA+TS , then the algorithm terminates and outputs the best-found solution, i.e.,

NumTS
SA+TS = NumSA

SA+TS .

4.3.5 Tabu search procedure

Step1: Set the best solution obtained in SA as the initial solution of TS, Linit
posi(TS) = Lbest

posi(SA),

Binit
posi(TS) = Bbest

posi(SA), and Zinit
comp(TS) = Zbest

comp(SA); then set Lcurr
posi (TS) := Linit

posi(TS), L
best
posi(TS) :=

Linit
posi(TS), B

curr
posi (TS) := Binit

posi(TS), B
best
posi(TS) := Binit

posi(TS), Z
curr
comp(TS) := Zinit

comp(TS), Z
best
comp(TS) :=

Zinit
comp(TS), and Num = 0, Numneig = 0;

Step2: Construct a set of neighbor solutions following the BLC strategy. If the solution is feasible,

then Numneig = Numneig + 1;

Step3: Transform the pair of lists (Lneig
posi (TS), B

neig
posi (TS)) to a feasible neighbor schedule S

neig(TS)

and calculate the corresponding objective value Zneig
comp(TS);

Step4: Sort all the objective value Zneig
comp(TS) in descending order. In this list, the first solution with

the maximum objective value is set as Zneig∗
comp (TS). Check whether the move to Zneig∗

comp (TS) is in the tabu

list. If the answer is true,then go to Step5; otherwise, go to Step6.

Step5: If the move leading to the Zneig∗
comp (TS) belongs to the tabu list, and Zneig∗

comp (TS) > Zbest
comp(TS),

then set Lcurr
posi (TS) := L

neig∗
posi (TS), Bcurr

posi (TS) := B
neig∗
posi (TS), and Zcurr

comp(TS) := Zneig∗
comp (TS). There-

after, cancel the forbidden attribute of the move and replace the oldest existing move in the tabu

list. Meanwhile, set Lbest
posi(TS) := Lcurr

posi (TS), B
best
posi(TS) := B

neig∗
posi (TS), Zbest

comp(TS) := Zcurr
comp(TS), and

Num=Num+|Numneig|, and then go to Step7;

Step6: If the move corresponding to the solution Zneig∗
comp is non-tabu move, then set Lcurr

posi (TS) :=

L
neig∗
posi (TS), Bcurr

posi (TS) := B
neig∗
posi (TS), Zcurr

comp(TS) := Zneig∗
comp (TS), and Num=Num+|Numneig|, and

update TL. If Zneig∗
comp (TS) > Zbest

comp(TS), then set Lbest
posi(TS) := L

neig∗
posi (TS), Bbest

posi(TS) := B
neig∗
posi (TS),

and Zbest
comp(TS) := Zneig∗

comp (TS), and then go to Step7;

Step7: If Num > NumTS
SA+TS , go to Step8, otherwise, go to Step2;

Step8: Output Lbest
posi(TS), B

best
posi(TS), and Zbest

comp(TS).

4.4 Comparable algorithms

Three other comparable algorithms, SA, TS, and MSII, start with the same initial solution and employ the

same solution representation proposed above. In addition, MSII uses the same neighborhood mechanism

as those applied in TS. To avoid the local optimum, MSII restarts with another random feasible solution

when no improving moves exist.

To ensure a comparable computation effort for each algorithm, we set the same number of feasible

solutions for SA, TS, SA+TS, and MSII in the computational experiment. The number of feasible solutions

visited by SA (the single algorithm), which is denoted as NumSA, is determined by two parameters,

namely, Markov chain length and cooling rate. To maintain the feasible solutions of SA same with the
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two-stage algorithm (SA+TS), the length of the Markov chain in SA is set to LSA = 10N compablack

with LSA
SA+TS = 5N in SA+TS, i.e., NumSA = NumSA+TS = NumSA

SA+TS +NumTS
SA+TS . The feasible

solutions of SA, NumSA, is taken as the stop criterion for TS and MSII. In other words, TS and MSII

terminate and output the best-found solutions as the desirable ones when the numbers of the solutions

they have visited reach NumSA, i.e., NumSA = Num
stop
TS = Num

stop
MSII . On the basis of the above

settings, the total number of feasible solutions visited by SA+TS is the same as those of SA, TS, and

MSII, i.e., NumSA+TS = NumSA
SA+TS +NumTS

SA+TS = NumSA = Num
stop
TS = Num

stop
MSII .

5 Computational experiment

5.1 Experimental layout

To illustrate the capability of the proposed two-stage algorithm (SA+TS) to generate proactive project

schedules with composite robustness, an extensive simulation study is performed to compare it with

several other algorithms, namely, SA, TS, and MSII. A set of instances is randomly constructed by the

project generator-ProGen to ensure that the comparison is carried out on a common basis. The parameter

settings in our experiment are shown in Table 3. All the instances are put online for further verification.1

Table 3 The setting of control parameters for ProGen

Number of non-dummy activities 10, 30, 50

Number of instances generated for a given number of non-dummy activities 100

Number of start and end dummy activities Randomly selected from 1, 2, and 3

Maximal number of pblackecessors or successors of each activity 4

Order strength 0.3, 0.5, 0.7

Activity durations (dBj ) Randomly selected from the interval [1, 10]

Discount rate (a) 0.01

Cash flows of activities (cf) Randomly selected from the interval [−100, 100]

Types of renewable resource (K) 3

Number of renewable resource 1 (R1) 10

Number of renewable resource 2 (R2) 10

Number of renewable resource 3 (R3) 10

Requirement of renewable resource 1 by activity j (rj1) Randomly selected from the interval [1, 10]

Requirement of renewable resource 2 by activity j (rj2) Randomly selected from the interval [1, 10]

Requirement of renewable resource 3 by activity j (rj3) Randomly selected from the interval [1, 10]

Deadline of the project (δn+1) δn+1=1.3 × Smin, where Smin is the minimum project duration

The realized activity durations are assumed to follow a right-skewed lognormal distribution in the

simulation experiment, which is also used by Herroelen and Leus. [17], Tukel et al. [35] and Hu et

al. [20]. More specifically, the dRj for activity j is randomly generated by the lognormal distribution

function, allowing us to simulate the project execution with varying levels of uncertainty (represented

by the standard deviation, σ) in the activity durations while keeping the mean durations unchanged. In

our experiment, 1000 simulation replications for each project instance as well as 1000 realized activity

durations for each activity are generated, and the average performances are calculated for various methods

for testing. Three levels of σ (i.e., σ ∈ {0, 3, 0.6, 0.9} ) are used to represent a project uncertainty that is

Low (L), Medium (M) or High (H), respectively.

1 https://ww2.mathworks.cn/matlabcentral/fileexchange/67332-900-project-instances-are-randomly-constructed-by-the-

project-generator-progen
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The expected penalty cost is developed to measure solution robustness in Section 2.2.2, however,

the probability P (sRj ≥ sBj ) becomes a deterministic result for a given dRj in the simulation experiment.

Therefore, we propose a surrogate measurement that is defined as the total expected penalty cost of

cash flows resulting from deviations between the realized start time sRj and the planned start time sBj to

estimate solution robustness, i.e.,

Zstab =

n
∑

j=1

MNPV
j × E

∣

∣sRj − sBj
∣

∣ (7)

The simulated execution of a baseline schedule uses the parallel scheduling generation scheme to

determine the realized start time sRj of each activity. The literature has distinguished two types of

scheduling policies in the project simulations: roadrunner scheduling policy and railway scheduling policy

[36]. In the former, the activities should start as soon as possible when all their pblackecessors have

finished and when enough resource units are available. The latter one requires that the realized start time

sRj should not start earlier than its planned start time sBj to increase the schedule stability [38]. Therefore,

we apply the railway scheduling policy to maintain the stability of the payment plan of activities during

project execution, i.e.,

sRj = max
(

sBj , ∆j +maxi∈Pj

(

sRi + dRi
))

, ∀j ∈ N (8)

with the time buffer length ∆j inserted in front of activity j.

5.2 Performance of algorithms

In this section, we conduct a set of experiments regarding the efficiency of the proposed two-stage

algorithm (SA+TS) as opposed to three other algorithms, i.e. SA, TS, and MSII. Six indicators are

defined to evaluate the performance of these proposed four algorithms.

• Best(%): Percentage of the instances for which a certain algorithm yields the maximum value of the

objective function Zcomp among SA, TS, MSII, and SA+TS.

• Zbest
comp: Best-found solutions of the objective function.

• A-GAP (%): Average relative deviations from the best-found solutions Zbest
comp after 1000 evaluations.

• M -GAP (%): Maximal relative deviations from the best-found solutions Zbest
comp after 1000 evaluations.

• A-CPU(s): Average computational time.

• M -CPU(s): Maximal computational time.

The comparison results of the experiment are presented in Table 4. When computational times are not

taken into consideration, our two-stage algorithm (SA+TS) outperform SA, TS, and MSII in terms of

Best, Zbest
comp, A-GAP , and M -GAP , and these superiorities become more remarkable especially when the

project instances become larger. In searching for the best-found solutions, we find that 520 instances out

of 900 (57.78%) are solved effectively by SA+TS compablack with SA (23.33%), TS (12.78%), and MSII

(6.11%). These results are not surprising because the search process of our two-stage algorithm integrates

SA and TS, thereby possessing higher search efficiency and exploring more solution space than do simple
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search procedures, such as SA, TS, and MSII. Table 4 also shows that the performance of SA is better

than that of TS because SA uses a more complex mechanism to generate neighbor solutions than that of

TS. TS and MSII employ the same neighbor generation mechanism and termination criterion. However,

TS can obtain better results than those of MSII because the former can avoid the feasible solutions to be

visited repeatedly.

With regard to computational time on the basis of the same number of feasible solutions visited by

each algorithm, which is reflected by the A-CPU and M -CPU indices, MSII is the fastest, followed by

TS, SA+TS, and SA as the slowest. This result is due to the fact that SA exhibits the most complex

search process among the studied algorithms and thus requires much computational effort within the

acceptance scope to obtain a satisfactory solution. Concerning TA and MSII, since MSII does not need to

spend additional time to manage the tabu list and the cyclical shift compablack with TS such that the

times obtained for MSII are significantly shorter than those for others. The performance of the A-CPU

and M -CPU indicators for SA+TS is between SA and TS, it is quite understand that half of feasible

solutions of SA+TS are generated by the mechanism of SA; the other half ones are constructed by TS.

Table 4 Computational resluts of the algorithm performance

N-2 OS Algorithm Best(%) Zbest
comp A-GAP(%) M-GAP(%) A-CPU(s) M-CPU(s)

10

0.7

SA 34 60.56 0.39 3.13 5.34 5.97

TS 13 59.75 0.53 4.71 4.03 4.64

MSII 8 55.61 0.95 5.38 2.63 3.12

SA+TS 45 61.83 0.26 1.75 4.88 5.23

0.5

SA 30 58.59 0.42 3.91 4.56 5.21

TS 19 57.42 0.56 5.18 3.77 4.26

MSII 8 53.35 1.12 6.23 2.01 2.68

SA+TS 43 59.44 0.31 1.79 4.05 4.83

0.3

SA 32 58.26 0.35 3.48 4.21 4.56

TS 17 57.31 0.47 4.49 3.23 3.67

MSII 11 54.89 0.79 5.93 1.86 2.34

SA+TS 40 59.17 0.25 1.57 3.78 4.13

30

0.7

SA 23 154.65 1.72 4.34 16.73 17.52

TS 12 148.42 2.47 6.03 12.26 13.49

MSII 6 141.65 3.83 8.59 7.55 8.08

SA+TS 59 161.03 1.36 3.68 14.43 15.64

0.5

SA 24 165.85 1.47 5.21 17.32 17.95

TS 10 161.56 2.63 6.54 13.28 14.08

MSII 5 157.93 3.27 8.02 7.64 8.27

SA+TS 61 170.45 1.29 3.46 15.33 16.98

0.3

SA 22 158.52 1.16 4.89 16.34 17.04

TS 14 152.34 2.26 6.79 12.66 13.05

MSII 6 145.03 3.28 7.88 8.03 8.84

SA+TS 58 164.26 0.92 2.81 14.37 15.56

50

0.7

SA 15 398.03 3.93 7.53 59.84 60.96

TS 10 380.25 5.02 8.87 45.03 46.21

MSII 4 363.55 5.98 10.73 31.16 32.57

SA+TS 71 412.53 2.83 4.72 53.42 54.81

0.5

SA 16 387.12 3.26 6.65 58.15 59.26

TS 12 376.43 4.27 8.03 43.18 44.05

MSII 2 358.65 5.63 9.87 30.41 31.54

SA+TS 70 398.33 2.05 3.98 52.28 53.95

0.3

SA 14 418.26 3.56 6.62 58.18 58.54

TS 8 405.25 4.84 8.42 45.68 46.47

MSII 5 389.38 6.02 10.73 28.51 30.36

SA+TS 73 431.73 2.37 4.58 50.19 51.25

Figure 11 shows how the best-found solution of each algorithm (SA+TS, SA, TS, and MSII) improves

as the simulation replications increase for the case with order strength 0.3, 10 activities. As denoted in

Figure 11, SA+TS has the fastest convergence speed and best quality, and then SA, TS, and MSII works
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worsts. This follows from the fact that SA+TS both has an improved initial solution and several strategies

in the mechanism of neighbor generation, which ensures higher search efficiency and more solution space

than SA, TS, and MSII.

Fig. 11 Best-found solutions Zbest
comp as a function of replications

5.3 Robustness analysis

To verify whether the buffeblack schedules with composite robustness outperform the schedules with the

single robustness or the schedules without time buffers, five types of schedules (F1, F2, F3, F4, and F5)

are constructed.

• F1: buffeblack schedules with composite robustness maximization.

• F2: unbuffeblack schedules with composite robustness maximization.

• F3: buffeblack schedules with the EPC minimization.

• F4: unbuffeblack schedules with the project NPV maximization.

• F5: buffeblack schedules with the project NPV maximization.

For each instance generated by the ProGen, we adopt four algorithms (i.e., SA, TS, MSII, and

SA+TS) to generate the corresponding baseline schedules F1, F2, F3, F4, and F5 according to their

different objective functions. Tables 5-7 provide the statistical results of Zcomp, Zqual, and Zstab that

represent the average objective values of composite robustness, quality robustness, and solution robustness,

respectively, after 1000 simulation runs over all instances under three levels of duration variability. First

of all, as uncertainty (σ) in the project environment increases, Zqual decreases, whereas Zstab increases

as pblackicated in all cases. It is obvious that the higher the duration variability, the more risks the

project will be faced with, inevitably causing an adverse effect on the schedule robustness. Secondly, as

the order strength decreases, meaning that the project networks are more complicated, Zstab in general

increased whereas Zqual seems to be dependent of the order strength. Thirdly, it is important to note that

the proposed two-stage algorithm, i.e. SA+TS, always achieves better valuse of Zcomp, Zqual, and Zstab
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than those of three other algorithms (SA, TS, and MSII), which further demonstrates the superiority of

SA+TS for generating composite robust schedules.

For different types of schedules, it can be seen obviously that Zcomp obtained by Schedule F1 is the

best among those obtained by Schedules F2, F3, F4, and F5. This result may come from the fact that if the

decision makers consider to generate a buffeblack baseline schedule with composite robustness (Schedule

F1), which not only can protect the payment plan from disruptions through allocating appropriate time

buffers, but also can obtain a remarkable performance with respect to the project NPV. Tables 5-7 also

indicates that Schedules F1, F3, and F5 can improve solution robustness by allocating time buffers against

disruptions unlike the execution of a nominal schedule without time buffers (i.e., Schedules F2 and F3);

e.g., Zstab(F1) < Zstab(F2), Zstab(F3) < Zstab(F4), and Zstab(F5) < Zstab(F4).

What’s more, the single objective value of Zqual in Schedules F1 and F3 outperform those of Schedules

F2 and F4, i.e., Zqual(F1) > Zqual(F2) and Zqual(F3) > Zqual(F4). The reason lies in the following

facts that there is a complementary relationship exists between quality robustness and solution robustness

in our model. The baseline schedules F2 and F4 are generated only by changing the position of activities

without any time buffer protection. As a result, the realized project schedules of F2 and F4 would suffer

greater losses in Zqual than those of F1 and F3 compablack with the planned values during project

execution. On the other hand, the realized schedules of F1 and F3 with time buffers can implement better

according to the original plan and can blackuce the loss of Zqual to a certain extent compablack with

unbuffeblack ones, F2 and F4.

As denoted in Tables 5-7, Zqual and Zstab in Schedules F1 are better than those of F5. This follows

the fact that the project NPV in F5 is maximized by allocating time buffers to the activities with cash

outflows as much as possible whereas allocating time buffers to the activities with cash inflows as few as

possible on the basis of satisfying the project deadline, which is not compatible with the motivation of

time buffer allocation. Consequently, it is impossible to ensure that all time buffers in F5 can play their

proper role in protecting the payment plan against disruptions. This finding means that F5 may suffer

more losses both in Zqual and Zstab compablack with F1 during project execution.

Solution robustness in F3 is better than that of F5, whereas quality robustness in F3 performs worse

than that of F5. This finding can be explained by two primary factors. First, the objective function of F3

is to minimize the expected penalty cost of the project NPV, but F5 pursues the maximization of the

project NPV. Thus, time buffers allocated in F3 can more effectively protect the payment plan against

disruptions during project execution compablack with F5, i.e., Zstab(F3) < Zstab(F5). Second, F3 only

considers solution robustness without optimizing the project NPV in the planning phase. As a result, time

buffers in F5 can prevent disruptions in the payment plan to a certain extent during project execution

compablack with F3. In other words, F5 can obtain a more satisfactory result of the expected project

NPV compablack with F3, i.e., Zqual(F3) < Zqual(F5).
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Additionally, we derive the upper bounds on quality robustness and solution robustness for a given

schedule to evaluate the performance of our algorithms versus our performance measures. The upper

bound on quality robustness (Zupper
qual ) is the maximized project NPV obtained by a modified version of

the SA algorithm in Section 4.2, assuming a static and deterministic environment. Meanwhile, the upper

bound on solution robustness (Zupper
stab ) is the minimized expected penalty cost obtained by the EPC

procedure in Section 3.1. We then design a relative percentage index, ∆Zcomp, to measure the magnitude

of composite robustness in the realized schedule versus the upper bound schedule. The new index is

calculated as follows:

∆Zcomp = (Zupper
qual − Zqual)

/

Z
upper
qual − (Zupper

stab − Zstab)
/

Z
upper
stab (9)

As noted in Table 8, ∆Zcomp in Schedule F1 is lower than that in four other schedules other schedules

for different three levels of the duration variability. Meanwhile, the two-stage algorithm (SA+TS) has a

lowest ∆Zcomp compablack with SA, TS, and MSII. These results further demonstrate the superiority

of combination between solution robustness and quality robustness as well as the effectiveness of the

proposed two-stage algorithm for generating composite robust schedules. All the solutions are uploaded

in the Mathworks WebSet.2

Table 8 Average results of ∆Zcomp for different algorithms

N-2 OS Algorithm

Composite robustness Single robustness

Buffeblack (F1) Unbuffeblack (F2) Buffeblack (F3) Unbuffeblack (F4) Buffeblack (F5)

L M H L M H L M H L M H L M H

10

0.7

SA 0.41 0.94 1.31 1.48 3.22 3.85 0.46 1.09 1.85 2.15 4.00 5.03 0.84 2.34 3.11

TS 0.62 1.08 2.00 1.97 3.76 4.53 0.67 1.49 2.16 2.75 4.61 5.20 1.10 3.03 3.48

MSII 1.18 2.29 3.02 2.35 4.40 5.31 1.08 2.63 3.32 3.40 5.76 6.16 1.47 3.81 4.75

SA+TS 0.36 0.59 1.20 1.04 2.12 3.10 0.28 0.93 1.58 1.71 3.11 4.24 0.65 1.70 2.56

0.5

SA 0.56 1.08 1.78 1.72 3.62 4.78 0.62 1.42 2.34 2.73 4.62 5.39 1.02 2.71 3.39

TS 0.77 1.46 2.39 2.27 4.33 5.65 1.01 1.76 2.91 3.51 5.14 6.09 1.38 3.34 4.09

MSII 1.32 2.72 3.22 2.85 4.90 6.55 1.35 3.30 3.88 4.11 6.23 7.04 1.80 4.43 4.86

SA+TS 0.44 0.71 1.54 1.37 2.70 3.40 0.51 1.29 1.69 2.15 3.15 4.18 0.84 1.99 2.52

0.3

SA 0.51 1.16 2.09 2.12 3.98 5.15 0.79 1.60 2.95 3.31 4.95 6.15 1.34 2.67 3.79

TS 0.82 1.57 2.40 3.00 4.59 6.18 1.37 2.10 3.42 4.21 6.01 6.84 1.77 3.44 4.87

MSII 1.68 2.74 3.65 3.62 6.06 7.66 1.82 3.34 4.95 5.22 6.88 8.01 2.39 4.98 5.89

SA+TS 0.24 0.72 1.49 1.89 3.12 4.09 0.53 1.24 2.10 2.61 3.58 4.43 0.78 2.24 3.01

30

0.7

SA 0.81 1.41 1.64 2.03 2.92 4.10 1.14 1.93 2.69 2.71 3.73 5.07 1.70 2.48 3.50

TS 1.07 1.63 1.85 2.50 3.32 4.31 1.43 2.30 3.17 3.04 4.38 5.55 2.13 3.00 3.89

MSII 1.28 2.29 2.40 2.91 3.72 4.91 1.95 2.96 3.65 3.91 4.58 5.99 2.66 3.29 4.29

SA+TS 0.43 0.90 1.29 1.78 2.46 3.58 1.02 1.46 2.13 2.18 3.22 4.60 1.56 2.10 2.98

0.5

SA 0.66 1.63 2.10 2.68 3.58 5.10 1.34 2.35 3.24 3.16 4.54 5.96 2.18 3.06 4.25

TS 0.93 1.97 2.44 3.09 4.20 5.74 1.81 2.81 3.72 3.94 5.20 6.39 2.63 3.57 4.68

MSII 1.59 2.74 3.14 3.61 4.87 6.20 2.15 3.68 4.24 4.88 5.69 7.46 3.08 4.11 5.38

SA+TS 0.46 0.96 1.55 2.30 2.99 4.42 1.12 1.82 2.81 2.64 3.76 4.93 1.99 2.37 3.63

0.3

SA 0.52 1.84 2.52 3.46 4.96 7.24 1.69 3.40 4.43 4.49 6.13 7.87 2.58 4.18 5.81

TS 0.92 2.30 3.33 3.95 5.91 8.07 2.07 3.79 4.79 5.01 6.96 8.70 3.01 4.62 6.42

MSII 1.89 3.33 3.71 4.48 6.68 8.81 2.79 4.57 5.87 6.60 7.66 9.28 3.91 5.88 7.27

SA+TS 0.33 1.16 2.01 2.98 4.26 6.18 1.48 2.60 3.63 3.42 5.07 6.47 2.27 3.45 4.73

50

0.7

SA 0.72 1.26 1.98 1.86 2.82 3.61 0.82 1.86 2.58 2.46 3.31 4.00 1.38 2.29 3.25

TS 0.96 1.54 2.25 2.11 2.92 4.07 1.02 2.25 2.97 3.08 3.55 4.25 1.58 2.68 3.50

MSII 1.36 1.80 2.46 2.71 3.46 4.31 1.34 2.59 3.24 3.74 4.07 4.65 2.02 3.01 4.06

SA+TS 0.42 0.74 1.61 1.56 2.15 3.27 0.52 1.46 2.18 2.06 2.73 3.44 1.12 1.81 2.77

0.5

SA 0.79 1.57 2.50 2.51 3.40 4.62 1.20 2.41 3.16 3.03 4.00 5.14 1.86 2.96 4.10

TS 1.10 1.83 2.87 2.75 3.73 5.03 1.48 2.75 3.80 3.48 4.24 5.36 2.16 3.20 4.39

MSII 1.71 2.09 3.28 3.34 4.17 5.58 1.79 3.42 4.33 3.98 4.96 5.84 2.64 3.90 4.90

SA+TS 0.38 1.02 2.19 2.16 2.82 3.96 0.83 1.57 2.48 2.50 3.39 4.32 1.45 2.27 3.41

0.3

SA 0.80 1.69 2.84 2.72 3.79 5.42 1.42 2.75 3.76 3.17 4.57 5.85 2.10 3.26 4.46

TS 1.06 2.07 3.31 2.95 4.24 5.68 1.72 2.94 4.53 3.85 4.97 6.25 2.44 3.78 4.95

MSII 1.73 2.36 3.60 3.11 4.82 6.33 2.17 3.84 5.19 4.51 5.52 6.87 2.74 4.28 5.72

SA+TS 0.62 1.41 2.68 2.79 4.12 5.90 1.60 2.37 3.63 3.45 4.80 6.31 2.24 3.31 5.02

2 https://ww2.mathworks.cn/matlabcentral/fileexchange/67333-computational-results
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6 Conclusion and further research

This study considers the resource constrained max-NPV project scheduling problem with stochastic

activity durations and aims at generating a proactive baseline schedule with composite robustness. First,

the project NPV and the EPC are proposed to measure quality robustness and solution robustness,

respectively. Secondly, the EPC procedure is designed to generate a solution-robust schedule by iteratively

allocating time buffers in front of the activities, which can protect the payment plan from disruptions as

well as possible. Thirdly, a bi-objective scheduling model is proposed under the objectives of the project

NPV maximization (quality robustness) and the schedule stability maximization (solution robustness),

and a two-stage algorithm that integrates SA and TS is developed to solve the problem. Finally, an

extensive computational experiment is constructed to verify the benefits of the composite robust schedules

that strike a balance between quality solution and robustness solution as well as the effectiveness of the

proposed two-stage algorithm for generating robust schedules compablack with three other algorithms,

namely, SA, TA, and MSII.

Notably, we only generate a feasible resource flow network in this study. However, different resource

flow networks applied to a given schedule can result in different time buffer allocations. Therefore, the

impact of resource allocation on the time buffer allocation is an interesting topic for future works.
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28. Mika M, Waligóra G and Wȩglarz J (2008). Tabu search for multi-mode resource-constrained project

scheduling with schedule-dependent setup times. European Journal of Operational Research 187(3):

1238-1250.

29. Mohaghar A, Khoshghalb A, Rajabi M and Khoshghalb A (2016). Optimal delays, safe floats, or

release dates? Applications of simulation optimization in stochastic project scheduling. Procedia

Economics & Finance 39:469-475.

30. Neumann K, Schwindt C and Zimmermann J (2003). Order-based neighborhoods for project scheduling

with nonregular objective functions. European Journal of Operational Research 149(2): 325-343.

31. Russell A H (1970). Cash flows in networks. Management Science 16(5): 357-373.

32. Skorinkapov J (1990). Tabu search applied to the quadratic assignment problem.Orsa Journal on

Computing 2(1): 33-45.

33. Sobel M J, Szmerekovsky J G and Tilson V (2009). Scheduling projects with stochastic activity

duration to maximize expected net present value. European Journal of Operational Research 198(3):

697-705.

34. Tantisuvanichkul V and Kidd M (2011). Maximizing net present value a review through literature.

International Proceedings of Economics Development and Research 15(2): 93-97.

35. Tukel O I, Rom W O and Eksioglu S D (2006). An investigation of buffer sizing techniques in critical

chain scheduling. European Journal of Operational Research 172(2): 401-416.

36. Vonder S V D, Demeulemeester E, Herroelen W and Leus R (2005). The use of buffers in project

management: The trade-off between stability and makespan. International Journal of Production

Economics 97(2): 227-240.

37. Vonder S V D, Demeulemeester E, Herroelen W and Leus R (2006). The trade-off between stability and

makespan in resource-constrained project scheduling. International Journal of Production Research

44(2): 215-236.

38. Vonder S V D, Demeulemeester E and Herroelen W (2008). Proactive heuristic procedures for robust

project scheduling: An experimental analysis. European Journal of Operational Research 189(3):

723-733.

39. Wang J (2005). Constraint-based schedule repair for product development projects with time-limited

constraints. Journal of Production Economics 95(3): 399-414.
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