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ABSTRACT Retinal image processing is very important in the field of clinical medicine. As the first step in

retinal image processing, image enhancement is essential. Because the details of a retinal image are complex

and difficult to enhance, we present a robust retinal image enhancement algorithm via a dual-tree complex

wavelet transform (DTCWT) and morphology-based method in this paper. To begin with, we utilize the

pre-processing method to the captured retinal images. Then, the DTCWT is applied to decompose the gray

retinal image to obtain high-pass subbands and low-pass subbands. Then, a Contourlet-based enhancement

method is applied to the high-pass subbands. For the low-pass subbands, we improve the morphology top-hat

transform by adding dynamic multi-scale parameters to achieve an equivalent percentage enhancement and

at the same time achieve multi-scale transforms in multiple directions. Finally, we develop the inverse

DTCWT method to obtain the enhanced retinal image after processing the low-frequency subimages and

high-frequency subimages. We compare this approach with enhancement based on the adaptive unsharp

masking, histogram equalization, and multi-scale retinex. We present the test results of our algorithm on

440 retinal images from the DRIVE and the STARE databases. The experimental results show that the

proposed approach can achieve better results, and might be helpful for vessel segmentation.

INDEX TERMS Retinal image, dual-tree complex wavelet transform, top-hat transform, image

enhancement.

I. INTRODUCTION

In the medical field, the visualization of retinal vessel image

is important for disease diagnosis and improving the planning

and navigation in interventional procedures [1]. For instance,

retinal images are widely used to help doctors diagnose

many diseases, including diabetes, hypertension, and car-

diovascular disease. Due to major reasons like the imaging

process and retinal diseases, the obtained retinal images via

fundus camera often have poor illumination, low intensity

contrast and blur, making it hard to recognize the vascular

structure clearly. The useful information of retinal image

has been hindered by blur, uneven comparison, and unclear
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contour [2], [3]. Before making a formal diagnosis on retinal

optic disc, macula lutea, and blood vessels, it is necessary to

improve retinal image quality [4]. The enhancement of retinal

image can make the image processing steps easier and greatly

improve the result of feature segmentation. In order to make

correct diagnosis, an effective way to overcome those issues

is to use some form of vessel-like structure enhancement in

retinal images [5].

Image enhancement has been applied to areas of sci-

ence and engineering, such as computer vision, biomedicine,

and astrophotography. Enhancement, followed by segmenta-

tion, quantification and modelling of blood vessels in retinal

images plays an important role in computer-aided retinopathy

diagnosis. Accuracy of the retinal enhancement algorithms

(to be reviewed in Section II) have been used to improve
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the image quality. In this paper, we present a new method

of retinal image enhancement via dual-tree complex wavelet

and multi-scale top-hat transforms. Our proposed algorithm

studies the retinal image features, and uses the advan-

tages of dual-tree complex wavelet transform (DTCWT) and

multi-scale top-hat transforms.

The rest of this paper is organised as follows. In section II,

the related works about retinal image enhancement are briefly

reviewed. Section III gives a brief overview about our algo-

rithm. Section IV introduces and explains the proposed

morphology-based method: improved morphological top-hat

transform (IMT-TH). The retinal image enhancement algo-

rithm is applied to real retinal images and the results are

presented in Section V. Finally in Section VI we conclude.

II. RELATED WORKS

In the following section, we review existing algorithms

for retinal image enhancement. A wide range of retinal

image enhancement algorithms have been proposed for

many years, and they can be categorized into five groups:

Histogram-based methods, Retinex-based methods, Wavelet

transform-based methods, Mathematical morphology-based

methods, and other methods.

(1) Histogram-based methods [6]–[9] utilize the prior

information of blood vessel to equal the histogram

distribution. The commonly used method called histogram

equalization (HE) [6] helps transforming the gray-level of

individual pixels according to histogram, and it is a basic

method used for the retinal vessel enhancement. The reti-

nal image enhancement requires more details on com-

plex distribution of blood vessels. Babu and Rajamani

presented a contrast enhancement method based on mod-

ified histogram equalization (HE) for gray scale image

enhancement [7]. To avoid over-enhancement of noise, a con-

trast limiting procedure is applied between regions, how-

erver background noise still exists. As the HE method may

reduce the local details within different objects, an increas-

ing number of improved HE methods are emerged to

improve the local details such as multipeak histogram

equalization [10], imprving the visual quality of resonance

images using HE [11], and brightness preserving dynamic

histogram equalization [12]. However, these are contrast

enhancement-based methods that do not perform well as

summarized in [7].

(2) Retinex-based methods [13]–[16] belong to image-

domain algorithms, have been proposed to enhance the con-

trast. The idea of retinex was conceived by Land [14] as a

model of the lightness and color perception of human vision.

Through the years, the modified multi-scale Retinex (MSR)

algorithm proposed by Herscovitz and Yadid-Pecht [15]

exhibited its superiority for the high-quality enhanced results

by removing the illumination. It is also applied to wide

dynamic range scenes and points, and improved the global

brightness contrast by adjusting the histogram.Moreover, it is

unreasonable to simply remove the illumination for the scene

of unsmooth depth [17].

(3) Wavelet transform-based methods [18]–[22] have been

widely used in medical image processing. Mallat [18] pro-

posed a fast discrete wavelet transform method that has been

widely applied in image enhancement field. Fu et al. [19]

proposed a wavelet-based histogram equalization to enhance

sonogram images. The wavelet transform method decom-

poses input image into high frequency detail and low fre-

quency components at various resolutions. However, wavelet

transform has some serious constrains like smoothness edges,

exiting noise and poor directional selectively. Some new

transforms have been presented to take advantage of wavelet

transform. The Contourlet transform [20] and the Dual-Tree

Complex Wavelet Transform(DTCWT) [21] are better than

Wavelet transform in terms a sparse represent natural images.

DTCWT allows perfect reconstruction while still provid-

ing the other advantages of complex wavelets [21], [22].

It also has some important additional properties includ-

ing approximate shift invariance, better directional selectiv-

ity in two-dimensional (2-D) with Gabor-like filters, and

lower computational complexity [22]. Therefore, it can char-

acterize textures more accurately. In this work, a new

algorithm for retinal image enhancement that is based on

DTCWT is proposed, because DTCWT can provide approx-

imate shift invariance with a limited redundancy(2m : 1

for m-dimensional signals) and improve angular resolu-

tion(including six oriented subbands,(±15◦, ±45◦, ±75◦)).
(4) Mathematical morphology-based methods [23]–[26]

have been widely used for image processing operations

and have become the foundation of biomedical computing.

Bangham et al. [23] presented morphlological scale-space

preserving transforms in many dimensions for the analysis

of images. Bai et al. [24] proposed a novel algorithm for

enhance images by using multi scale morphological top-hat

transform for image features extracted. Liao et al. [25] pro-

posed new method which combines morphological trans-

forms and histogram fitting stretching for retinal vessel

enhancement. Moreover, the multi scale theory could be used

in mathematical morphology to enhance the useful image

details and achieve an efficient performance [26]. Recently,

in [27], a multiscale bowler-hat transform method based on

mathematical morphology for vessel enhancement is pro-

posed. Amajor drawback of this method is sensitivity to noise

and large computational demand.

(5) Other approaches such as the unsharp masking

methods [28]–[31], and Ranklets [32], [33] are proposed

for enhancing the image edge and detail information.

In [29], Ramponi introduce a cubic unsharp masking method

for contrast enhancement. He constructs the well-known

unsharp masking(UM) technique, and the proposed method

has reduced noise sensitivity. The contrast enhancement

of images are introduced in the adaptive unsharp mask-

ing (AUM) method [28], which outperforms cubic unsharp

masking [29] for accomplishing the dual objectives of avoid-

ing noise amplification as well as excessive overshoot in the

detail areas.The AUM method often fails to achieve good

tradeoff between details and the naturalness, so it need a
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FIGURE 1. The flow chart of our method for retinal image enhancement.

rescaling process to achieve the best result [34]. Smeraldi

introduced a new family of rank features,called Ranklets.

Ranklets have the ability of the orientation selectivity and

the multiscale nature, are used to the classification of fea-

ture vectors [32]. Masotti et al. [33] proposed false positive

reduction using gray-scale invariant ranklet texture features

in computer-aided detection.

Many exiting retinal enhancement methods still have sub-

stantial issues when faced with variations in constrast, high

level of noise, large image size (high computing time), and

complexity of parameter space.

III. OUTLINE OF THE PROPSED METHOD

We would like to give an outline of the proposed method.

Firstly, the captured retinal images are processed by the

pre-processing method. The retinal images acquired with a

fundus camera need to transformed from RGB to greyscale.

The pre-processing method is based on [20]. For the obtained

color retinal image, we extract its green channel, then apply-

ing histogram stretching to the grey retinal image. Secondly,

the DTCWT is applied. The gray retinal image (basing on the

DTCWTmethod) is decomposed into six high-pass subbands

and two low-pass subbands. For high-pass subbands, we use

the wavelet-based contourlet transformmethod for denoising,

then get the enhanced high-pass subimages. For low-pass

subbands, we use improved morphology top-hat transform

method for enhancement, then getting the low-pass subim-

ages. Lastly, the inverse DTCWT method is applied to the

obtaind subimages, and the final enhanced retinal image is

obtained. The framework of our method is shown in Fig. 1.

The detailed descriptions for each of the steps will be given

in the following sections.

IV. METHODOLOGY

In this section, we introduce our novel, dual-tree complex

wavelet transform and morphology-based method for reti-

nal image enhancement: the improved morphology top-hat

transform.

A. DTCWT FOR THE RETINAL IMAGE

The retinal image is decomposed primarily using the

DTCWT [21] over four scales, and each scale produces

six high-pass subbands and two low-pass subbands shown

in Fig. 2. In Fig. 2, DTCWT customs two distinct trees to rep-

resent the wavelet cofficient’s real (tree a) and imaginary (tree

b) parts, ↓ 2 represents alternate sampling. Let h0(n), h1(n)

denote the low-pass/high-pass filter pair for the upper filter

bank (FB), and let g0(n), g1(n) denote the low-pass/high-pass

filter pair for the lower FB.

The DTCWT uses analytic filters to perform the wavelet

analysis. DTCWT decomposes a signal according to a com-

plex shifted and dilated mother wavelet Ψ (t) and scaling

function φ(t) [22]. The DTCWT is obtained on the basis of

the complex wavelet which is defined as

Ψ (t) = Ψh(t) + jΨg(t) (1)

where j =
√

−1, Ψh(t) and Ψg(t) represent the wavelet’s real

part and imaginary part, respectively, and they are wavelet

basis functions.

In order to reduce shift sensitivity and to carry out per-

fect reconstruction, the DTCWT is obtained from traditional

discrete wavelet transform step by step. On the issue of

shift sensitivity, two conditions must be satisfied between the

low-pass filter and the high-pass filter. Firstly, they need to
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FIGURE 2. Diagram of 2D dual-tree complex wavelet transform.

constitute a Hilbert transform pair, and the phase difference

is 90◦. Signals in a Hilbert transform pair relate to each other

via the Hilbert transform, and the modulus of the complex

signal (so

√

signal21 + signal22 ) is invariant, but the amplitude

of the combined to signals (as a complex signal) is invariant.

Also the invariance to shifts only holds locally and approx-

imately in the theory of CWT. According to the Selesnick

theorem, the two low-pass filters (h0(n), g0(n)) should satisfy

a very simple property: one of them should be approximately

a half-sample shift of the other [22], that is

g0(n) ≈ h0(n− 0.5) (2)

In this case, the corresponding wavelet basis Ψh(t) and

Ψg(t) and can form an approximate Hilbert transform pair,

that is

Ψg(t) ≈ H̃{Ψh(t)} (3)

Since g0(n) and h0(n) are defined only on integers, this

statement is somewhat informal. However, we can make the

statement rigorous using Fourier transforms. In [22], it is

shown that if

G0(e
jω) = e−j0.5ωH0(e

jω) (4)

Then Ψg(t) = H̃{Ψh(t)}.
Here we define the analysis filters as h0(n), h1(n), defin-

ing the synthesis filters by h̃0(n) and h̃1(n). Assuming that

the analysis and symthesis filters are real finite impulse

response (FIR) filters, the perfect reconstruction condition

can be satisfied if h0(n) × h̃0(n) is a low-pass half band

filter [22]. Specifically, if we define the product filter

p(n) = h0(n) ∗ h̃0(n) (5)

where ∗ represents discrete-time convolution. Then for per-

fect reconstruction (with a delay of n0 samples), it is neces-

sary that

p(2n+ n0) = δ(n) =
{

1, n = 0

0, n 6= 0
(6)

where the two high-pass filters are given by

h1(n) = (−1)n+d h̃0(n− d) (7)

h̃1(n) = −(−1)n+dh0(n+ d) (8)

where d is an even (odd) integer when n0 is an odd (or even)

integer.

The analysis wavelet Ψ (t) associated with these filters is

given by

Ψ (t) =
√
2

∑

n

h1(n)φ(2t − n) (9)

where φ(t) is called the scaling function and is given

implicitly by [22]

φ(t) =
√
2

∑

n

h0(n)φ(2t − n) (10)

Eq. (10), which is called the dilation equation, is an important

equation in the theory of wavelet bases and has been studied

extensively since the advent of wavelet transforms [35].

To explain how the DTCWT produces oriented wavelets,

consider the 2-D wavelet

Ψ (x, y) = Ψ (x)Ψ (y) (11)

Associated with the row-column implementation of the

wavelet transform, where Ψ (x) is a complex wavelet given

by Eq. (1) which is Ψ (x) = Ψh(x) + jΨg(x), we can obtain

the expression for Ψ (x, y) which is

Ψ (x, y) = (Ψh(x) + jΨg(x))(Ψh(y) + jΨg(y))

= Ψh(x)Ψh(y) − Ψg(x)Ψg(y)

+ j(Ψg(x)Ψh(y) + Ψh(x)Ψg(y)) (12)

The 2D DTCWT produces six high-pass subbands as well

as two lowpass subbands at each level of decomposition.

As a result, wavelets are oriented in (±15◦, ±45◦, ±75◦)
directions and captures image information in those directions.
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B. WBCT-BASED ENHANCEMENT FOR

HIGH-PASS SUBBANDS

In [36], we proposed a wavelet-based contourlet trans-

form (WBCT) method to image denoising. This method is

implemented through combining with BayesShrink theory

to estimate the threshold and then improving the adaptive

method of selecting threshold, finally obtaining the opti-

mal threshold. The WBCT transform coefficients of differ-

ent decomposition scales and different direction to select

the adaptive optimal threshold to achieve denoising. In this

paper, for the high-pass subbands of the retinal image after

docomposition(based on the 2DDTCWT), we use theWBCT

method for enhancement and obtain the enhanced subimages.

The WBCT method is summarized in [36].

C. OUR PROPOSED MORPHOLOGY-BASED

ENHANCEMENT METHOD FOR

LOW-PASS SUBBANDS

1) MATHEMATICAL MORPHOLOGY

Mathematical morphology has been widely used for image

processing [26], and it belongs to a branch of mathematics.

Most of the morphology operations are defined based on two

basic operations: dilation and erosion. Let f (x, y) denote a

grayscale image with the size ofM×N , and B(u, v) represent

a structuring element. The dilation and the erosion of f (x, y)

by B(u, v), denoted by f ⊕B and f ⊖B respectively. Based on

dilation and erosion, opening and closing of f (x, y) byB(u, v),

represented by f ◦B and f •B respectively. Applying opening

and closing operations, the top-hat transform of f (x, y) by

B(u, v) are defined as

WTH (x, y) = f (x, y) − f ◦ B(x, y) (13)

BTH (x, y) = f • B(x, y) − f (x, y) (14)

where WTH (x, y) is called the classical white top-hat trans-

form, which is usually used to extract bright image regions,

and BTH (x, y) is the classical black top-hat transform, which

is used to extract dim image regions.

Therefore, one way for retinal image enhancement through

contrast enhancement based on the traditional top-hat trans-

form is adding the bright image regions and subtracting the

dim image regions from the original image as follows:

fen = f + fw − fb (15)

where fen is the final enhanced image, f is the original image,

fw is the extracted bright image regions, and fb is the extracted

dim image regions.

The traditional top-hat transform refers to white top-hat

transform, and its purpose is to enhance shadow details of

the gray image and to highlight foreground objects. Fig. 3

is the white top-hat transform on retinal images for image

enhancement. Fig. 3(a) is the original retinal images from

the STARE database [37] (top) and the DRIVE database [38]

(bottom). The white top-hat transform on Fig. 3(a) are shown

in Fig. 3(b), and the enhancement results based on Fig. 3(b)

are shown in Fig. 3(c).

FIGURE 3. Example results of the white top-hat transform on the STARE
database and the DRIVE database. (a) From top to bottom: the original
retinal images of the STARE database and the DRIVE database,
respectively; (b) Results from the white top-hat transform; (c) Results
from the enhancement processing.

From these experimental results, we can see that the white

top-hat transform is not effective for retinal images with

complex background, uneven gray scale image intensities,

and detailed textures.

2) IMPROVED MORPHOLOGY TOP-HAT TRANSFORM

In order to effectively enhance retinal image details, enhance

image edge information, and improve the retinal image qual-

ity, we present an improved morphology top-hat transform

(IMT-TH) for low-pass subbands.

The definitions ofWTH (x, y) and BTH (x, y) indicate that,

because only one structuring elementB is used in the classical

top-hat transform, the different information from the regions

of interest and its surrounding regions could not be effectively

used for image enhancement [24]. To avoid the unsatisfactory

enhanced result caused by the inappropriate structuring ele-

ment, we utilize multi-scale top-hat transform in this paper

to enhance the low-pass subbands of the decomposed retinal

image.

Since the bright and dark regions require different struc-

turing elements, and different detail regions also need to

dynamically change the structuring elements, all of those will

undoubtedly increase the complexity of the top-hat transform.

Therefore we define a structuring element sequence B =
{B0, · · · ,Bi, · · · ,Bn}, where B0 is the initial selected struc-

turing element, Bi = B0 ⊕ B0 · · · ⊕ B0
︸ ︷︷ ︸

i times

and 1 ≤ i ≤ n. That

is, the ith scale Bi is derived from the expansion transform of

the initially selected structuring element B0.

The top-hat transform of the retinal image f by structuring

element Bi can be defined as
{

WTHi(x, y) = f − f ◦ Bi
BTHi(x, y) = f • Bi − f

(16)

In the retinal image enhancement process, in addition to the

image region on each scale needing enhancement, the details

between scales also need to be enhanced. The details
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between the scales include details from both bright and dark

regions, and the multi-scale image details can be denoted by

DWTHi(x, y) and DBTHi(x, y), which are

{

DWTHi(x, y) = WTHi+1(x, y) −WTHi(x, y)

DBTHi(x, y) = BTHi+1(x, y) − BTHi(x, y)
(17)

In Eq. (15), the extracted bright image regions fw contains

the bright details WTHi(x, y) on the ith scale and the bright

details DWTHi(x, y) between different scales. The extracted

dark image regions fb contains the dark details BTHi(x, y)

on the ith scale and the dark details DBTHi(x, y) between

different scales.

In retinal images, the interest regions are usually bright

or dark image regions. The white improved top-hat trans-

form (WTHi(x, y)) could extract bright image regions. In the

result of white improved top-hat transform, the gray values

of the extracted bright image regions are larger than other

regions. Then, the multi-scale bright image regions between

different scales should have the largest gray values. Similarly,

the final dark image regions could be constructed through the

extracted multi-scale dark image regions. Therefore, the opti-

mal bright and dark image regions denoted by f Rw and f Rb , are

defined as






f Rw = max
1≤i≤n

{WTHi(x, y)}

f Rb = max
1≤i≤n

{BTHi(x, y)}
(18)

where f Rw is the final bright image regions, f Rb is the final dark

image regions.

Similarly, we also define the optimal bright and dark image

details which are denoted by f Dw and f Db , respectively, that is







f Dw = max
1≤i≤n

{DWTHi(x, y)}

f Db = max
1≤i≤n

{DBTHi(x, y)}
(19)

where f Dw is the final bright image details between different

scales, f Db is the final dark image details between different

scales.

According to Eq. (18) and Eq. (19), we can obtain all the

extracted multi-scale bright and dark image regions, that is

{

fw = f Rw + f Dw

fb = f Rb + f Db
(20)

In order to achieve the same proportion enhancement, and

to obtain a better enhancement result, we use the scale control

parameter λ. In the image enhancement process, the white

top-hat transform and the black top-hat transform should

be set the same λ to achieve the same proportion enhance-

ment. This method is the IMT-TH method, which can be

performed by

fen = f + λi(fw − fb)

= f + λi((f
R
w + f Dw ) − (f Rb + f Db )) (21)

where λi is a scale control parameter at each scale for the

retinal image. When eyes are completely adapted to illu-

mination conditions, we can obtain a response curve which

is similar to an S type by testing the light stimulation of

neurons. According to this feature, we use the image edge

gradient information to construct the scale control parameter.

So, λi can be defined as

λi = Sigmoid(E(x, y)) (22)

where E(x, y) is an image edge detection operator, function

Sigmoid() is a common S type function, that is

Sigmoid(x) = 1

1 + e−x
(23)

According to morphological operation, we develop a mor-

phology algorithm for image edge extraction. Then, accord-

ing to the morphological dilation, we define the image edge

detection operator Ed , as

Ed (x, y) = f ⊕ Bi(x, y) − f (24)

Similarly, we also define the image edge detection operator

Ee according to the morphological erosion, as

Ee(x, y) = f − f ⊖ Bi(x, y) (25)

The image edge detection operator G(x, y) based on the

multi-structural dilation- erosion type (also known as the

morphological gradient) is

G(x, y) = f ⊕ Bi(x, y) − f ⊖ Bi(x, y) (26)

Blurred edges will be added to the image by using edge

detection based on the dilation method, while some details

will be lost to image edge by using edge detection based on an

erosionmethod. In order to reduce the blurred image edge and

retain more image edge details for obtaining the ideal image

edge, we correct the above edge detection operator, as








Emax(x, y) = max{Ed (x, y),Ee(x, y),G(x, y)}
Emin(x, y) = min{Ed (x, y),Ee(x, y),G(x, y)}
Edec(x, y) = Emax(x, y) − Emin(x, y)

(27)

So the new image edge detection operator E(x, y) is

defined as

E(x, y) = Ed (x, y) + kEdec(x, y) (28)

where k is an enhancement ratio. Then put E(x, y) into

Eq. (22), we can obtain the scale control parameter λi.

The corrected edge detection operator E(x, y) is now

obtained, and the fuzziness of image edge detection will

be reduced. On this basis, the multi-scale top-hat transform

method can improve the anti-noise ability and detect image

edges more efficiently. The results of our IMT-TH algorithm

on the STARE [37] and the DRIVE [38] databases are shown

in Fig. 4. Fig. 4(a) is the original gray images from the STARE

database (top) and the DRIVE database (bottom); Fig. 4(b)

is the white top-hat transformation for Fig. 4(a); Fig. 4(c)

is the dark top-hat transformation for Fig. 4(a); Fig. 4(d) is
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FIGURE 4. Results of the IMT-TH on the STARE database and the DRIVE database. (a) From top to bottom: the
original retinal images of the STARE database and the DRIVE database, respectively; (b)-(c) The corresponding
transform of (a) obtained from white top-hat transform, and dark top-hat transform; (d) Results of our IMT-TH
algorithm.

the results for enhancing retinal images combining the white

top-hat transformation with the dark top-hat transformation,

which is based on our IMT-TH algorithm. Based on the

results, a trade-off between the structuring element B0 and

the parameter n for better performances is observed, and the

parameters are set at B0 with the size of 3 × 3, n = 12 that

were selected experimentally for visually acceptable results.

It can be seen from Fig. 4 that the IMT-TH method can

enhance retinal images effectively. This method combines the

advantages of both the white top-hat transform and the dark

top-hat transform, and has a great improvement in clarity and

visual contrast.

D. IMPLEMENTATION

The specific implementation steps for our algorithm are sum-

marized in Algorithm 1.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate the performance of the propsed algorithm

through applications to retinal images from two pub-

licly available retinal image databases as samples: the

DRIVE database, and the STARE database. We com-

pare our results with three other methods: the adaptive

unsharp masking (AUM) method [28], the histogram equal-

ization (HE) method [6], and the multi-scale Retinex (MSR)

method [15]. The reason we choose these three methods is

that AUM method is good at noise removal. HE method

is a classic Histogram-based method for constrast and line

feature enhancements. MSR method has very good perfor-

mance in terms of the high-quality enhanced results and

restoration. In the following sub-sections, we define the

image quality assessment method. Then we compare our

method with those three methods and give the statistical

results.

The poor-quality retinal images do not allow an accu-

rate medical diagnosis, and it is inconvenient for a patient

to return to a medical center to repeat the fundus pho-

tography exam. In this paper, our approach could help

improve the the overall accuracy, sensitivity, or specificity

in automated diagnosis, retinal blood segmentation [39], and

image classification [40] tasks. The purpose of retinal image

enhancement is to enhance contrast between foreground

and background, which is proposed by ophthalmologist to

facilitate their clinical diagnosis. In [39], the authors first

employed a set of retinal image enhancement steps to cor-

rect the nonuniform illumination of retinal images and to

improve vessel constrast, then they used convolutional neural

network (CNN) method for retinal blood vessel segmen-

tation. Retinal disease detection by using computer-aided

diagnosis form fundus image has emerged as a new mehtod.

In [40], they investigated multi-categorical classification of

deep learning for automated diagnosis by using fundus

photograph (which has been preprocessed by using reti-

nal image enhancement method). Our study will provide

proper way to ophthalmologists who continue research-

ing on a better quality retinal image in terms for clinical

use.

A. EXPERIMENTS SETTING

In this study, all the experiments are implemented in

MATLAB R2012b and conducted on a 64-bit personal com-

puter with Intel i7-7500U CPU at 2.7GHz, 8.0 GB RAM,

and Microsoft Windows 10 operating system. Similar to

most of the retinal image enhancement methods, the pro-

posed approach is evaluated on two well estabilished pub-

lic databases: the DRIVE database [38] and the STARE

database [37]. These datasets have been chosen because of

their availability.
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Algorithm 1 Steps for our proposed enhancement algorithm.

• Step 1: Pre-processing. Input the color retinal image

and exact its green channel. Then, apply historgram

stretching to obtain the grey retinal image [20];

• Step 2: Perform DTCWT operation. The grey retinal

image f (x, y) is decomposed into six high-pass subbands

(D(j + 1, i), i = 1, 2, · · · , 6) as well as two low-pass

subbands (A(j + 1, 1),A(j + 1, 2)), with the algorithm

described in Section IV-A;

• Step 3: Obtain the enhanced low-pass retinal image

fen. According to the method described in Section IV-C,

the two low-pass subbands (A(j + 1, 1),A(j + 1, 2))

are processed and obtain the low-frequency subimages,

according to Eq. (21), with our IMT-TH method, and

obtained the enhanced low-pass subimages;

• Step 4: Obtain the high-frequency enhanced retinal

image fhde. For the high-pass sub-bandsD after DTCWT

decomposition, we use our proposed WBCT-based

enhacement method [36], then obtain the denoising

image fhde:

(1) Calculate the Contourlet transform of six high-pass

subbands (D(j + 1, i), i = 1, 2, · · · , 6). Then, we get a

set of coeffiecients Cp,q of the scale p and direction q

for each subband, and correspond to a given resolution

level;

(2) Calculate the noise standard deviation σ̂ 2
v ;

(3) The coefficients of subbands are processed consult-

ing the adaptive threshold selection method (the detail

process can see [36]);

(4) WBCT inverse transform of the modified coefficient

Ĉp,q is used to obtain the enhanced high-pass subimages;

• Step 5: the inverse DTCWT method is applied to the

obtaind subimages, and the final enhanced retinal image

f̂en(x, y) is obtained.

There are several parameters in our method: the length

for the structure element B0, and the enhancement ratio k .

The selection for structuring element B0 mainly considers

the isotropic requirement in the algorithm. The parameter

k determines the ratio of the bright and dark detail features

in the retinal image, which directly affects the retinal image

detail performance and visual effects. In general, the range of

the parameter k is within [0.5, 1], and it can also be flexibly

chosen according to the specific application target and the

need to enhance detail features. The parameter n for better

performances is observed, and the maximum value is 16.

B. SUBJECTIVE EVALUATION

The subjective evaluation on the retinal image enhancement

quality is in terms of good visibility and image contrast.

In our experiments, retinal images from the DRIVE and

the STARE databases were tested to evaluate the proposed

enhancement algorithm. We use the same parameters on all

retinal images. The parameters are set at k = 0.5, B0 = 3×3,

and n = 7 which are selected experimentally for visually

acceptable results in this paper, and we use the same size and

format on all retinal images. Fig. 5 shows enhanced examples

of four randomly selected blurry retinal images which are

from the DRIVE database are illustrated for comparing our

proposed method with the AUM method, the HE method,

the MSR method. In Fig. 5, the first column is the original

retinal images. The AUM’s results in the second column have

nonuniform background grey distribution and over-enhanced

textures in the dim region. The HE’s results in the third

column have much brighter background making parts of the

vessels invisible in the enhanced image than they should

be. The MSR’s results in the fourth column have optic disc

and parts of vessel information loss. As show in the last

column, our method enhances the constrast between vessels

and background successfully, has more naturally enhanced

images with improved visibility, clear details, high clarity.

For a better comparison and quantitative analysis, we then

tested the four methods on ninety retinal images in the

STARE database [37] and observed the results. We compare

the quality of the enhanced retinal images from our proposed

IMT-TH method with the related works developed on the

basis of the AUM method [28], the HE method [6], and the

MSR method [15], and the comparison on the enhancement

results are shown in Fig. 6. As shown in Fig. 6(a), the four

original input retinal images are randomly selected from the

STARE database [37]. As shown in Fig. 6(b), the results of

the AUM method have low contrast and insufficient bright-

ness around the main blood vessels, which usually lead to

decrease the ability of vessel enhance accuracy. As shown

in Fig. 6(c), the results of the HEmethod have some distortion

especially in the optic disc regions because some details

of bright region are over enhanced. As shown in Fig. 6(d),

the results of the MSR method have image contour distortion

and little enhancement on the optic disc and the macula due

to the incorrect scales estimations. As shown in Fig. 6(e) for

the results of our proposed IMT-TH method, we can see that

our work increases the visibility adaptively while respecting

the brightness for the optic disc and the surrounding main

blood vessels, which clearly shows its superiority over the

other three methods. The visual effects of the main features

such as blood vessel, optic disc, and macula are significantly

improved. In particular, the brightness of the optic disc and

the surrounding main blood vessels has greatly improved. All

of these are beneficial for blood vessel segmentation, retinal

vessel extraction, and image contour preserving.

C. OBJECTIVE EVALUATION

While a visual inspection can give some information regard-

ing the effectiveness of the retinal enhancement methods,

a form of quantitative validation is required. To solve this

problem, a widely used blind assessmet method (Mean

Value, Standard Deviation, and Image Shannon Informa-

tion Entropy [41]) based on the property of human visual
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FIGURE 5. The original retinal images and the comparison results of the enhanced retinal images based on four algorithms on the DRIVE
database. (a) From top to bottom: Retinal images on the DRIVE database; (b) obtained using the AUM algorithm; (c) obtained using the HE
algorithm; (d) obtained using the MSR algorithm; (e) obtained using our algorithm.

system is adopted to objectively evaluate the state-of-the-art

enhancement methods and our proposed method. The EMV is

defined as

EMV = 1

MN

M
∑

x=1

N
∑

y=1

f̂en(x, y) (29)

where (x, y) is the pixel coordinate of image, f̂en(x, y) repre-

sents the enhanced retinal image, andM and N represent the

width and height of the image f̂en(x, y). EMV is the average

value of image pixels, which reflects the brightness of the

image. A large EMV value indicates that a high brightness of

enhanced image is obtained.

ESD refers to the discrete degree between the image pixel

gray value and the mean value EMV . A larger ESD value indi-

cates that the gray-scale in the image is dispersed and a better

enhanced image quality is obtained. The ESD is defined as

ESD =

√
√
√
√
√

1

MN

M
∑

x=1

N
∑

y=1

(f̂en(x, y) − EMV )2 (30)

The difinition of Shannon information entropy for a specific

event is simply to take the (natural) logarithm of its proba-

bility. For the image information, the information entropy is

defined by Shannon as [41],

EIIE = −
M

∑

x=1

N
∑

y=1

px,y log2(px,y) (31)

It is required that
M∑

x=1

N∑

y=1

px,y = 1.EIIE represents the average

number of bits in the image gray level set and the unit of

EIIE is bits/pixel. EIIE also describes the average information

amount of the image source. EIIE can be used to compare the

image information differences between the different images.

px,y refers to the probability of a certain intensity occuring in

the image (f̂en(x, y)), and it can be express as

px,y = f̂en(x, y)

M × N
(32)

In general, the larger the value of EIIE is, the more abundant

the information is and a better enhanced image quality is

obtained.
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FIGURE 6. Quantitative comparison of enhancement results on the STARE database. (a) input retinal images on the STARE database; (b) by the
AUM algorithm; (c) by the HE algorithm; (d) by the MSR algorithm; (e) by our algorithm.

In order to prevent the uncertainty of single retinal image

measurement, we randomly select 15 retinal images in the

DRIVE database. In order to verify our algorithm, we com-

pare our algorithm with the original retinal image and two

other algorithms (the HE, and AUM algorithms) for the

retinal images in the DRIVE database. Because the MSR

method is not effective, and the image distortion from the

algorithm is severe, it will not be included in the following

index comparison. The objective evaluation criteria for the

experimental results are measured by EMV , ESD, and EIIE ,

which are shown in Table 1. Based on the combination of

the results on EMV in Table 1 with the illustrations given

in Fig. 5, the HE and the AUM methods with the lower

values of EMV have produced uneven illuminance around the

main blood vessels. Our proposed method have improved

the brightness of the vessel lead to visible details more than

the other methods. Based on the combination of the results on

ESD in Table 1 with the illustrations given in Fig. 5, the HE

method with the highest ESD value has produced nonuniform

background grey distribution leading to parts of the vessels

invisible. The AUM method with the lowest ESD value has

produced over-enhanced textures in dim region. Our pro-

posed method with the second higher ESD value can enhance

the contrast better than the HE, and the AUMmethods. Based

on the combination of the results on EIIE in Table 1 with the

illustrations given in Fig. 5, the HE and the AUM methods

have the lower values of EIIE because of the over-enhanced

contrast. Our IMT-THmethod has improved the image clarity

more than the other methods.

In order to show the reliability of our proposedmethod, it is

compared with other image quality index such as the mean

square error (MSE) [42]. The MSE is calculated as

MSE = 1

MN

M
∑

x=1

N
∑

y=1

(f̂en(x, y) − f (x, y))2 (33)

where f (x, y) is the original retinal image.
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TABLE 1. Comparison results on EMV , ESD, and EIIE of different enhancement algorithms on the drive database.

The MSE is calculated between the enhanced results for

each method and the original retinal image for quantita-

tive comparison. The lower MSE represents that the image

enhancement result is closer to the ground truthwhile a higher

MSE means that the enhancement effect is unsatisfactory.

So a smaller MSE demonstrates a better results. We show
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TABLE 2. Average mse for four methods.

FIGURE 7. The histogram of MSE for all the images using four methods. It can be observed that the error of our method is smaller than that of
the other three methods.

four enhancement examples in Fig. 6 and the average MSE

values for all the test data in Table 2. Moreover, we plot the

histogram of MSE for the fifteen randomly selected enhance-

ment retinal images on the STARE database in Fig. 7. The

enhancement results of our proposed method have lowest

MSEs and have the most similar structures to the ground truth

compared with the AUM, the HE, and theMSRmethods. The

effectiveness of our IMT-TH image enhancement method is

verified objectively.

Our method takes about 23 s with an Intel Core i7 2.7GHz

processor and 8GBRAMusingMATLABR2012b to process

a 300 × 300 pixel retinal image shown in the fourth row

in Fig 6, while the AUM method takes about 14 s, the HE

method takes 11 s and the MSR takes 17 s to process this

image. Although the proposed method is slightly larger time-

computating, the better performance makes it more applica-

ble in real applications.

VI. CONCLUSION

In this paper, we propose a new enhancement method for reti-

nal image based on our DTCWT strategy and mathematical

morphology which is used for effective high-pass subbands

denoising and low-pass subbands enhancement. There are

two main contributions in this paper. The first contribution

is the introduction of DTCWT strategy to decompose the

gray retinal image into high-pass subbands and low-pass

subbands, which helps complete decomposition and recon-

struction, and preserves more image details as well. The sec-

ond contribution is the proposal of our IMT-TH method for

processing the low-pass subbands enhancement, which can

adaptively achieve an equivalent percentage enhancement

and multi scale transform in multiple directions. Our method

greatly improves the retinal image enhanced results in com-

paring with the AUM method, the HE method, and MSR

method. Meanwhile, both subjective and objective experi-

mental results indicate that our proposed method has a much

better enhancement results in feature restoration, image con-

trast, and high clarity. The proposed method is significant

that can be applied to the preprocessing for segmentation,

feature extraction, and image classification. Future work will

focus on detecting the exact contours of lesions for the retinal

images.
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