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Financial risk measurement relies on models of prices and other market variables, but models
inevitably rely on imperfect assumptions and estimates, creating model risk. Moreover, optimization
decisions, such as portfolio selection, amplify the effect of model error. In this work, we develop a
framework for quantifying the impact of model error and for measuring and minimizing risk in a way
that is robust to model error. This robust approach starts from a baseline model and finds the worst-
case error in risk measurement that would be incurred through a deviation from the baseline model,
given a precise constraint on the plausibility of the deviation. Using relative entropy to constrain
model distance leads to an explicit characterization of worst-case model errors; this characterization
lends itself to Monte Carlo simulation, allowing straightforward calculation of bounds on model
error with very little computational effort beyond that required to evaluate performance under the
baseline nominal model. This approach goes well beyond the effect of errors in parameter estimates to
consider errors in the underlying stochastic assumptions of the model and to characterize the greatest
vulnerabilities to error in a model. We apply this approach to problems of portfolio risk measurement,
credit risk, delta hedging and counterparty risk measured through credit valuation adjustment.
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1. Introduction

Risk measurement relies on modelling assumptions. Errors in

these assumptions introduce errors in risk measurement. This

makes risk measurement vulnerable to model risk.

This paper develops tools for quantifying model risk and

making risk measurement robust to modeling errors. Simpli-

fying assumptions are inherent to all modelling, so the first goal

of model risk management is to assess vulnerabilities to model

errors and their potential impact. We develop the following

objectives:

• to bound the effect of model error on specific mea-

sures of risk, given a baseline nominal model for

measuring risk and

• to identify the sources of model error to which a

measure of risk is most vulnerable and to identify

which changes in the underlying model have the

greatest impact on this risk measure.

For the first objective, we calculate an upper or lower bound

(or both) on the range of risk values that can result over a

range of model errors within a certain ‘distance’ of a nominal

∗Corresponding author. Email: xx2126@columbia.edu

model. These bounds are somewhat analogous to a confidence

interval; but whereas a confidence interval quantifies the effect

of sampling variability, the robustness bounds we develop

quantify the effect of model error.

For the second objective, we identify the changes to a nom-

inal underlying model that attain the bounds on the measure of

risk—in other words, we identify the worst-case error in the

nominal model. This step is crucial. Indeed, simply quantifying

the potential magnitude of model risk would be of limited value

if we could not point to the sources of model vulnerability that

lead to the largest errors in measuring risk.

Asimple example should help illustrate these ideas. Standard

deviation is a conventional measure of risk for portfolio returns.

Measuring standard deviation prospectively requires assump-

tions about the joint distribution of the returns of the assets in

the portfolio. For the first objective listed above, we would want

to bound the values of standard deviation that can result from a

reasonable (in a sense to be quantified) degree of model error.

For the second objective, we would want to identify which

changes in the assumed joint distribution of returns have the

largest impact on the portfolio standard deviation.

In practice, model risk is sometimes addressed by com-

paring the results of different models—see Morini 2011 for

an extensive treatment of this idea with applications to many
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2 P. Glasserman and X. Xu

different markets. More often, if it is considered at all, model

risk is investigated by varying model parameters. Importantly,

the tools developed here go beyond parameter sensitivity to

consider the effect of changes in the probability law that defines

an underlying model. This allows us to identify vulnerabilities

to model error that are not reflected in parameter perturba-

tions. For example, the main source of model risk might result

from an error in a joint distribution of returns that cannot be

described through a change in a covariance matrix.

To work with model errors described by changes in probabil-

ity laws, we need a way to quantify such changes, and for this

we use relative entropy following Hansen and Sargent (2007).

In Bayesian statistics, the relative entropy between posterior

and prior distributions measures the information gained

through additional data. In characterizing model error, we in-

terpret relative entropy as a measure of the additional infor-

mation required to make a perturbed model preferable to a

baseline model. Thus, relative entropy becomes a measure of

the plausibility of an alternative model. It is also a conve-

nient choice because the worst-case alternative within a rel-

ative entropy constraint is typically given by an exponential

change of measure. Indeed, relative entropy has been applied

for model calibration and estimation in numerous sources,

including Avellaneda (1998), Avellaneda et al. (2000, 1997),

Buchen and Kelly (1996), Cont and Deguest (2013), Cont and

Tankov (2004, 2006), Gulko (1999, 2002), and Segoviano and

Goodhart (2009). In working with heavy-tailed distributions,

for which relative entropy may be undefined, we use a related

notion of α-divergence, as do Dey and Juneja (2010) in a port-

folio selection problem.

The tools we develop for risk measurement are robust in a

sense similar to the way the term is used in the optimization

and control literature. Robust optimization seeks to optimize

against worst-case errors in problem data—see Ben-Tal et al.

(2000), Bertsimas and Pachamanova (2008) and Goldfarb and

Iyengar 2003), for example. The errors in problem data consid-

ered in this setting are generally limited to uncertainty about

parameters, though distributional robustness is considered in,

e.g. El Ghaoui et al. (2003) and Natarajan et al. (2008). Our

approach builds on the robust control ideas developed in

Hansen and Sargent (2007), Hansen et al. (2006), and

Petersen et al. (2000), and applied to dynamic portfolio selec-

tion in Glasserman and Xu (forthcoming). Related techniques

are used in Boyarchenko et al. (2012) and Meucci (2008). In

this line of work, it is useful to imagine an adversary that

changes the probability law in the model dynamics; the robust

control objective is to optimize performance against the worst-

case change of probability imposed by the adversary. Similarly,

here we may imagine an adversary changing the probability

law of the inputs to a risk calculation; we want to describe this

worst-case change in law and quantify its potential impact on

risk measurement. In both settings, the degree of robustness is

determined through either a constraint or a penalty on relative

entropy that limits the adversary’s ability to make the worst

case arbitrarily bad.

Our approach combines conveniently with Monte Carlo

simulation for risk measurement. At the same time that we

simulate a nominal model and estimate a nominal risk measure,

we can estimate a bound or bounds on model risk with virtually

no additional computational effort: we simply multiply the

nominal risk measure on each path by a factor (a likelihood

ratio or Radon-Nikodym derivative) that captures the adver-

sary’s change of probability measure. To understand how the

adversary’s choice changes the model, we need to simulate

under the worst-case model. This is again straightforward be-

cause simulating under the original model and then multiplying

any output by the adversary’s likelihood ratio is equivalent

to simulating the output from the worst-case model. This is

similar to importance sampling, except that the usual goal of

importance sampling is to reduce estimation variance without

changing the mean of the estimated quantity; here, the objective

is to understand how the change in probability measure changes

the means and other model properties. This simulation-based

approach also allows us to limit which stochastic inputs to a

model are subject to model error.

Our focus, as already noted, is on bounding worst-case model

error. An alternative approach to model uncertainty is to mix

multiple models. This idea is developed from a Bayesian per-

spective in, for example, Draper (1995) and Raftery et al. (1997)

and applied to portfolio selection in Pesaran et al. (2009). For

risk measurement, the added conservatism of considering the

worst case is often appropriate and can be controlled through

the parameter that controls the degree of robustness by penalz-

ing or constraining relative entropy.

The rest of the paper is organized as follows. Section 2

provides an overview of our approach and develops the main

supporting theoretical tools. In Section 3, we discuss the im-

plementation of the approach through a set of techniques we

call robust Monte Carlo. The remainder of the paper is devoted

to illustrative applications: Section 4 considers portfolio vari-

ance; Section 5 considers conditional value-at-risk; Section 6

examines the Gaussian copula model of portfolio credit risk;

Section 7 investigates delta hedging, comparing the worst-case

hedging error with various specific sources of model error; and

Section 8 studies model risk in the dependence between expo-

sures and default times in credit valuation adjustment (CVA).

2. Overview of the approach

We begin by introducing the main ideas of the paper in a

simple setting. Let X denote the stochastic elements of a

model—this could be a scalar random variable, a random vec-

tor or a stochastic process. Let V (X) denote some measure of

risk associated with the outcome X. We will introduce condi-

tions on V later, but for now we keep the discussion informal.

If the law of X is correctly specified, then the expectation

E[V (X)] is the true value of the risk measure of interest.

We incorporate model uncertainty by acknowledging that

the law of X may be misspecified. We consider alternative

probability laws that are not too far from the nominal law in a

sense quantified by relative entropy. For probability densities f

and f̃ with a well-defined likelihood ratio m = f̃ / f , we define

the relative entropy of f̃ with respect to f to be

R( f, f̃ ) = E[m log m] =
∫

f̃ (x)

f (x)
log

f̃ (x)

f (x)
f (x) dx .†

†In some references, relative entropy is defined under the alternative

model f̃ by a change of measure, i.e. R( f, f̃ ) = E[m log m] =
∫

log
f̃ (x)
f (x)

f̃ (x) dx , which is equilavent to our definition.
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Robust risk measurement and model risk 3

In Bayesian statistics, relative entropy measures the informa-

tion gain in moving from a prior distribution to a posterior

distribution. In our setting, it measures the additional infor-

mation that would be needed to make an alternative model f̃

preferable to a nominal model f.

It is easy to see that R ≥ 0, and R( f, f̃ ) = 0 only if f̃ and

f coincide almost everywhere (with respect to f). Relative en-

tropy is not symmetric in f and f̃ and does not define a distance

in the usual sense, but R( f, f̃ ) is nevertheless interpreted as a

measure of how much the alternative f̃ deviates from f. (Our

views of f and f̃ are generally not symmetric either: we favour

the nominal model f but wish to consider the possibility that f̃ is

correct.) The expression E[m log m], defining relative entropy

through a likelihood ratio, is applicable on general probability

spaces and is thus convenient. Indeed, we will usually refer to

alternative models through the likelihood ratio that connects

an alternative probability law to a nominal law, defining f̃ (x)

to be m(x) f (x). With the nominal model f fixed, we write

R(m) instead of R( f, f̃ ).

To quantify model risk, we consider alternative models de-

scribed by a set Pη of likelihood ratios m for which

E[m log m] < η. In other words, we consider alternatives

within a relative entropy ‘distance’η of the original model. We

then seek to evaluate, in addition to the nominal risk measure

E[V (X)], the bounds

inf
m∈Pη

E[m(X)V (X)] and sup
m∈Pη

E[m(X)V (X)]. (1)

The expression E[m(X)V (X)] is the expectation under the

alternative model defined by m. For example, in the scalar

case m = f̃ / f ,

E[m(X)V (X)] =
∫

f̃ (x)

f (x)
V (x) f (x) dx =

∫

V (x) f̃ (x) dx .

The bounds in (1) thus bound the range of possible values

for the risk measure consistent with a degree of model error

bounded by η.

The standard approach to the maximization problem in (1)

is to form the dual problem

inf
θ>0

sup
m

E

[

mV (X) − 1

θ
(m log m − η)

]

.

(We will often suppress the argument of m to simplify notation,

as we have here.) For given θ > 0, the inner supremum

problem has as solution of the form

m∗
θ = exp(θV (X))

E[exp(θV (X))] , (2)

provided the expectation in the denominator is finite. In other

words, the worst-case model error is characterized by an expo-

nential change of measure defined through the function V and

a parameter θ > 0. The lower bound in (1) is solved the same

way but with θ < 0. The explicit solution we get in (2) is the

greatest advantage of working with relative entropy to quantify

model error. In Section 3, we will apply (2) at multiple values

of θ to trace out bounds at multiple levels of relative entropy.

2.1. A first example: portfolio variance

To help fix ideas, we introduce a simple example. Let X denote

a vector of asset returns and suppose, for simplicity, that X

is modelled by a multivariate normal distribution N (µ,�),

� > 0, on R
n . We consider a portfolio with weights a =

(a1, . . . , an)⊤ summing to 1, and we use portfolio variance as

our risk measure

E[V (X)] = E
[

a⊤(X − µ)(X − µ)⊤a
]

.

We are interested in the worst-case variance

sup
m∈Pη

E[mV (X)] = sup
m∈Pη

E
[

ma⊤(X − µ)(X − µ)⊤a
]

.

In formulating the problem this way, we are taking µ as known

but otherwise allowing an arbitrary change in distribution,

subject to the relative entropy budget of η.

From (2), we know that the worst-case change of measure

has the form

m∗
θ ∝ exp

(

θ
[

a⊤(X − µ)(X − µ)⊤a
])

.

We find the worst-case density of X by multiplying the original

N (µ,�) density by the likelihood ratio; the result is a density

proportional to

exp
(

θ
[

a⊤(x − µ)(x − µ)⊤a
])

× exp

(

−1

2
(x − µ)⊤�−1(x − µ)

)

.

In other words, the worst-case density is itself multivariate

normal N (µ, �̃),

�̃ =
(

�−1 − 2θaa⊤
)−1

,

with θ > 0 sufficiently small that the matrix inverse exists. For

small θ ,

�̃ = � + 2θ�aa⊤� + o(θ2),

and the worst-case portfolio variance becomes

a⊤�̃a = a⊤�a + 2θa⊤�aa⊤�a + o(θ2)

= a⊤�a + 2θ
(

a⊤�a
)2

+ o(θ2).

That is, the resulting worst-case variance of the portfolio is

increased by approximately 2θ times the square of the original

variance.

This simple example illustrates ideas that recur throughout

this paper. We are interested in finding the worst-case error

in the risk measure—here given by portfolio variance—but

we are just as interested in understanding the change in the

probability law that produces the worst-case change. In this

example, the worst-case change in law turns out to stay within

the family of multivariate normal distributions: we did not

impose this as a constraint; it was a result of the optimization.

So, in this example, the worst-case change in law reduces

to a parametric change—a change in �. In this respect, this

example is atypical, and, indeed, we will repeatedly stress

that the approach to robustness we use goes beyond merely

examining the effect of parameter changes to gauge the impact

of far more general types of model error.

The worst-case change in distribution we found in this

example depends on the portfolio vector a. Here and through-

out, it is convenient to interpret model error as the work of a ma-

licious adversary. The adversary perturbs our original model,

but the error introduced by the adversary is not arbitrary—it is

tailored to have the most severe impact possible, subject to a
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4 P. Glasserman and X. Xu

relative entropy budget constraint. The bounds in (1) measure

the greatest error the adversary can introduce, subject to this

constraint.

The portfolio variance example generalizes to any quadratic

function V (x) = x⊤ Ax + B, A > 0. A similar calculation

shows that under the worst-case change of measure, X remains

normally distributed with

X ∼ N (µ̃, �̃), �̃ = (�−1 − 2θ A)−1, µ̃ = �̃�−1µ.

The relative entropy associated with this change of measure

evaluates to

η(θ) = 1

2

(

log(det(��̃−1) + tr(�−1�̃ − I )

+ (µ − µ̃)⊤�−1(µ − µ̃)

)

.

By inverting the mapping θ �→ η(θ), we can find the worst-

case θ associated with any relative entropy budget η. In most

of our examples, it is easier to evaluate model error at various

values of θ and calculate the corresponding value for relative

entropy, rather than to specify the level of relative entropy in

advance; we return to this point in Section 3.

2.2. Optimization problems and precise conditions

As the portfolio variance example illustrates, risk measurement

often takes place in the context of an investment or related

decision. We, therefore, extend the basic problem of robust

evaluation of E[V (X)] to optimization problems of the form

inf
a∈A

E[Va(X)], (3)

for some parameter a ranging over a parameter set A. For

example, a could be a vector of portfolio weights or a parameter

of a hedging strategy. We will introduce conditions on Va and

the law of X .

We formulate a robust version of the optimization problem

(3) as

inf
a

sup
m∈Pη

E[mVa(X)]. (4)

Here, we seek to optimize against the worst-case model error

imposed by a hypothetical adversary. The dual to the inner

maximization problem is

inf
a

inf
θ>0

sup
m

E

[

mVa(X) − 1

θ
(m log m − η)

]

. (5)

Proposition 2.1 Under Assumptions A.1–A.2 introduced

in Appendix A, problem (5) is equivalent to

inf
θ>0

inf
a

sup
m

E

[

mVa(X) − 1

θ
(m log m − η)

]

. (6)

For fixed θ ∈ (0, θ∗
max), the corresponding optimal objective

function of inner inf a supm in (6) becomes

H(θ) + η

θ
:= inf

a
sup

m
E

[

mVa(X) − 1

θ
m log m + η

θ

]

(7)

= 1

θ
log E

[

exp(θVa∗(θ)(X))
]

+ η

θ
,

where the optimal decision is

a∗(θ) = arg inf
a

1

θ
log E[exp(θVa(X))], (8)

and the worst-case change of measure is

m∗
θ = exp

(

θVa∗(θ)(X)
)

/E
[

exp(θVa∗(θ)(X))
]

. (9)

For a fixed value of a,

lim
θ→0+

1

θ
log E[exp(θVa(X))] = E[Va(X)],

corresponding to the nominal case without model uncertainty.

To avoid too much technical complication, we only consider a

simple case. When 1
θ

log E[exp(θVa(X))] is continuous both

in a and θ , we can define the optimal decision and objective

function when θ approaches 0 as follows:

a∗(0) = lim
θ→0+

arg inf
a

1

θ
log E[exp(θVa(X))]

= arg inf
a

E[Va(X)],

H(0) = lim
θ→0+

1

θ
log E[exp(θVa∗(0)(X))] = E[Va∗(0)(X)].

Because Va(x) is convex in a for any x , the objective func-

tion E[Va(X)] is convex in a. Because θ > 0, the objective

function in (8) is convex as well. The constrained problem (4)

is equivalent to

inf
θ>0

H(θ) + η

θ
. (10)

As a consequence of [(Petersen et al. 2000, Theorem 3.1)],

when the set of θ > 0 leading to finite H(θ), is non-empty,

(10) has a solution θ > 0 and the optimal value and solution

solve the original constraint problem (4).

Proposition 2.2 With Assumption A.2 introduced in

Appendix A, the objective function in (8) is convex in a.

Proof Because Va(x) is convex in a for any x , the objective

function E[Va(X)] is convex in a. Because θ > 0, the objective

function in (8) is convex as well. �

For given η > 0, we can find an optimal θ∗
η , with m∗

(θ∗
η , a∗(θ∗

η )) and a∗(θ∗
η ) as optimal solutions, and

η = E
[

m∗
(

θ∗
η , a∗(θ∗

η )
)

log m∗
(

θ∗
η , a∗(θ∗

η )
)]

, (11)

i.e. the uncertainty upper bound is reached at the optimal per-

turbation. So with θ∗
η > 0, and the adversary’s optimal choice

as (9), the original constraint problem (4) has the optimal

objective

E
[

m∗
(

θ∗
η , a∗

(

θ∗
η

))

Va∗(θ∗
η )(X)

]

=
E

[

Va∗(θ∗
η )(X) exp

(

θ∗
η Va∗(θ∗

η )(X)
)]

E
[

exp
(

θ∗
η Va∗(θ∗

η )(X)
)] , (12)

which differs from the objective function of the penalty version

(7) through the constant term.

In practice, we may be interested in seeing the relation

between the level of uncertainty and the worst-case error, which

involves comparing different values of η. In this case, rather

than repeat the procedure above multiple times to solve (10),

we can work directly with multiple values of θ > 0 and

evaluate η(θ) with each, as in (11). Working with a range of

values of θ , this allows us to explore the relationship between

η and the worst-case error (and this is the approach we use in

our numerical examples). This method requires that η be an
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Robust risk measurement and model risk 5

increasing function of θ , a property we have observed numer-

ically in all of our examples.

2.3. Robustness with heavy tails: extension to α-divergence

In order to use relative entropy to describe model uncertainty,

we need the tails of the distribution of V (X) to be exponentially

bounded, as in Assumption A.1 introduced in Appendix A. To

deal with heavy-tailed distribution, we can use an extension of

relative entropy called α-divergence and defined as (see also

Rényi (1961) and Tsallis (1988))

Dα(m) = Dα( f, f̃ ) = 1 −
∫

f̃ α(x) f 1−α(x)dx

α(1 − α)

= 1 − E[mα]
α(1 − α)

,

with m the likelihood ratio f̃ / f , as before, and the expectation

on the right taken with respect to f . Relative entropy can be

considered a special case of α-divergence, in the sense that

R(m) = E[m log m] = limα→1+ Dα(m).

With relative entropy replaced by α-divergence, the con-

straint problem (4) becomes

inf
a

sup
m:Dα(m)<η

E[mVa(X)].

The corresponding penalty problem is

inf a inf θ>0 supm E

[

mVa(X) − 1

θ
(Dα(m) − η)

]

= inf θ>0 inf a supm E

[

mVa(X) − 1

θ
(Dα(m) − η)

]

.

(13)

The supremum is taken over valid likelihood ratios—

non-negative random variables with mean 1. Dey and Juneja

(2010) apply an equivalent polynomial divergence and mini-

mize it subject to linear constraints through a duality argument.

We use a similar approach.

Proposition 2.3 Suppose Assumption A.3 introduced in

Appendix A holds. For any a ∈ A, θ > 0 and α > 1, the pair

(m∗(θ, α, a), c(θ, α, a)) that solves the following equations

with probability 1 is an optimal solution to (13):

m∗(θ, α, a) = (θ(α − 1)Va(X) + c(θ, α, a))
1

α−1 , (14)

for some constant c(θ, α, a), such that

θ(α − 1)Va(X) + c(θ, α, a) ≥ 0, (15)

and

E
[

(θ(α − 1)Va(X) + c(θ, α, a))
1

α−1

]

= 1. (16)

Proof The objective of (13) is concave in m. Proceeding as in

(Dey and Juneja 2010, Proof of Theorem 2), we can construct

a new likelihood ratio (1 − t)m∗ + tm using an arbitrary m;

the objective becomes

K (t) := E

[

((1 − t)m∗ + tm)Va

+ 1

θα(1 − α)
((1 − t)m∗ + tm)α

]

+ η

θ
,

K ′(0) = E

[{

Va + 1

θ(1 − α)
(m∗)α−1

}

(m − m∗)

]

. (17)

In order to have K ′(0) = 0 for any m, we need the term inside

braces in (17) to be constant. By the definition of m∗, K ′(0) = 0

holds, so m∗ is optimal. �

If Va(X) is not bounded from below, then when θ > 0 and

α ≥ 0, (15) cannot be satisfied. For the case in which the

adversary seeks to minimize the objective function (that is, to

get the lower bound of the error interval), we need α < 0 to

satisfy (15).

A feasible likelihood ratio exists in a neighbourhood of

θ = 0, by the following argument. In the nominal case θ = 0,

we have m∗(0, α, a) = c(0, a)
1

α−1 , so we can always choose

c(0, α, a) = 1. By continuity, we can find a set [0, θ0) such that

c(θ, α, a) satisfying (15) and (16) exists for any θ ∈ [0, θ0).

Once c(θ, α, a) is found, (14) gives an optimal change of mea-

sure (not necessarily unique). The optimal decision becomes

a∗(θ) = arg min
a

α − 1

α
E

[

(

θ(α − 1)Va(X)

+ c(θ, α, a)
)

1
α−1 Va(X)

]

+ c(θ, α, a)

θα(1 − α)
. (18)

In contrast to the relative entropy case, it is not clear whether

the objective in (18) is convex in a.

Measuring potential model error through α-divergence

focuses uncertainty on the tail decay of the nominal probability

density. For example, in the simple scalar case Va(x) = xk ,

taking α > 1 leads to a worst-case density function

f̃X (x) ≈ cxk/(α−1) fX (x), (19)

for x ≫ 0, where fX is the density function of X under the

nominal measure. Incorporating model uncertainty makes the

tail heavier, asymptotically, by a factor of xk/(α−1).

As illustrated using relative entropy and α-divergence, our

method can potentially be generalized to a much higher level as

follows. If we can find a measurement or premetric, with which

the worst-case likelihood ratio can be derived easily, then most

of our analysis can be carried out without much difficulty. A

possible choice of such measurement or premetric has the form

E[φ(m)], where the function φ(m) ≥ 0 for any likelihood ratio

m. Relative entropy and α-divergence are special cases.

3. Implementation: robust Monte Carlo

In this section, we present methods for estimating the model

error bounds in practice through what we call robust Monte

Carlo. In addition to calculating bounds, we present ways

of examining the worst-case model perturbation to identify

the greatest model vulnerabilities, and we also show how to

constrain the possible sources of model error.

3.1. Estimating the bounds on model error

We assume the ability to generate independent replications

X1, X2, . . . of the stochastic input X , recalling that X may

be a random variable, a random vector or a path of a stochastic

process. A standard Monte Carlo estimator of E[V (X)] is

1

N

n
∑

i=1

V (X i ).
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6 P. Glasserman and X. Xu

For any fixed θ and likelihood ratio mθ ∝ exp(θV (X)),

we can estimate the expectation of V (X) under the change of

measure defined by mθ by generating the X i from the original

(nominal) measure and forming the estimator
∑N

i=1 V (X i ) exp(θV (X i ))
∑N

i=1 exp(θV (X i ))
, (20)

which converges to E[mθ V (X)] as N → ∞. Assuming

V ≥ 0, we have E[V (X)] ≤ E[mθ V (X)] if θ > 0 and

E[V (X)] ≥ E[mθ V (X)] if θ < 0. Our estimator of these

bounds requires virtually no additional computational effort

beyond that required to estimate the nominal value E[V (X)].
From the same replications X1, . . . , X N , we can estimate

the likelihood ratio by setting

m̂θ,i = exp(θV (X i ))
∑N

j=1 exp(θV (X j ))/N
, i = 1, . . . , N .

This in turn allows us to estimate the relative entropy at θ as

η̂(θ) = 1

N

N
∑

i=1

m̂θ,i log m̂θ,i . (21)

Thus, we can easily estimate (η(θ), E[mθ V (X)]) across mul-

tiple values of θ . Given a relative entropy budget η, we then

lookup the smallest and largest values of E[mθ V (X)] esti-

mated with η̂(θ) ≤ η to get the model error bounds at that

level of η. We will illustrate this procedure through several

examples.

Just as importantly, we can use the same simulation to anal-

yse and interpret the worst-case model error. We do this by es-

timating expectations E[mθ h(X)] of auxiliary functions h(X)

under the change of measure by evaluating estimators of the

form

1

N

N
∑

i=1

m̂θ,i h(X i ). (22)

Through appropriate choice of h, this allows us to estimate

probabilities, means and variances of quantities of interest, for

example, that provide insight into the effect of the worst-case

change in probability law.

In some case, we may want to sample from the worst-case

law, and not evaluate expectations under the change of mea-

sure. If V is bounded, we can achieve this through acceptance–

rejection: to simulate under the law defined by θ , we generate

candidates X from the original nominal law and accept them

with probability exp(θV (X))/M , with M chosen so that this

ratio is between 0 and 1. If V is unbounded, we need to truncate

it at some large value and the sampling procedure then incurs

some bias as a result of the truncation.

These techniques extend to problems of optimization over

a decision parameter a, introduced in Section 2.2, for which a

standard estimator is

min
a

1

N

N
∑

i=1

Va(X i ),

For θ > 0, a worst-case objective function estimator is
∑N

i=1 Vâ∗(X i ) exp(θVâ∗(X i ))
∑N

i=1 exp(θVâ∗(X i ))
, (23)

where the estimated optimal decision parameter is

â∗ = arg inf
a

1

θ
log

N
∑

i=1

exp(θVa(X))

N
,

and the estimated optimal likelihood ratio is

m̂∗
θ,i = exp(θVâ∗(X i ))

∑N
j=1 exp(θVâ∗(X j ))/N

, i = 1, . . . , N .

By continuous mapping theorem, for given â∗
N and any θ ∈

[0, θmax), the averages of both numerator and denominator of
(23) are consistent estimators. That is,

1

N

N
∑

i=1

Vâ∗
N
(Xi ) exp

(

θVâ∗
N
(Xi )

)

→ E
[

Vâ∗
N
(X) exp(θVâ∗

N
(X))

]

,

1

N

N
∑

i=1

exp
(

θVâ∗
N
(Xi )

)

→ E
[

exp(θVâ∗
N
(X))

]

.

Hence, (23) is a consistent estimator for (12) with â∗.

In the case where E[exp(θVa(X))] is continuous in a and

the optimal decision a∗ is unique, it is easy to show that â∗

converges to a∗ in distribution. More generalized results can

be found in Sample Average Approximate literature, e.g.

Shapiro et al. (2009).

Similar estimators are available in the α-divergence frame-

work. For given θ > 0,α > 1 and a, we estimate the worst-case

likelihood ratio as

m̂∗
θ,α,a,i =

(

θ(α − 1)Va(X i ) + ĉ(θ, α, a)
)

1
α−1 ,

for some constant ĉ(θ, a), s.t.

θ(α − 1)Va(X i ) + ĉ(θ, α, a) > 0, for each i

with

1

N

N
∑

i=1

[

(

θ(α − 1)Va(X i ) + ĉ(θ, α, a)
)

1
α−1

]

= 1.

For given θ > 0 and α > 1, we solve for an optimal a as

â∗(θ) = arg min
a

α − 1

α

N
∑

i=1

[

(

θ(α − 1)Va(X i )

+ ĉ(θ, α, a)
)

1
α−1 Va(X i )

]

+ ĉ(θ, α, a)

θα(1 − α)
.

The robust estimator for the objective becomes

1

N

N
∑

i=1

Va(X i )m̂θ,α,a∗(θ),i .

3.2. Incorporating expectation constraints

When additional information is available about the ‘true’model,

we can use it to constrain the worst-case change of measure.

Suppose the information available takes the form of constraints

on certain expectations. For example, we may want to constrain

the mean (or some higher moment) of some variable of a model.

We formulate this generically through constraints of the form

E[mhi (X)] ≤ ηi or E[mhi (X)] = ηi for some function hi

and scalars ηi .
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Robust risk measurement and model risk 7

Such constraints can be imposed as part of an iterative eval-

uation of model risk. In (22), we showed how a change of

measure selected by an adversary can be analysed through its

implications for auxiliary functions. If we find that the change

of measure attaches an implausible value to the expectation

of some hi (X), we can further constrain the adversary not

just through the relative entropy constraint but through ad-

ditional constraints on these expectations. This helps ensure

the plausibility of the estimated model error and implicitly

steers the adversary to allocate the relative entropy budget to

other sources of model uncertainty. The adversary’s problem

becomes

sup
m∈PM

E[mV (X)], (24)

where

PM = {m : R(m) ≤ η, E[mhi (X)] ≤ ηi , i = 1, . . . , nM }
for some ηi , η ∈ [0,∞).

Here, we have added nM constraints on the expectations of

hi (X) under the new measure.

We can move the constraints into the objective with

Lagrange multipliers λi and transform (24) into a penalty

problem; the argument in Petersen et al. (2000) still holds as

the terms of hi (X) can be combined with that of V :

inf
θ>0,λi >0

sup
m

E

[

mV (X) − 1

θ
(m log m − η)

−
nM
∑

i=1

λi [mhi (X) − ηi ]
]

.

When θ and the λi are fixed, the problem can be treated as

before in (6).

Proposition 3.1 For fixed θ > 0 andλi > 0, i = 1, . . . , nM ,

such that

E

[

exp

(

θ

[

V (X) −
nM
∑

i=1

λi hi (X)

])]

< ∞.

The worst change of measure is

m∗
θ ∝ exp

(

θ

[

V (X) −
nM
∑

i=1

λi hi (X)

])

.

The optimization over (θ, λi ) becomes

inf
θ>0,λi >0

1

θ
log E

[

exp

(

θ

[

V (X) −
nM
∑

i=1

λi hi (X)

])]

+ η

θ
+

nM
∑

i=1

ηiλi .

For equality constraints, the optimization is over λi ∈ R.

This is a standard result on constraints in exponential families

of probability measures. It is used in Avellaneda et al. (2000)

and Cont and Tankov (2004), for example, where

the constraints calibrate a base model to market prices.

Glasserman and Yu (2005) and Szechtman and Glynn (2001)

analyse the convergence of Monte Carlo estimators in which

constraints are imposed by applying weights to the replications.

For an optimization problem as in (3), adding constraints

entails solving another layer of optimization. For example, if

the original problem is a minimization problem as in (3), then

for given (θ, λi ), the optimal decision becomes

a∗(θ, λi )

= arg inf
a

1

θ
log E

[

exp

(

θ

[

Va(X) −
nM
∑

i=1

λi hi (a, X)

])]

+
nM
∑

i=1

ηiλi .

3.3. Restricting sources of model uncertainty

In some cases, we want to go beyond imposing constraints

on expectations to leave entire distributions unchanged by

concerns about model error. We can use this device to focus

robustness on parts of the model of particular concern. We

will see a different application in Section 8 where we use an

exponential random variable to define a default time in a model

with a stochastic default intensity. In that setting, we want to

allow the default intensity to be subject to model uncertainty,

but we want to leave the exponential clock unchanged as part

of the definition of the default time.

Suppose, then, that the stochastic input has a representation

as (X, Y ), for a pair of random variables or vectors X and Y .

We want to introduce robustness to model error in the law of

X , but we have no uncertainty about the law of Y . For a given

θ > 0, we require that E[exp(θVa(X, Y ))|Y = y] < ∞ for

any y, and formulate the penalty problem

inf
a

sup
m

E

[

m(X, Y )Va(X, Y )

−1

θ

(

m(X, Y ) log m(X, Y ) − η
)

]

(25)

s.t. E[m(X, Y )|Y = y] = 1, ∀y (26)

m(x, y) ≥ 0 ∀x, y.

We have written m(X, Y ) to emphasize that the likelihood ratio

may be a function of both inputs even if we want to leave the

law of Y unchanged.

Proposition 3.2 For problem (25) with θ > 0 and

E[exp(θVa(X, Y ))|Y = y] < ∞ for all y:

(1) Any likelihood ratio that satisfies (26) preserves the

law of Y .

(2) For any a, the likelihood ratio

m∗(x, y) = exp(θVa(x, y))

E[exp(θVa(X, Y ))|Y = y] , (27)

is an optimal solution to the maximization part of

problem (25).

(3) The corresponding optimal decision becomes

a∗(θ) = arg inf
1

θ
E [log E[exp(θVa(X, Y ))|Y ]] .

Proof The feasible set of likelihood ratios m is convex, and

the objective function is concave in m, so it suffices to check

first-order conditions for optimality. Define

K̄ (t) = E
[

(

tm∗ + (1 − t)m
)

Va(X, Y ) − 1

θ

(

(tm∗

+ (1 − t)m) log(tm∗ + (1 − t)m) − η
)

]

,
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8 P. Glasserman and X. Xu

where m is an arbitrary likelihood ratio satisfying (26). Obvi-

ously, m∗ satisfies (26). Taking the derivative of K̄ at zero and

substituting for m∗, we get

K̄ ′(0) = E

[(

Va(X, Y ) − 1

θ
log m∗ − 1

θ

)

(m∗ − m)

]

= E

[

E

[(

Va(X, Y ) − 1

θ
log m∗ − 1

θ

)

(m∗ − m)|Y
]]

= E

[

1

θ
(log E[exp(θVa(X, Y ))|Y ] − 1)

×E
[

(m∗ − m)|Y
]

]

. (28)

By constraint (26), for any Y = y, the conditional expectation

E[(m∗ − m)|Y ] in (28) equals zero, so K̄ ′(0) = 0. Hence m∗

is an optimal solution satisfying constraint (26).

Next, we show that any likelihood ratio satisfying (26) pre-

serves the distribution of Y . Let a tilde indicate the distribution

following the change of measure.

P̃(Y ∈ D) = E[m∗(θ, X, Y )IY∈D]
= E

[

E[m∗(θ, X, Y )IY∈D|Y ]
]

= E
[

IY∈D E[m∗(θ, X, Y )|Y ]
]

= E[IY∈D] = P(Y ∈ D)

for any Y -measurable set D.

Thus, the likelihood ratio for the marginal law of Y is

identically equal to 1, indicating that the distribution of Y is

unchanged. �

To implement (27), we need to generate multiple copies

X1, . . . , X N for each outcome of y and then form the Monte

Carlo counterpart of (27),

m̂∗(x, y) = exp(θVa(x, y))
∑N

i=1 exp(θVa(X i , y))/N
(29)

Robust Monte Carlo Recap: We conclude this section with a

brief summary of the implementation tools of this section.

• By simulating under the nominal model and weighting

the results as in (20), we can estimate the worst-case

error at each level of θ . We can do this across multiple

values of θ at minimal computational cost. By also

estimating η(θ) as in (21), we can plot the worst-case

error as a function of relative entropy.

• To examine the effect of the change of measure

defined by θ , we can estimate moments and the

expectations of other auxiliary functions using (22).

We can also sample directly from the measure de-

fined by θ using acceptance-rejection—exactly if V

is bounded and approximately if not.

• We can constrain the worst-case change of measure

through constraints on moments or other auxiliary func-

tions using Proposition 3.1. This technique can be used

iteratively to constrain the potential model error if the

values estimated through (22) appear implausible.

• Using Proposition 3.2 and (29), we can constrain the

worst-case model to leave certain marginal distribu-

tions unchanged. This too can be used iteratively to

focus robustness on the most uncertain features of

model.

4. Portfolio variance

The rest of the paper deals with applications of the ideas devel-

oped in the previous sections. In Section 2.1, we illustrated the

key ideas of robust risk measurement through an application

to portfolio variance. Here, we expand on this example.

4.1. Mean-variance optimal portfolio

We extend our earlier discussion of portfolio variance to cover

the selection of mean-variance optimal portfolios under model

uncertainty. For the mean-variance objective, let γ > 0 be a

risk-aversion parameter and consider the optimization problem

inf
a

−E
[

a⊤ X − γ

2
a⊤(X − E[X ])(X − E[X ])⊤a

]

. (30)

As before, a denotes a vector of portfolio weights. To illustrate

the method of Section 3.2, we constrain the mean vector and

limit uncertainty to the covariance matrix, which leads to the

robust problem

inf
a

sup
m

E[mVa(X)]

= inf
a

sup
m

−E

[

m
(

a⊤ X − γ

2
a⊤(X − µ)(X − µ)⊤a

)

]

s.t. E[m X ] = µ.

Following the argument in Section 3.2, for some a, θ > 0

and λ, the worst-case likelihood ratio is

m∗ ∝ exp
(

θ
(

Va(X) − λ⊤(X − µ)
))

(31)

where λ solves

inf
λ

1

θ
log E

[

exp
(

θ
[

V (X) − λ⊤ X
])]

+ λ⊤µ.

Proceeding as in Section 2.1, we find that the worst-case change

of measure preserves the normality of X . The term with λ is

linear in X and, therefore, affects only the mean of X . Because

we have constrained the mean, m∗ satisfies

m∗ ∝ exp

(

θγ

2
a⊤(X − µ)(X − µ)⊤a

)

, (32)

Matching (31) and (32), we find that λ = a.

For given θ > 0, let A(θ) = {a : �−1−θγ aa⊤ > 0} denote

the set of portfolio vectors a that ensure that the resulting

covariance matrix is positive definite. Then, for given (a, θ)

such that θ > 0 and a ∈ A(θ), the worst-case change of

measure has X ∼ N (µ, �̃), where �̃−1 = �−1 −θγ aa⊤. We

can find the optimal a by numerically solving

a∗(θ) = arg inf
a∈A(θ)

1

θ
log E

[

exp
(

θ
[

V (X) − λ⊤ X
])]

+ λ⊤µ

= arg inf
a∈A(θ)

1
√

det(I − θγ aa⊤�)
+ a⊤µ. (33)

The corresponding relative entropy is

η(θ) = 1

2

(

log(det(��̃−1)) + tr(�−1�̃ − I )
)

.

To illustrate, we consider an example with 10 assets, where

µi = 0.1, σi i = 0.3 and ρi j = 0.25 for i �= j , i, j =
1, . . . , 10 and γ = 1. We refer to the optimal portfolio at

these parameter values as the nominal portfolio (NP). At each
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Robust risk measurement and model risk 9
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Figure 1. Expected performance vs. relative entropy. The left panels shows the performance of the nominal portfolio (NP) and the robust
portfolio (RP) under the nominal and worst-case models. The right panel shows the performance of the nominal portfolio under perturbations
in model parameters. Higher values on the vertical scale indicate worse performance.

Table 1. Realized and forecast variance with model uncertainty.

2002 2008

Realized variance 0.35 × 10−3 0.65 × 10−3

±2×Std. Err. (0.29, 0.42) × 10−3 (0.53, 0.77) × 10−3

Forecast variance 0.21 × 10−3 0.21 × 10−3

±(2×Std. Err. + Model Err.) (0.20, 0.22) × 10−3 (0.20, 0.22) × 10−3

θ = 100 (0.21, 0.25) × 10−3 (0.17, 0.22) × 10−3

θ = 500 (0.18, 0.32) × 10−3 (0.14, 0.32) × 10−3

θ = 900 (0.16, 0.47) × 10−3 (0.12, 0.58) × 10−3

θ value, we compute the robust portfolio (RP), meaning the

one that is optimal under the change of measure defined by θ .

In the left panel of figure 1, we plot the performance of the

two portfolios (as measured by the mean-variance objective—

recall that we are minimizing) against relative entropy (which

we also compute at each θ ). The performance of the NP port-

folio under the nominal model is simply a horizontal line.

The performance of the RP portfolio under the nominal model

is always inferior, as it must be since NP is optimal in the

nominal model. However, under the worst-case model, the

RP values are better than the NP values, as indicated by the

upper portion of the figure. In the lower portion of the figure,

we see the performance of the nominal portfolio under the

best-case model perturbation possible at each level of relative

entropy. The vertical gap between the two portions of the

NP curve indicate the model risk at each level of relative

entropy.

One of the themes of this paper is that model error as gauged

by relative entropy does not necessarily correspond to a straight-

forward error in parameters. To illustrate, in the right panel

we examine the performance of the nominal portfolio under

specific parameter perturbations. We vary the common cor-

relation parameter from ρ = 0.05 (which produces the best

performance) to ρ = 0.45 (which produces the worst); the

relative entropy first decreases and then increases as ρ moves

through this range. We also examine the effect of multiplying

the covariance matrix of the assets by κ ∈ (0.72, 1.32). The

key point—and one to which we return often—is that the

worst-case change of measure results in significantly worse

performance than any of these parameter perturbations.

Glasserman and Xu (forthcoming) study a dynamic version

of the mean-variance problem with stochastic factors and trans-

action costs. The analysis results in closed-form solutions for

both the investor and adversary. For general multi-period prob-

lems, Iyengar (2005) develops a robust version of dynamic

programming.

4.2. Empirical example

To apply these ideas to data, we use daily returns from the

CRSP database on the 126 stocks that were members of the

S&P500 index from 1 January, 1990, to 31 December, 2011.

We first estimate the mean µ and covariance � of daily

return using the first 12 years of data, through the end of 2001.

For the covariance matrix, we use the shrinkage method in

Ledoit and Wolf (2003). Based on the estimated mean and

covariance matrix, we construct the mean-variance optimal

portfolio

a = (γ�)−1(µ − λI ) (34)

where λ = (I ⊤(γ�)−1µ − 1)/(I ⊤(γ�)−1 I )

and γ = 10. We assume a static portfolio with total capital of

1. We take the portfolio variance from the initial time period

as a forecast of the future variance for the same portfolio.

We compare this forecast with the realized variance in 2002,

when the dot-com bubble burst.

In the first column of table 1, we see that the realized vari-

ance in 2002 is quite large compared to the forecast using the

previous 12 years of data. Confidence intervals equal to two
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10 P. Glasserman and X. Xu

Table 2. Worst-case portfolio variance at different levels of θ and α. The middle column reports estimates using parameters estimated at
α = 2.5, showing first the portfolio variance and then the degrees of freedom parameter (in parentheses) estimated using να = ν + kno − kθ,α

and maximum likelihood.

θ α = 2 α = 2.5 α = 2.5, worst parameters (DOF) α = 3 α = 3.5

0 0.109 0.109 0.109 0.109 0.109
0.1 0.159 0.131 0.130 (3.15,3.65) 0.125 0.122
0.4 0.308 0.174 0.174 (2.84,3.18) 0.152 0.143
0.7 0.458 0.210 0.209 (2.77,2.93) 0.173 0.159
1 0.607 0.241 0.238 (2.74,2.84) 0.190 0.171

times the standard error of the realized variance and forecast

have no overlap. The sampling variability in the initial period

is not large enough to explain the realized variance.

Next, we introduce error intervals based on relative entropy.

We use the portfolio variance as the objective and obtain the

worst-case variance at different levels of θ . Let

Model Error = |nominal variance-worst variance|.
Now, we can form a new interval by combining both standard

error and model error. In the lower part of table 1, the new

interval almost reaches the realized variance in 2002 when θ =
500, and it covers the confidence interval of realized variance

when θ = 900. By considering both sampling variability and

model error, we can cover the 2002 scenario.

This gives us a rough sense of the level of robustness needed

to capture a sharp change like that in 2002. We now position

ourselves at the end of 2007 and undertake a similar analysis.

Again, we use the previous 12 years of data to form a forecast,

which is 0.21 × 10−3. We choose θ = 900 as the robustness

level, based on the study of 2002, so that the whole confidence

interval of 2002 is contained.

The model errors for the forecast of 2002 were 0.10 × 10−3

and 0.25 × 10−3 for θ = 500 and 900, respectively, and

they change to 0.10 × 10−3 and 0.36 × 10−3 in the forecast

of 2008. The forecast with both standard error and model

error forms a pretty wide interval, which has a slight overlap

with the confidence interval of the realized variance in 2008.

Although the crisis in 2008 was more severe than the drop in

2002, the market change in 2002 provides a rough guide of

potential model risk. The particular combination we have used

of sampling error and model error is somewhat heuristic, but

it nevertheless shows one way these ideas can be applied to

historical data.

4.3. The heavy-tailed case

To illustrate the use of α-divergence in the heavy-tailed setting,

we now suppose that the vector of asset returns is given by

X ∼ µ + Z , where Z ∼ tν(�, ν) has a multivariate t distri-

bution with ν > 2 degrees of freedom and covariance matrix

ν�/(ν − 2). Because neither the t-distribution nor a quadratic

function of X has a moment generating function, we use α-

divergence as an uncertainty measure. With a fixed portfolio

weight vector a, Proposition 2.3 yields the worst-case likeli-

hood ratio

m∗(θ, α) = (θ(α − 1)Va(X) + c(θ, α))
1

α−1 (35)

with c(θ, α) s.t. E[m∗(θ, α)] = 1

where Va(X) = a⊤(X − µ)(X − µ)⊤a.

To illustrate, we consider an portfolio with n = 10 assets,

ν = 4, µi = 0.1, �i i = 0.28 + 0.02 × i and ρi j = 0.25

for i, j = 1, . . . , n and i �= j . We use a randomly generated

portfolio weight vector

a =
[

0.0785, 0.1067, 0.1085, 0.1376, 0.0127, 0.2204,

0.0287, 0.1541, 0.1486, 0.0042
]

,

and simulate N = 107 samples to examine the worst-case

scenario. Table 2 shows the portfolio variance across various

values of θ and α, with θ = 0 corresponding to the baseline

nominal model. For fixed α, increasing θ increases the uncer-

tainty level and increases the worst-case variance. The middle

column of the table shows results using estimated parameters

at α = 2.5; we return to these at the end of this section.

We saw in (19) that the choice of α influences the tail of

V (X) under the worst-case change of measure. A smaller α in

table 2 yields a heavier tail, but this does not necessarily imply

a larger portfolio variance. To contrast the role of α with θ , we

can think of choosing α based on an assessment of how heavy

the tail might be and then varying θ to get a range of levels of

uncertainty. In both cases, some calibration to the context is

necessary, as in the empirical example of the previous section

and in the discussion below.

To understand the influence of the α parameter, we examine

the tail of the portfolio excess return, r = a⊤ X − µ. Figure 2

plots the tail probability of |r | on a log–log scale. Because r

has a t distribution, the log of the density of |r |, denoted by

f|r |(x), is asymptotically linear

log f|r |(x) ≈ −(ν + 1) log x, for x ≫ 0.
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Figure 2. Tail density of absolute returns |r |.

D
o
w

n
lo

ad
ed

 b
y
 [

C
o
lu

m
b
ia

 U
n
iv

er
si

ty
] 

at
 1

0
:2

1
 1

2
 S

ep
te

m
b
er

 2
0
1
3
 



Robust risk measurement and model risk 11

Table 3. Difference of slopes kθ,α − kno of the worst-case and nominal densities, as in figure 2.

α = 2 α = 2.5 α = 3 α = 3.5

2/(α − 1) 2 1.333 1 0.8
θ = 0.1 1.090 0.846 0.694 0.590
θ = 0.4 1.631 1.159 0.899 0.735
θ = 0.7 1.773 1.231 0.943 0.764
θ = 1 1.840 1.263 0.962 0.777

Using the fact that

log
(

m∗(θ, α)
)

= 1

α − 1
log

(

θ(α − 1)r2 + c(θ, α)
)

≈ 2

α − 1
log |r |,

we find (as in (19)) that

log
(

f̃|r |(x)
)

−
(

log f|r |(x)
)

≈ 2

α − 1
log x, for x ≫ 0 (36)

where f̃|r | is the density of |r | under the change of measure.

This suggests that the difference of the slopes in figure 2 be-

tween the nominal and worst scenario should be roughly

2/(α − 1). Asymptotically, the tail under the worst scenario is

similar to a t distribution with degrees of freedom ν−2/(α−1).

We fit linear functions to the curves in figure 2 in the region

log(|r |) ∈ (0.5, 2) and compare the slopes of nominal kno and

worst scenario kθ,α . table 3 lists the differences kθ,α − kno; as

we increase θ , the difference of slopes gets closer to the limit

2/(α − 1) in (36).

By reweighting the sample under the nominal model us-

ing m∗(θ, α), we can estimate model parameters as though

the worst-case model were a multivariate t . We estimate the

degrees of freedom parameter using

να,θ = ν + kno − kθ,α (37)

and estimate the covariance matrix as

worst covariance = E
[

ma⊤(X − µ)(X − µ)⊤a
]

≈ 1

N

N
∑

i=1

m(X i )a
⊤(X i − µ)(X i − µ)⊤a.

We can then generate a second set of samples from the t

distribution with these parameters to see how this compares

with the actual change of measure.

In the middle of table 2, we show the estimated να,θ using

(37) as the first number in parentheses. The second value is a

maximum likelihood estimate using m∗
θ,α to weight the nomi-

nal samples. The two values are relatively close; we use only

(37) in sampling under the worst-case parameter values and in

figure 2. The variance results under the parameters estimated at

α = 2.5 are very close to those estimated under the worst-case

model at α = 2.5, suggesting that the worst case might indeed

be close to a t distribution. Interestingly, figure 2 shows that

using the parameters from the worst case actually produces

a heavier tail; the worst-case change of measure magnifies

the variance through relatively more small returns than does

the approximating t distribution. In table 4, we see that the

α-divergence under the approximating t is much larger. Thus,

the adversary has economized the use of α-divergence to mag-

Table 4. Comparison of α-divergence using the worst-case change
of measure and the approximating t distribution from the worst case.

θ α = 2.5 Approximating t-dist.

0.1 0.001 0.086
0.4 0.012 0.230
0.7 0.031 0.287
1 0.058 0.323

nify the portfolio variance without making the tail heavier than

necessary.

5. Conditional value at risk

The next risk measure we consider is conditional value at risk

(CVaR), also called expected shortfall. The CVaR at quantile

β for a random variable X representing the loss on a portfolio

is defined by

CV a Rβ = E[X |X > V a Rβ ],
where V a Rβ satisfies 1 − β = P(X > V a Rβ).

As in Rockafellar and Uryasev (2002), CVaR also equals to the

optimal value of the minimization problem

min
a

1

1 − β
E[(X − a)+] + a, (38)

for which the optimal a is V a Rβ .

To put this problem in our general framework, we set Va(X) =
(1 − β)−1(X − a)+ + a. The main source of model error

in measuring CVaR is the distribution of X . As in previous

sections, we can introduce robustness to model uncertainty by

considering a hypothetical adversary who changes the distribu-

tion of X . Of particular concern is the worst-case CVaR subject

to a plausibility constraint formulated through relative entropy

or α-divergence. Jabbour et al. (2008) and Zhu and Pykhtin

(2007) consider robust portfolio optimization problems using

CVaR but different types of model uncertainty.

To illustrate the general approach, we introduce two spe-

cific examples that offer some analytic tractability, one in the

relative entropy setting and one using α-divergence.

5.1. Relative entropy uncertainty

Suppose X follows a double exponential distribution DE(µ, b)

with location parameter µ and scale parameter b, meaning that
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12 P. Glasserman and X. Xu

its density function is

f (x) ∝ exp

(

−|x − µ|
b

)

.

Then, for given a and θ > 0, the density function of X under

the worst-case change of measure becomes

f̃ (x) = m∗
θ,a(x) f (x) ∝ exp

(

−|x − µ|
b

+ θ

1 − β
(x − a)+

)

.

The values of a and β are connected by P(X > a) = 1 − β

under the nominal distribution. Because θ/(1 − β) > 0, we

need 1/b > θ/(1 − β) to ensure this density function is well

defined. The exponent is a piecewise linear function of the

argument x , so f̃ can be considered a generalization of the

double exponential distribution.

We can find the VaR and CVaR explicitly in this example.

First, we evaluate the normalization constant (8):

E[exp(θVa(X))]

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

exp(θa)

[

1 + 1
2

(

1

1− θb
1−β

− 1

)

exp
(

µ−a
b

)

]

, if a > µ

1
2

exp(θa)

[(

1

1− θb
1−β

+ 1

1+ θb
1−β

)

exp
(

θ
1−β

(µ − a)
)

+
(

1 − 1

1+ θb
1−β

)

exp
(

a−µ
b

)

]

, else.

(39)

Denote the cumulant generating function of Va(X) by κa(θ) =
log E[exp(θVa(X))]; then

a∗(θ) = arg min
a

1

θ
κa(θ),

To find a∗, we observe that the function E[exp(θVa(X))] is

convex in a and its derivative at a = µ is

d

da
E

[

exp(θVa(X))
]

∣

∣

∣

∣

a=µ

= θ

2

(

2 + θb − 1

1 − β − θb

)

exp(θµ).

This is positive provided β > 1/2, so we can solve the first

order condition for a > µ to get

a∗(θ) = µ − b log

(

2(1 − β − θb)

1 − θb

)

,

which is the VaR under the worst-case change of measure.

The VaR for the nominal model is

V a Rβ = µ − b log(2(1 − β)).

and the nominal CVaR is

CV a Rβ = V a Rβ + b = µ − b log(2(1 − β)) + b.

Under the worst-case change of measure at parameter θ , the

CVaR becomes

CV a Rβ,θ = a∗(θ) + 1
1
b

+ θ
1−β

.

So, here we can see explicitly how the worst-case CVaR

increases compared to the nominal CVaR. The corresponding

relative entropy is

η(θ) = E
[

m∗
a∗(θ),θ log m∗

a∗(θ),θ

]

= θ
E

[

Va∗(θ) exp
(

θVa∗(θ)(X)
)]

E
[

exp
(

θVa∗(θ)(X)
)]

− log E
[

exp
(

θVa∗(θ)(X)
)]

= θκ ′
a∗(θ)(θ) − κa∗(θ)(θ).

Figure 4 shows the nominal and worst-case densities starting

from a nominal density that is DE(0, 1), using β = 95% and

θ = 0.03. The nominal 95% VaR is a = 2.30; the worst-case

model error (for CVaR) at θ = 0.03 shifts more mass to the

right tail and increases the VaR to 3.19. The CVaR increases

from 3.30 to 3.81. The increase in VaR and the corresponding

increase in CVaR reflect the magnitude of underestimation of

risk consistent with this level of the uncertainty parameter θ .

5.2. The heavy-tailed case

If the nominal distribution of the loss random variable X is

heavy-tailed, then E[exp(θVa(X))] is infinite and the calcula-

tions in (39) and following do not apply. In this case, we need

to use α-divergence as the uncertainty measure. With α > 1,

θ > 0 and a fixed, the worst case likelihood ratio now becomes

m∗
θ,a(X) = (θ(α − 1)Va(X) + c(θ, α, a))

1
α−1 , (40)

for some constant c(θ, α, a) satisfying (15) and (16).

If the density function of X under the nominal distribution is

regularly varying with index ρ, i.e. limx→∞ f (t x)/ f (x) = tρ

for any t > 0 and some index ρ < 0, then under the worst-

case change of measure it is regularly varying with index ρ +
1/(α−1), as suggested by (19). We require ρ +1/(α−1) < 0

to guarantee the new density function is well defined. Because

α > 1, the worst index is smaller than the nominal one,

meaning that the worst-case distribution has a heavier tail.

For purposes of illustration, it is convenient to choose as

nominal model a generalized Pareto distribution with density

function

f (x) = 1

b

(

1 + ξgp

bgp

x

)− 1
ξgp

−1

, for x ≥ 0, some bgp > 0

and ξgp > 0,

or a generalized extreme value distribution with density

f (x) = 1

ξgev

(1 + ξgevx)
− 1

ξgev
−1

exp

(

−(1 + ξgevx)
− 1

ξgev

)

,

for x ≥ 0 and ξgev > 0.

These are regularly varying with index −(1 + 1/ξ), with

ξ = ξgp or ξ = ξgev , accordingly.

Figure 3 shows two examples—a generalized Pareto density

on the left and a generalized extreme value distribution on the

right, each shown on a log scale. In each case, the figure com-

pares the nominal distribution and the worst-case distribution

with α = 4. As in figure 4, the worst-case model error shifts

the VaR to the right and increases the weight of the tail beyond

the shifted VaR, increasing the CVaR.

A recurring and inevitable question in incorporating robust-

ness into risk measurement is how much uncertainty to allow—

in other words, where to set θ or α. If the distribution of X is
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Figure 3. Density of X . The nominal distribution is generalized Pareto (left) or generalized extreme value (right), with parameters bgp = 1
(scale), ξgp = 0.3 (shape), and ξgev = 0.3 (shape). Other parameters are θ = 0.01, α = 4, and β = 95%.
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Figure 4. The dotted red line shows the worst-case density, with β = 95% and θ = 0.03, relative to a DE(0, 1) nominal density (the solid
blue line). The right panel gives a magnified view of the right tail.

estimated from historical data, then the precision with which

the tail decay of X is estimated (the exponential decay in the

light-tailed setting and power decay in the heavy-tailed setting)

can provide some guidance on how much uncertainty should

be incorporated, as we saw in Section 4.2. Also, the Monte

Carlo approach presented in Section 3 illustrates how auxiliary

quantities (for example, moments of X ) can be calculated under

the worst-case change of measure to gauge its plausibility.

6. Portfolio credit risk

In this section, we apply robustness to the problem of portfolio

credit risk measurement. We develop the application within the

framework of the standard Gaussian copula model; the same

techniques are applicable in other models as well.

6.1. The Gaussian copula model

We consider a portfolio exposed to n obligors, and we focus

on the distribution of losses at a fixed horizon. Let Yi denote

the default indicator for i th obligor, meaning that

Yi =
{

1, if the i th obligor defaults within the horizon;

0, otherwise.

A default of obligor i produces a loss of ci , so the total loss

from defaults is

L =
n

∑

i=1

ci Yi .

We are interested in robust measurement of tail probabilities

P(L > x) for loss thresholds x .

In the Gaussian copula model, each default indicator Yi is

represented through the indicator of an event {X i > xi }, where

X i has a standard normal distribution, and the threshold xi is

chosen so that P(Yi = 1) = P(X i > xi ) = pi , for a given

default probability pi . Dependence between default indicators

is introduced through correlations between the X i .

For simplicity, we focus on a single-factor homogeneous

model in which the X i are given by

X i = ρZ +
√

1 − ρ2ǫi ,

where Z , ǫ1, . . . , ǫn are independent standard normal random

variables. We interpret Z as a broad risk factor that affects all

obligors, whereas ǫi is an idiosyncratic risk associated with the

i th obligor only. We have n = 100 obligors, each with a 1%

default probability pi , so xi = 2.33. The loss given default is

ci ≡ 1 for all i = 1, . . . , n.
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Figure 5. Loss probability as a function relative entropy. The solid
blue line shows results under the worst-case change of measure. The
dotted red line shows results using parameter values estimated from
the worst-case change of measure. The comparison shows that the
vulnerability to model error goes well beyond errors in parameters.

6.2. Robustness and model error

The Gaussian copula model offers an interesting application

because it is both widely used and widely criticized for its short-

comings. Taking the Gaussian copula as a reference model,

our interest lies in examining its greatest vulnerabilities to

model error—in other words, finding which perturbations of

the model (in the sense of relative entropy) produce the greatest

error in measuring tail loss probabilities P(L > x). Impor-

tantly, we are interested in going beyond parameter sensitivities

to understand how the worst-case error changes the structure

of the model.

Taking our risk measure as P(L > x) means taking

V (Z , ǫ1, . . . , ǫn) = IL>x , so the worst-case change of mea-

sure at parameter θ is

m∗
θ ∝ exp(θ IL>x ).

⇒ P̃(L ∈ dl) =
{

exp(θ)
C

P(L ∈ dl) if l > x;
1
C

P(L ∈ dl) otherwise.
(41)

Here, C > 1 is a normalization constant. This change of

measure lifts the probabilities of losses greater than x and

lowers the probability of all other scenarios. Equivalently, we

can say that the probability of any outcome of the default

indicators (Y1, . . . , Yn) is increased by exp(θ)/C if it yields a

loss greater than x and is lowered by a factor of C otherwise.

We investigate the implications of this transformation to the

model through numerical experiments. We take x = 5, which

yields P(L > x) = 3.8%. Our results are based on simulation

with N = 106 samples.

Figure 5 shows how the loss probability varies with relative

entropy. The solid blue line shows results under the worst-case

change of measure defined by (41). The dotted red line shows

results under parameter changes only; these are determined

as follows. At each relative entropy level, we simulate results

under the worst-case change of measure (41); we estimate all

model parameters (the means, standard deviations and corre-

lations for the normal random variables Z , ǫ1, . . . , ǫn); we

then simulate the Gaussian copula model with these modified

parameters.

A comparison of the lines in figure 5 confirms that the worst-

case change of measure has an impact that goes well beyond a

change in parameter values. If we compare the two curves at the

same relative entropy, the worst-case model continues to show

a higher loss probability. In other words, focusing on parameter

changes only does not fully utilize the relative entropy budget.

The changes in parameter values do not maximize the model

error at a given relative entropy budget.

Table 5 reports parameter estimates obtained under the worst-

case model at two values of θ . They indicate, in particular, that

the parameters of the ǫi are affected very little by the change

in distribution. Indeed, with 95% confidence, Jarque-Bera and

Anderson-Darling test reject normality of Z at θ ≥ 1 but fail

to reject normality of the ǫi even at θ = 2. The model is more

vulnerable to errors in the dependence structure introduced by

Z than to errors in the distribution of the idiosyncratic terms.

To gain further insight into the worst-case change of distri-

bution, we examine contour plots in figure 6 of the joint density

function of ǫ100 and Z . The joint density function is derived

by using the original joint density function and the likelihood

ratio m∗
θ . The leftmost figure shows θ = 0.5, and the next

two correspond to θ = 2. The increase in θ shifts probability

mass of Z to the right but leaves the joint distribution of the ǫi

essentially unchanged. This shift in Z changes the dependence

structure in the copula and produces the lift in the probability

mass function of L described by (41). In the middle panel of

figure 6, we see a slight asymmetry in the upper right corner,

reflecting the fact that defaults are more likely when both the ǫi

and Z are increased. The left panel of figure 7 shows contours

of the joint density of (X99, X100) under the worst-case change

of measure, which distorts the upper-right corner, reflecting the

increased probability of joint defaults. The right panel shows

the ratio of the worst-case density to the nominal density.

Figure 8 shows the nominal and worst-case marginal dis-

tributions of Z and L . The worst case makes Z bimodal and

inflates the distribution of L beyond the threshold of 5. In

particular, the greatest vulnerability to model error takes us out-

side the Gaussian copula model, creating greater dependence

between obligors in the direction of more likely defaults, rather

than just through a change of parameters within the Gaussian

copula framework.

Next, we illustrate the effect of imposing constraints on Z ,

using the method of Section 3.2. We constrain the first moment

to equal 0 or the first two moments to equal 0 and 1; one

might take these values to be part of the definition of Z . To

Table 5. Statistics of ǫ j and Z under the worst-case change of
measure.

θ = 0.5 θ = 2

max(ρǫi ǫ j , ρǫi ,Z ) 4.3 × 10−3 0.013

min(ρǫi ǫ j , ρǫi ,Z ) −3.4 × 10−3 −4.7 × 10−3

average(|ρǫi ǫ j |, |ρǫi ,Z |) 5.6 × 10−3 6.4 × 10−3

average(µǫ j ) 7.6 × 10−4 6.8 × 10−3

average(σǫ j ) 1.00 1.01

average(skewǫ j ) 1.7 × 10−3 0.013

average(excess kurtosisǫ j ) 8.2 × 10−4 0.017

mean of Z 0.047 0.39
standard deviation of Z 1.04 1.23
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Figure 6. Contours of joint densities of (Z , ǫ100) with θ = 0.5 (left) and θ = 2 (middle), and joint density of (ǫ99, ǫ100) at θ = 2 (right).
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Figure 8. Marginal density of Z and L under worst scenario with θ = 0.8 and θ = 2 vs. nominal model.

match relative entropy values, we find that an unconstrained

value of θ = 2 corresponds to constrained values θ = 2.7

(with one constraint) and θ = 3.7 (with two constraints); see

Table 6. Figure 9 compares the marginal distribution of Z

under the constrained and unconstrained worst-case changes of

measure. The constraints lower the height of the second peak in

the bimodal distribution of Z . Not surprisingly, the worst-case

value of P(L > x) decreases as we add constraints.
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Table 6. Default probability for unconstrained and constrained
cases. The values of θ for the constrained cases are chosen to keep

the relative entropy fixed across all three cases.

P(L > x)

Nominal, θ = 0 0.037
Unconstrained, θ = 2 0.221
Constraint on 1st moment of Z , θ = 2.7 0.186
Constraint on 1st and 2nd moments of Z , θ = 3.7 0.153
Constraint on marginal distribution of Z , θ = 4 0.152
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Figure 9. Density of Z under the nominal, unconstrained worst-case
and constrained worst-case measures.

We can further restrict the marginal distribution of Z through

the method of Section 3.3. Such a restriction is important if one

indeed takes Z as an overall market risk factor and not simply a

tool for constructing a copula. Using 103 samples for Z and 104

samples of ǫ for each realization of Z , we report the resulting

probability in the last row of table 6, taking θ = 4 to make the

relative entropy roughly equal to that in the unconstrained case

with θ = 2. The default probability is slightly smaller than the

case with constraints on first and second moments.

Figure 10 shows the distribution of ǫ under the worst sce-

nario, taking θ = 9 to make the effect more pronounced. With

the marginal distribution of Z held fixed, the potential model

error moves to the idiosyncratic terms. The worst-case joint

density of (ǫ99, ǫ100) puts greater weight on large values of

either ǫ99 or ǫ100. The worst-case marginal density of ǫ100

changes in a way similar to the marginal density of Z in figures

8 and 9.

7. Delta hedging error

In our next application, we take hedging error as our measure

of risk. This application goes beyond our previous examples

by adding model dynamics to the robust risk measurement

framework. The nominal model specifies dynamics for the

evolution of an underlying asset, which leads to a hedging

strategy for options written on the underlying asset. Model

risk in this context can take the form of misspecification of the

dynamics of the underlying asset, rather than just a marginal

distribution at a fixed point in time. A hypothetical adversary

can change the dynamics of the underlying asset and will do

so in a way that maximizes hedging error subject to a relative

entropy constraint. Our objectives are to quantify the potential

hedging error, develop a hedging strategy that is robust to

model error and to identify the greatest sources of vulnerability

to model error in the nominal model.

7.1. Delta hedging: nominal model

For simplicity, we take the nominal model to be the

Black–Scholes framework. The risk-neutral dynamics of the

underlying asset are given by

d St

St

= rndt + σndWt ,

and the drift under the physical measure is µn . The risk-neutral

drift enters in the option delta, but hedging error is generated

under the physical measure so the physical drift is also relevant.

The subscript n indicates that these parameters apply to the

nominal model.

We consider the problem of discrete hedging of a European

call option with strike K and maturity T : the interval [0, T ] is

divided into NT equal periods, and the hedging portfolio is re-

balanced at the start of each period. With discrete rebalancing,

we introduce hedging error even under the nominal model.

We consider a discrete-time implementation of a self-

financing delta hedging strategy. At time t = 0, the proceeds

of the sale of the option (at price C(0, T, S0)) are used to

form a portfolio of stock and cash, with rn the interest rate for

holding or borrowing cash. We denote by δσn (t, St ) the number

of shares of stock held at time t . At time 0, the portfolio’s cash

and stock values are given by

cash(0) = C(0, T, S0) − S0δσn (0, S0),

stock(0) = S0δσn (0, S0).

After the rebalancing at time kT/NT = k�t , they are given

by

cash(k) = ern�t
cash(k − 1) − Sk�t

(

δσn (k�t, Sk�t )

−δσn

(

(k − 1)�t, S(k−1)�t

))

,

stock(k) = Sk�tδσn (k�t, Sk�t ).

At maturity, the option pays (ST − K )+, resulting in a

hedging error is

He = (ST − K )+ − cash(NT ) − stock(NT ).

For our measure of hedging performance, we use E[|He|],
the expected absolute hedging error. A hypothetical adversary

seeks to perturb the dynamics of S to magnify this hedging

error. In our general formulation, we would take X to be the

discrete path of the underlying asset and V (X) = |He|.
Alternative approaches to related problems include the un-

certain volatility formulation ofAvellaneda et al. (1995), where

the volatility is assumed to lie within a closed interval but is

otherwise unknown. In Mykland (2000), uncertainty is defined

more generally through bounds on integrals of coefficients.

Tankov and Voltchkova (2009) study the best volatility param-

eter to use for delta hedging to minimize expected squared
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Figure 10. The marginal distribution of Z is fixed. The left figure is the joint density of (ǫ99, ǫ100) under the worst scenario, and the right
figure is the marginal density of ǫ100 under the worst scenario. Both figures have θ = 9.

hedging error under a jump-diffusion model for the underlying

asset. Bertsimas et al. (2000) analyse asymptotics of the delta

hedging error as NT → ∞.

In delta hedging, the volatility is unknown and is typically

extracted from option prices. If the nominal model holds, then

the minimizer of hedging error is indeed the nominal volatility

σn . Under our formulation of robustness with discrete delta

hedging, we can calculate a robust value of this input σn in

the sense of minimizing the maximum value of the hedging

error E[|He|] at given value of θ . The result is illustrated in

figure 11 for an example with an initial stock price of

S0 = 100, strike K = 100, maturity T = 1, nominal volatility

σn = 0.2, risk-free rate rn = 0.05, resulting in a Black–

Scholes call price of 10.45 at t = 0. The drift under the physical

measure is µn = 0.1 The figure shows the nominal and robust

values of delta as functions of the underlying asset; the robust

σn is optimized against the worst-case change of measure at

θ = 0.5. The robust delta is slightly larger out-of-the-money

and smaller in-the-money. Figure 11 suggests that if we are

restricted to delta-hedging but are allowed to use different

values for volatility, then the nominal value is almost the best

we can do. Branger et al. (2011), among others, also find that

Black–Scholes delta hedging performs surprsingly well, even

when its underlying assumptions are not satisfied.

7.2. Model error and hedging error

Now, we take a dynamic perspective on hedging error. We

use simulation to investigate the vulnerability of discrete delta

hedging to model error and to examine the worst-case change

of measure that leads to hedging errors. We continue to use

the Black–Scholes model as the nominal model with the same

parameters as before. Our simulation results use 108 paths.

From simulated sample paths and (9), we can estimate the

optimal likelihood ratio m∗
θ for each path (we use θ = 0.5 for

most results), which enables us to estimate the density function

of |He| under the worst-case change of measure. The density

is illustrated in figure 12, where we can see that the change

of measure makes the right tail heavier. In figure 12, the tail
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Figure 11. Optimal delta vs. S0 with θ = 0.5.
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Figure 12. Density of absolute hedging error under nominal and
worst scenario, with θ = 0.5.

is fit through a non-parametric method, using the ‘ksdensity’

command in MATLAB with a normal kernel and bandwidth

0.1.

To investigate the dynamics of the underlying asset under the

worst-case change of measure—in other words, to investigate

the adversary’s strategy—we generate paths conditional on
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Figure 13. Gamma and Theta for European call option.
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reaching points (t, St ). For every t = T (2 + 8k/NT ), for

k = 1, . . . , 12, and every St = 70 + 6l for l = 1, . . . , 10, we

simulate N sample paths conditioned to pass through (t, St ) by

using Brownian bridge sampling. If we use pathi to denote

the i th simulated path, then the conditional likelihood given

St = x is

m∗(pathi |St = x) = f̃ (pathi |St = x)

f (pathi |St = x)

= f̃ (pathi )

f (pathi )

f (St ∈ (x, x + dx))

f̃ (St ∈ (x, x + dx))

∝ f̃ (pathi )

f (pathi )
= m∗(pathi )

Because the expectation of the conditional likelihood ratio

should be 1, we apply the normalization

m∗(pathi |St = x) = m∗(pathi )
∑N

j=1 m∗(path j )/N

across the N simulated paths.

As a point of comparison for the simulation results, it is

useful to consider potential sources of hedging error. With

discrete rebalancing, we would expect a large move in the

underlying asset to produce a large hedging error. Figure 13

plots the option gamma and the time-decay theta, and these

suggest that the hedging error is particularly vulnerable close

to maturity when the underlying is near the strike. (Time in
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Figure 15. Hedging error under various changes in the underlying dynamics.

the figure runs from left to right, with time 1 indicating option

maturity.) Indeed, the gamma at the strike becomes infinite at

maturity.

In figure 14, we use the simulation results to plot contours

of the worst drift (upper left) and worst volatility (lower left)

of the Brownian increment in the step immediately following
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the conditional value at (t, St ). The conditional worst drift is

highest close to maturity and just below the strike and it is

lowest close to maturity and just above the strike, as if the

adversary were trying to push the underlying toward the strike

near maturity to magnify the hedging error. In fact, at every

step t , the worst-case drift has an S−shape centred near the

strike.

The worst-case volatility is also largest near the strike and

near maturity, consistent with the view that this is where the

model is most vulnerable. If the underlying is far from the

strike, large hedging errors are likely to have been generated

already, so the adversary does not need to consume relative

entropy to generate further hedging errors. The contours of

relative entropy show that the adversary expends the greatest

effort near the strike and maturity. There is a slight asymmetry

in the relative entropy and worst-case volatility below the strike

near inception. This may reflect the asymmetry in gamma

around the strike, which is greater far from maturity.

It should also be noted that the adversary’s strategy is path-

dependent, so figure 14 does not provide a complete descrip-

tion. In particular, at any (t, St ), we would expect the adversary

to expend greater relative entropy—applying a greater distor-

tion to the dynamics of the underlying—if the accumulated

hedging error thus far is small than if it is large. The contours

in the figure implicitly average over these cases in conditioning

only on (t, St ).

To generate figure 14, we used kernel smoothing. The

smoothed value at (s, t) is a weighted average of results at

(si , ti ), i = 1, . . . , n, using a kernel K (., .) > 0,

fsmooth(s, t) =
∑n

i=1 f (si , ti )K ((si , ti ), (s, t))
∑n

i=1 K ((si , ti ), (s, t))
.

In particular, we used K ((s′, t ′), (s, t)) = φ(‖(s′, t ′)
−(s, t)‖/a), with φ the density of the standard normal dis-

tribution and ‖ ‖ a scaled Euclidean normal under which the

distance between adjacent corners in the grid is 1. That is,

‖(60, 1) − (60, 0)‖ = 1, ‖(60, 1) − (140, 1)‖ = 1 and so on.

The constant a is chosen so that for any neighbouring nodes

(s, t) and (s′, t ′) on the grid, ‖(s, t) − (s′, t ′)‖/a = 1.

7.3. Comparison with specific model errors

In this section, we examine specific types of model errors and

compare them against the worst case. In each example, we

replace the Black–Scholes dynamics of the underlying asset

with an alternative model. For each alternative, we evaluate the

hedging error and the relative entropy relative to the nominal

model. By controlling for the level of relative entropy, we are

able to compare different types of model error, including the

worst case, on a consistent basis.

In each plot in figure 15, the horizontal axis shows the

relative entropy of the perturbed model (with respect to the

nominal model) and the vertical axis is the absolute hedg-

ing error estimated from simulation. We take values of θ in

[0, 0.23].
In panel (a) of figure 15, we perturb the nominal model

through serial correlation: we replace the i.i.d. Brownian in-

crements with AR(1) dynamics. The perturbed model thus has

�W̃t = ρ�W̃t−1 +
√

1 − ρ2ǫt and �W̃1 = ǫ1, where ǫt are

independent and normally distributed with mean 0 and variance

�t . With ρ ∈ (−0.15, 0.15), the relative entropy reaches a

minimum near ρ = 0. The expected hedging error seems to be

robust with respect to serial dependence, never getting close to

the worst case error except near the origin. The second plot in

(a) suggests that a larger ρ leads to smaller hedging error. For

larger ρ > 0, �W̃ is more mean reverting, which may explain

the smaller hedging error.

In panel (b) of figure 15, we use Merton’s jump-diffusion

model,
d St

St−
= (rn − λE[exp(Yi ) − 1]))dt + σndWt + d Jt

where J is a compound Poisson, Jt =
∑Nt

i=1 exp(Yi ), with Nt

a Poisson process with intensity λ, and Yi i.i.d. N (0, σJ ), with

σJ = 1. When increasing σJ from 0 to 1, or the jump intensity

λ from 0 to 0.2, both the relative entropy and the expected

hedging error increase almost linearly, with similar slope.

Panels (c) and (d) of figure 15 test the Heston stochastic

volatility model, in which the square of volatility vt = σ 2

follows the dynamics

dvt = κ(βσ − vt )dt + σσ

√
vt dW v

t , (42)

where W v
t is a Brownian motion, ρ = corr(W v

t , Wt ). We pick

κ = 5, βσ = σ 2
n = 0.04, ρ = −0.2 and σσ = 0.05.

When discretized to dates ti = i�t , i = 1, . . . , NT , the

likelihood ratio for the price process becomes

m(st1 , . . . , stNT
) =

f̃ (st1 , . . . , stNT
)

f (st1 , . . . , stNT
)

=
Ev[ f̃ (st1 , . . . , stNT

|vt1 , . . . , vtN
)]

f (st1 , . . . , stNT
)

where f and f̃ are the joint density functions of prices under

the nominal and Heston models, respectively. In the second

equality, f̃ (.|.) denotes the conditional density of prices given

the variance process, and the expectation is taken over the

variance process. The conditional expectation is approximated

using 1000 sample paths of v.

As the speed of mean-reversion κ changes from 3 to 20, the

relative entropy and the expected hedging error decrease. As κ

becomes larger, the expected hedging error gets closer to the

nominal value, while relative entropy appears to converge to

some positive value. With a large κ , any deviation from the

nominal variance decays quickly, leaving only a short-term

deviation introduced by the diffusion term of (42).

As the long-run limit βσ varies from 0.036 to 0.044, relative

entropy and expected hedging error attain their lowest values

near 0.04, which is the nominal value of squared volatility.

Holding fixed the level of relative entropy, the expected hedg-

ing error is very similar when βσ < 0.04 and βσ > 0.04.

As the volatility of volatility σσ varies from 0 to 0.13, both

relative entropy and expected hedging error increase. As σσ

gets closer to zero, the volatility behaves more like a constant,

which is the nominal model. And, as the correlation ρ between

the two Brownian motions varies from −0.5 to 0.7, the change

in hedging error is very small, with the maximum hedging error

obtained when ρ is close to nominal value −0.2. The relative

entropy reaches the minimum value when ρ equals the nominal

value −0.2.
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Figure 16. Hedging errors under various changes in the underlying dynamics.

For our last comparison, we use the variance-gamma model

of Madan et al. (1998),

St = S0 exp((µ + ω)t + X t )

where X t = βvgγ (t; 1, νvg) + σ Wγ (t;1,νvg)

ω = 1

νvg

log

(

1 − βvgνvg − 1

2
σ 2νvg

)

where γ (t; 1, νvg) is the gamma process with unit mean rate.

Parameter βvg controls the skewness of return and νvg controls

the kurtosis; see panels (b) and (c) of figure 16. The figure

suggests that skewness and kurtosis have limited impact on

hedging error.

It is noteworthy that in most of the examples in figures 15

and 16, the observed hedging error is significantly smaller than

that of the worst-case achievable at the same level of relative

entropy. As our final test, we add constraints on the evolution

of the underlying asset, thus limiting the adversary’s potential

impact.

First, we constrain the moments of the realized mean and

realized variance of the returns of the underlying asset. Let

�W =
∑NT

i=1 �Wi/NT be the average of the Brownian incre-

ments �Wi along a path. We constrain the mean E[m�W ] = 0

and the realized variance E[m
∑NT

i=1(�Wi − �W )2/(NT −
1)] = �t . Figure 17(a) shows that this has only a minor effect

on the worst-case hedging error. In figure 17(b), we constrain
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Figure 17. The blue dots are for constraint cases, and the red dots are for the unconstrained case.

Table 7. Worst-case results and parameters for CVA example.

θ

Nominal ρ −12 −9 −6 −3 0 3 6 9 12

−0.3 CVA 3.98 4.80 5.86 7.26 9.14 11.67 15.14 19.90 26.46

×104 (0.36%) (0.43%) (0.53%) (0.65%) (0.82%) (1.05%) (1.36%) (1.79%) (2.38%)
0 5.13 6.27 7.78 9.82 12.60 16.45 21.84 29.45 40.23

(0.46%) (0.56%) (0.70%) (0.88%) (1.14%) (1.48%) (1.97%) (2.65%) (3.62%)
0.3 6.34 7.82 9.81 12.49 16.17 21.25 28.31 38.07 51.36

(0.75%) (0.70%) (0.88%) (1.13%) (1.46%) (1.91%) (2.55%) (3.42%) (4.63%)
−0.3 R(mθ ) 2.53 1.68 0.89 0.27 0.00 0.40 1.99 5.60 12.53

0 ×103 3.61 2.42 1.30 0.39 0.00 0.61 3.08 8.86 20.27
0.3 4.73 3.18 1.71 0.52 0.00 0.80 4.04 11.44 25.49
−0.3 ρ −0.299 −0.299 −0.299 −0.299 −0.299 −0.299 −0.299 −0.299 −0.299
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.3 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299
−0.3 σx 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.201
0 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.201 0.201
0.3 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.201 0.201
−0.3 σλ 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201
0 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.202
0.3 0.200 0.201 0.201 0.201 0.201 0.201 0.201 0.202 0.202
−0.3 drift of σx W x −1.27 −1.06 −0.79 −0.43 0.05 0.70 1.59 2.83 4.56

0 ×104 −1.27 −1.06 −0.79 −0.43 0.05 0.70 1.59 2.83 4.56
0.3 −1.73 −1.47 −1.13 −0.67 −0.06 0.76 1.89 3.43 5.49

−0.3 drift of σλWλ −0.48 −0.39 −0.27 −0.12 0.07 0.32 0.66 1.13 1.78

0 ×104 −0.48 −0.39 −0.27 −0.12 0.07 0.32 0.66 1.13 1.78
0.3 −0.96 −0.80 −0.60 −0.34 0.014 0.49 1.12 1.99 3.12

the mean and variance of the realized variance as a way of

constraining total volatility. Here, the reduction in the worst-

case hedging error is more pronounced.

The overall conclusion from figure 17 is that even with

constraints on the first two moments of the underlying asset

returns, the worst-case hedging error generally remains larger

than the hedging errors we see in figures 15 and 16 under

specific alternatives. To put it another way, the hypothetical

adversary shows much more creativity in undermining the

Black–Scholes delta-hedging strategy than is reflected in these

models. Indeed, the alternatives are all time-homogeneous,

whereas a key feature of figure 14 is that the greatest vul-

nerabilities occur close to maturity and, to a lesser extent, at

inception.

8. Credit valuation adjustment

Our final application of the robust risk measurement frame-

work examines CVA, which has emerged as a key tool for

quantifying counterparty risk among both market participants

and regulators.

8.1. Background on CVA

CVAmeasures the cost of a counterparty’s default on a portfolio

of derivatives. Rather than model each derivative individually,

we will work with a simplified model of the aggregated expo-

sure between two parties. We model this aggregated exposure

as an Ornstein–Uhlenbeck process X t ,
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Robust risk measurement and model risk 23

d X t = κx (µx − X t )dt + σx dW x
t . (43)

This allows the aggregated exposure to be positive for either

party (and thus negative for the other); we can think of the

two parties as having an ongoing trading relationship so that

new swaps are added to their portfolio as old swaps mature,

keeping the dynamics stationary. Alternatively, we can take

X as a model of the exposure for a forward contract on a

commodity or FX product where the underlying asset price

is mean-reverting.

The time-to-default for the counterparty is modelled through

a stochastic default intensity λt , which follows a CIR-jump

process

dλt = κλ(µλ − λt )dt + σλ

√

λt dW λ
t + d Jt ,

where W x and W λ are Brownian motions with correlation ρ,

and Jt is a compound Poisson process with jump intensity

ν j and jump sizes following an exponential distribution with

mean 1/γ . The long-run limit of X matches the initial value,

X0 = µx , and similarly λ0 = µλ. As in Zhu and Pykhtin

(2007), the CIR-jump model guarantees that λt ≥ 0.

Given the default intensity process, the time of default τ is

τ = �−1(ξ), where�(t) =
∫ t

0

λs ds and ξ ∼ Exp(1),

(44)

meaning that ξ has a unit-mean exponential distribution and is

independent of everything else. The CVA for a time horizon T

is then given by

CV A = (1 − R)E[e−rτ Iτ<T max(Xτ , 0)],

where R is the recovery rate. In other words, the loss at default

of the counterparty is (1 − R) max(Xτ , 0), and we take the

expected present value of this loss on the event {τ < T } that

the default occurs within the horizon. (This is a unilateral CVA,

because we have included the default time of only one of the

two parties.) We will study how model uncertainty affects the

CVA.

In the following example, we set parameters at T = 2 years

and divide the time horizon evenly into NT = 200 steps,

corresponding to around two periods per week. The risk-free

rate is r = 0.02, the recovery rate is R = 0.3, the long-run

limit of the exposure is µx = 0, the long-run limit of the default

intensity is µλ = 0.02, the exposure volatility is σx = 0.2, the

default intensity has volatility σλ = 0.2 and the mean reversion

coefficient κx = κλ = 1, which corresponds to a half-life of

about 1.4 years. For simplicity, we initially omit jumps in the

intensity.

We have the freedom to choose the units of X to fit the

context. For example, if the volatility is 0.1 million dollars,

we can measure X in multiple of a half million dollars to get

σx = 0.2. Alternatively, suppose the underlying exposure is

that of a netted portfolio of swaps with notional value 0.111

billion dollars, 10-year maturity and quarterly payments. If the

interest rate is roughly constant, then the change in the value

in the early years is roughly proportional to the change in the

swap rate, or about 0.111
∑40

i=1 e−ri�t�S�t = �S billion

dollars with swap rate S. Then, we can model the change in

swap rate using dynamics similar to (43) with κs = κx , S0 ≥ 0

and σs = σx , which corresponds to 20% volatility for the swap

rate.

We apply our robust Monte Carlo approach to measure model

risk. In this application, it is essential that the distribution of ξ in

(44) remain unchanged: the adversary can change the dynamics

of the default intensity (as well as the exposure), but having ξ

be a unit-mean exponential in (44) is part of what it means for

λ to be the default intensity, so this element is not subject to

model error.

We enforce this condition through the method in

Section 3.3. We simulate N = 104 sample paths for X and

λ, and use Nξ = 104 samples of ξ . For each realization of ξ ,

all N paths of λ are generated using (44), yielding a total of

N × Nξ paths. (Paths of X and λ are generated using an Euler

approximation.) For path (X i , λi ) and given ξ ,

m̂∗(X i , λi , ξ) = exp(θV (X i , λi , ξ))
∑N

j=1 exp(θV (X j , λ j , ξ))/N

(45)

where V (X i ,�i , ξ) = (1 − R)e−rτ Iτ<T max(X i
τ , 0)

and τ = �−1
i (ξ),�i (t) =

∫ t

0

λi (s)ds.

We call V (X i ,�i , ξ) the realized CVA for sample

(X i ,�i , ξ).

8.2. Analysis of the worst-case model error

We use the simulation results to examine the worst-case model.

As a first step, we estimate values for some parameters to see

how these parameters are affected by the change of measure.

We consider three cases for our experiments: ρ = 0.3, ρ = 0

and ρ = −0.3, the first of these corresponding to wrong-way

risk because it makes default more likely when the exposure is

large. These values of ρ are parameters to the nominal model;

the nominal model is then distorted by the change of measure,

and we re-estimate the correlations and other parameters. For

example, to estimate the kth moment of the increments of Wx ,

we use

µ̂x
k =

∑N
i=1

∑Nξ

j=1

∑Ni j

t=1

(

�W
x,i
t

)k

m∗(X i , λi , ξ j )

∑N
i=1

∑Nξ

j=1 Ni j

,

where Ni j is the number of steps until the default, with Ni j =
N if no default occurs within the horizon.

The results are summarized in table 7. The columns show

estimates for different values of θ , with θ = 0 corresponding

to the nominal value. Positive larger θ corresponds to possible

larger CVAin the worst-case scenario, while negative smaller θ

corresponds to possible smaller CVA. We first report estimates

for CVAand, just below each value, CVAas a percentage of the

notional 0.111. The impact of model error is illustrated through

the range of values across different values of θ . The impact is

asymmetric, with positive θ values having a greater effect than

smaller θ values, particularly at larger values of ρ. This is at

least partly explained by controlling for differences in relative

entropy R(mθ ).

The estimates of ρ, σx and σλ are consistently close to their

nominal values and thus unaffected by the change of measure.

The means of the scaled Brownian motions σx W x and σλW λ,

both of which are zero under the nominal measure, are increas-

ing in θ , though the magnitude of change is small. In short, the

wide range of CVA values are all consistent with nearly the
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Figure 18. Marginal distribution of Xτ and τ for τ < T .

Table 8. Correlations between Xτ and τ , conditional on τ < T .

θ −12 −9 −6 −3 0 3 6 9 12

ρXτ ,τ −0.075 −0.045 −0.012 0.025 0.068 0.116 0.178 0.263 0.390
ρXτ ,ξ 0.039 0.064 0.093 0.125 0.159 0.200 0.248 0.313 0.413

same parameters values; changes in parameter values are not

the primary source of model risk.

Next, we consider changes in the marginal distributions of

Xτ and τ , considering only outcomes in which τ < T . The

upper panels of figure 18 show the marginal density of Xτ .

At θ = 12, the adversary is trying to increase the CVA, so the

density is shifted to the right; setting θ = −12 has the opposite

effect. The lower panels show the cumulative distribution of

τ . Here, a larger θ value makes default more likely within the

horizon (thus increasing the CVA), whereas a smaller θ makes

default less likely.

The most interesting aspect of the worst-case change of

measure is the effect on the dependence between τ and Xτ .

We can get a first indication of this dependence from the corre-

lations estimated at different θ values reported in table 8. The

correlations consistently increase with θ .

To further examine the dependence, in figure 19 we plot

contours of the joint density of τ and Xτ for different values

of θ , taking ρ = 0.3. Despite this correlation in the driving

Brownian motions, we do not observe much dependence be-

tween Xτ and τ in the nominal case θ = 0 (upper right). At

θ = 12, we see a marked increase in dependence. We also see

that the most likely way to get a large realized CVA is to have a

default toward the end of the horizon, after the exposure has a

chance to accumulate. In other words, the least costly way for

the adversary to generate a large CVAis to push τ toward T and

push X upward. In the lower right corner, we show the joint

distribution obtained using the parameter values estimated at
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Figure 19. Joint density of Xτ and τ for τ < T , T = 2.

Table 9. CVA and ρXτ ,τ using parameters estimated from the worst-
case scenario, the worst-case scenario, and scenarios with perturbed

parameters.

T = 2

CVA ρXτ ,τ

Worst parameters θ = 12 0.0016 0.0695
θ = 0 0.0016 0.0675
θ = 3 0.0021 0.1164
θ = 6 0.0028 0.1777
θ = 9 0.0038 0.2634
θ = 12 0.0051 0.3903
ρ = 0.4 0.0018 0.0884
ρ = 0.95 0.0027 0.2083
µλ = 0.04 0.0027 0.0271
µλ = 0.06 0.0031 −0.0169
µλ = 0.025, ρ = 0.65 0.0025 0.1231
µλ = 0.025, ρ = 0.9 0.0030 0.1722
µλ = 0.05, ρ = 0.9 0.0037 −0.0010

θ = 12. This once again supports the view that the change in

parameter values does not capture the most important features

of the worst-case model. The case θ = −12 in the upper left

shows some negative dependence between τ and Xτ ; here, the

adversary tries to generate a small CVA with a quick default

near X = 0 or no default at all.

In figure 20, we plot contours of the joint density of (ξ, Xτ )

for the same cases that appear in figure 19. These are consis-

tent with the pattern in figure 19, but recall that the marginal

distribution of ξ does not change so the pattern here is more

purely determined by the change in dependence. This is further

illustrated in figure 21, which shows contours of the copula for

Xτ and ξ .

In figure 22, we revisit the comparisons of figures 18–20,

except now we constrain the change of measure to leave the

marginal law of X unchanged. The effect is to force a much

greater change in the dependence structure since the adversary

has less flexibility to change the marginals.

As another perspective on the worst-case change of measure,

in figure 23 we plot some statistics of the Brownian increments

σx W x and σλW λ on paths with defaults. Each plot starts up

to 100 steps (1 year) before the default. The horizontal axis

is the time remaining until default, so the origin corresponds

to the time of default and 1 corresponds to 1 year before

default.

With θ = 12, the worst-case means and standard devi-

ations of the increments are significantly higher than their

original values within 100 steps. Further from default, the

abnormality of means decreases. This may explain why

parameters estimated using all the increments under the worst-

case scenario are not so different from the original parame-

ter values. In estimating worst-case parameters using all the

increments, the effect of the abnormal increments is diluted

by other increments whose distributions are much less per-

turbed.
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Figure 20. Joint density of Xτ and ξ for τ < T , T = 2.
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Figure 21. Copula of (Xτ , ξ).

Interestingly, the standard deviations increase as we move

further away from default. This seems to be a consequence of

the fact that closer to default there is a strong upward trend

with reduced volatility for both λ and X .

In table 9, we estimate CVA at different values of θ and then

at different parameter values. For example, to match the CVA

at θ = 6, we would need to make dramatic changes in the input

parameters—increasing ρ to 0.95 or increasing ρ together with
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Figure 22. Marginal densities of τ and Xτ (first row), joint density of (Xτ , τ ) (second row) and joint density of (Xτ , ξ) (third row). The
dynamics of X are fixed.

µλ. Once again, we find that the worst-case model error is not

simply described by a change in parameters.

By simply increasing ρ, both CVAand ρXτ ,τ increase. How-

ever, the increase in ρXτ ,τ is greater than the increase in CVA

compared to the worst scenario; moreover, even with a very

extreme value like ρ = 0.95, the changes in CVA and ρXτ ,τ

are limited. When only µλ is increased, the CVA increases, but

when µλ ≥ 0.06, ρXτ ,τ turns negative. A possible explanation

is that as µλ becomes very large, those paths with small real-

izations of W λ also default before T , contributing small values

of Xτ , hence a smaller ρXτ ,τ .

In order to reach the level of the worst-case CVA and ρXτ ,τ ,

we need to have µλ ≈ 0.025 and ρ = 0.9 to reach the level at

θ = 6. For the level at θ = 12, we can set µλ ≈ 0.07 to reach

the level of CVA, but we cannot reach a similar level for ρXτ ,τ

even with very high correlation ρ = 0.8.

Compared to figure 19, figure 22 shows much less distortion

in the joint density of (Xτ , τ ) and (Xτ , ξ), and the change of

dependence shows up later in the horizon. With the dynamics

of X fixed, the adversary’s only control is through the default

intensity λ, trying to make the default occur when X has a larger

value. Early in the horizon, X typically has small values, so the

adversary chooses not to expend relative entropy early. Hence,

the perturbed distribution of τ is similar to what it was before

early in the horizon.

We have also tested the case with jumps in the dynamics of

λ, with parameters ν j = 1.5 and γ = 0.01 from El-Bachir and

Brigo (2008) and other parameters are unchanged. The results

are very similar to what we had before, except that in figure

23, the dynamics of Wx and Wλ have very minor changes even

before defaults.
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Figure 23. Statistics for increments before defaults using θ = 0 (left) and θ = 12 (right).
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Figure 24. Worst-case jump intensity and worst-case mean jump size.

In figure 24, we plot the worst-case jump intensity and the

worst-case mean jump sizes. Both increase with θ , but the

magnitudes of the changes are small.

9. Concluding remarks

This paper develops a general approach and specific tools for

quantifying model risk and bounding the impact of model error.

By taking relative entropy as a measure of ‘distance’ between

stochastic models, we get a simple representation of the worst-

case deviation from a baseline nominal model—this worst-

case deviation is characterized by an exponential change of

measure. Applying this representation with simulation allows

us to bound the effect of model error across multiple values

of relative entropy with minimal computational effort beyond

that required to simulate the baseline nominal model alone.

We have also shown how to incorporate additional information

into the analysis to impose constraints on moments and other

auxiliary functions of the underlying model or to leave certain

marginal distributions of the underlying model unchanged; and

we have extended these ideas to heavy-tailed distributions with

α-divergence replacing relative entropy.

Using these tools, we have examined model error in mean-

variance portfolio optimization, conditional value-at-risk, the

Gaussian copula model of portfolio credit risk, delta hedging

and CVA.Arecurring theme in these examples is that the worst-

case model deviation generally looks very different from a

change of parameters within the baseline nominal model. Thus,

our approach based on stochastic robustness goes well beyond

parameter sensitivity in exploring model error to identify the

greatest vulnerabilities in the stochastic structure of a model.
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Appendix A: Technical Assumptions

Assumption A.1 For the minimization problem (3)

(1) The decision parameter set A is compact, Va(x) is

convex in a for any x. Thus, inf a E[Va(X)] < ∞.

(2) For all a ∈ A, the moment generating function

F̂a(θ) = E[exp(θVa(X))] exists for θ in some open

set containing the origin. If P(Va(X) > 0) > 0, then

�g(θ, a) ↑ ∞ as θ ↑ θmax(a), where θmax(a) :=
sup{θ : �g(θ, a) < ∞}; if P(Va(X) < 0) > 0,

then �g(θ, a) ↑ ∞ as θ ↓ θmin(a) where θmin(a) :=
inf {θ : �g(θ, a) < ∞}.
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Part (1) of the assumption ensures feasibility of the opti-

mization problem. (For a maximization problem, we would

require that Va(x) be concave in a.) Part (2) ensures the finite-

ness of F̂a(θ) and its derivative, so that the corresponding

exponential change of measure is well-defined. We denote

by (θmin(a), θmax(a)) the interval (possibly infinite) in which

F̂a(θ) is finite and thus an exponential change of measure

defined by exp(θVa(X)) is well defined.

For any θ > 0 and decision parameter a, if part (2) of

Assumption A.1 is satisfied, the optimal change of measure

for the adversary is described by the likelihood ratio

m∗
θ,a = exp(θVa(X))/E[exp(θVa(X))], (46)

where we need θ ∈ (0, θmax(a)) . By substituting (46) into (5),

we get

inf
a

inf
θ>0

1

θ
log E[exp(θVa(X))] + η

θ
. (47)

If θmax(a) < ∞, then as θ ↑ θmax(a), the objective function

in (47) goes to infinity, so the infimum over θ will automatically

make the optimal θ smaller than θmax. That is, we can safely

consider θ < ∞ instead of θ ∈ (0, θmax). This allows us

to change the order of inf a and inf θ in (5), whereas θmax(a)

depends on the decision a. Now, we can relax the constraints

for θ in both (5) and (47) to θ > 0. Assumption A.1 is relevant

to the inf a and inf θ ordered as (47). To swap the order, we

need the following assumption.

Assumption A.2

(1) If (θ∗, a∗, m∗) solves (5), then θ∗ ∈ [0, θ∗
max) for some

θ∗
max ∈ [0,∞] such that for any θ ∈ [0, θ∗

max), the set

{a ∈ A : E[exp(θVa(X))] < ∞} is compact.

(2) For any θ ∈ [0, θ∗
max), E[exp(θVa(X))] is lower semi-

continuous in a.

Because E[exp(θVa(X))] is not necessarily continuous in a,

the lower semi-contintuity condition in Assumption

A.2 is needed to guarantees that the infimum in (8) can be

attained.

Assumption A.3 For any a, Va(X) > 0 almost surely under

the nominal measure, and E[Va(X)
α

α−1 ] < ∞.
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