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Abstract This paper proposes the robust recursive least-squares (RLS) Wiener fixed-point smoother
and filter in linear discrete-time stochastic systems with parameter uncertainties. The uncertain
parameters exist in the observation matrix and the system matrix. The uncertain parameters cause
to generate the degraded signal. In this paper, the degraded signal process is fitted to the finite
order autoregressive (AR) model. The robust RLS Wiener estimators use the system matrices and
the observation matrices for both the signal and the degraded signal, the variance of the state
vector for the degraded signal, the cross-variance of the state vector for the signal with the state
vector for the degraded signal, and the variance of the white observation noise. Also, this paper
proposes the robust recursive fixed-point smoother and filter, by using the covariance information
of the state vector for the degraded signal, the cross-covariance information of the state vector
for the signal with the state vector for the degraded signal, the observation matrices for both the
degraded signal and the signal besides the variance of the white observation noise. In estimating
the signal process expressed by the second order AR model, the proposed robust RLS Wiener filter
is superior in estimation accuracy to the robust Kalman filter and the RLS Wiener filter.

Keywords: Discrete-time stochastic systems; robust RLS Wiener filter; robust RLS Wiener fixed-
point smoother; robust estimation technique; uncertain parameters.

1 Introduction

The state-space model in macroeconomic and financial problems includes parameter uncertainties [1].
An improved robust Kalman filter is applied to precise point positioning/inertial navigation system
(PPP/INS) [2]. In the network communication systems (NCS), the delayed observation and the packet
dropout [3] occur during trans-receiving process [4], [5], [6], [7]. In estimating the signal process, the
parameter uncertainties in the state-space model might be taken into account. The Kalman filter calcu-
lates the estimate recursively by use of the precise dynamic model. The standard Kalman filter or the
recursive Wiener filter are not robust against the state-space model including parameter uncertainties.
For this reason the robust Kalman filtering problems have been investigated intensively. The case for
the uncertain systems without multiplicative noise has been treated in [8], [9], [10], [11] and [12]. In [13]
and [14], Wang and Balakrishnan adopt the linear matrix inequality (LMI) method in the stationary
robust filtering problem for the uncertain systems with multiplicative noises. In [15], a robust finite-
horizon Kalman filter is proposed in discrete time-varying uncertain systems with both additive and
multiplicative noises. Note that the system matrix and output matrix contain both deterministic and
stochastic parametric uncertainties. Sufficient conditions for the filter to guarantee an optimized upper
bound on the state estimation error variance for admissible uncertainties are established in terms of
two discrete Riccati difference equations. In [16], a robust Kalman filter is designed for the uncertain
time-varying discrete-time stochastic systems with state delay and missing measurement characterized
by the Bernoulli random variables. In [17] and [18], the regularized robust filters are proposed in linear
discrete-time stochastic systems. In [18], the LMI method is used. In [19], the robust H-infinity filter is
proposed in linear discrete-time stochastic systems. In [20], the robust filter is presented based on the
regularization approach and the penalty function. In [21], the finite and infinite horizon robust Kalman
filtering algorithms are presented in linear discrete-time stochastic systems. The norm-bounded condi-
tion is posed on the uncertain parameters in the system and observation matrices. The filtering estimate
is calculated recursively by solving the Riccati-type equations. In [22], the robust filter is designed by
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minimizing the mean square error according to the most feasible model. The risk sensitive filter is also
extended using the τ -divergence family.

The robust Kalman filter is designed to estimate the state vector for the state-space model with
parameter uncertainties. The norm-bounded condition is posed on the uncertain parameters in the system
and observation matrices. The drawback of the robust Kalman filter [21] is that the estimation accuracy
is not satisfactory as shown in the numerical simulation example in this paper. The main task of this
paper is to design the robust recursive least-squares (RLS) Wiener estimators for signal estimation with
better estimation accuracy than the robust Kalman filter [21] in linear discrete-time stochastic systems.
The specific character of the proposed robust estimators is that they do not use any information of the
uncertain parameters in the state and observation equations. It is assumed that the signal process is
expressed by the autoregressive (AR) model. The degraded signal, by the uncertain parameters in the
observation and system matrices, is fitted to the finite order AR model. Based on the AR model, the
system and observation matrices are obtained in the state and observation equations for the degraded
signal process. The fixed-point smoothing estimate is given as a linear transformation of the observed
values in terms of the impulse response function. Minimizing the mean-square value (MSV) of the fixed-
point smoothing errors, we obtain the Wiener-Hopf equation, which the optimal impulse response function
satisfies. From the Wiener-Hopf equation the robust RLS Wiener fixed-point smoothing and filtering
algorithms are derived in Theorem 1 by the invariant imbedding method. The robust RLS Wiener
estimation algorithms use the system and observation matrices for both the signal and degraded signal
processes, the variance of the state vector for the degraded signal, the cross-variance function of the
state vector for the signal process with the state vector for the degraded signal, and the variance of the
white observation noise. Also, this paper proposes the robust RLS fixed-point smoothing and filtering
algorithms in Corollary 1, by using the covariance information of the state vector for the degraded
signal, the cross-covariance information of the state vector for the signal with the state vector for the
degraded signal, the observation matrices for both the signal and degraded signal processes besides the
variance of the white observation noise. In the robust Kalman filter, the state vector is estimated under
the norm-bounded condition on the uncertain parameters in the system and observation matrices. It is
advantageous that the robust RLS Wiener estimators and the robust RLS estimators do not use the
norm-bounded condition at all.

A numerical simulation example for estimating the signal process, expressed by the AR model, is
demonstrated to compare the estimation accuracy of the proposed robust RLS Wiener filter with those
of the robust Kalman filter [21] and the RLS Wiener filter [23].

2 Least-Squares Fixed-Point Smoothing Problem

Let an m-dimensional observation equation and an n-dimensional state equation be given by

y̆(k) = z̆(k) + v(k), z̆(k) = H̄(k)x̄(k), H̄(k) = H + ∆H(k),
x̄(k + 1) = Φ̄(k)x̄(k) + Γw(k), Φ̄(k) = Φ + ∆Φ(k),
E[v(k)vT (s)] = RδK(k − s), E[w(k)wT (s)] = QδK(k − s),

(1)

in linear discrete-time stochastic systems with uncertain parameters [21]. It is assumed that ∆H(k)
and ∆Φ(k) include uncertain parameters respectively. Here, v(k) is the white observation noise with
the variance R. w(k) is the white input noise with the variance Q. Their auto-covariance functions are
expressed with the Kronecker delta function δK(k − s). The state equation generating x̄(k + 1) includes
the uncertain quantity ∆Φ(k) in the system matrix Φ̄(k). In addition, in the observation equation the
observation matrix H̄(k) includes the uncertain quantity ∆H(k). Hence, z̆(k) has the different value
from the nominal signal z(k) of the state-space model (2), not including the uncertain quantities. In (1),
as the sum of the degraded signal z̆(k) and the observation noise v(k), y̆(k) is measured. The state-space
model without including the uncertain quantities ∆H(k) and ∆Φ(k) in (1) is expressed as

y(k) = z(k) + v(k), z(k) = Hx(k),
x(k + 1) = Φx(k) + Γw(k).

(2)

In (2), z(k) represents the signal to be estimated. H is an m by n observation matrix, x(k) is the
state vector and v(k) is the white observation noise with the auto-covariance function in (1). Also, the
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auto-covariance function of the input noise w(k) is given in (1). It is assumed that the signal and the
observation noise are mutually independent and have zero means. The purpose of this paper is to design
the RLS Wiener fixed-point smoother and filter to obtain the estimates of the signal z(k) with the
measurement data y̆(k) without requiring any knowledge of the uncertain quantities ∆Φ(k) and ∆H(k).

Let the sequence of the degraded signal z̆(k) be fitted to the Nth order AR model.

z̆(k) = −a1z̆(k − 1) − a2z̆(k − 2) · · · − aN z̆(k − N) + ĕ(k),

E[ĕ(k)ĕT (s)] = Q̆δK(k − s)
(3)

Let z̆(k) be expressed by

z̆(k) = H̆x̆(k),

x̆(k) =















x̆1(k)
x̆2(k)

...
x̆N−1(k)
x̆N (k)















=















z̆(k)
z̆(k + 1)

...
z̆(k + N − 2)
z̆(k + N − 1)















,

H̆ =
[

Im×m 0 0 · · · 0 0
]

.

(4)

Henceforth, the state equation for the state vector x̆(k) is expressed as














x̆1(k + 1)
x̆2(k + 1)

...
x̆N−1(k + 1)
x̆N (k + 1)















=















0 Im×m 0 · · · 0
0 0 Im×m · · · 0
...

...
...

. . .
...

0 0 0 · · · Im×m

−ăN −ăN−1 −ăN−2 · · · −ă1





























x̆1(k)
x̆2(k)

...
x̆N−1(k)
x̆N (k)















+















0
0
...
0

Im×m















ζ(k),

ζ(k) = ĕ(k + N), E[ζ(k)ζT (s)] = Q̆δK(k − s).

(5)

Let K̆(k, s) = K̆(k − s) represent the auto-covariance function of the state vector x̆(k) in wide-sense
stationary stochastic systems [24], and let K̆(k, s) be expressed in the form of

K̆(k, s) =

{

A(k)BT (s), 0 ≤ s ≤ k,
B(k)AT (s), 0 ≤ k ≤ s.

(6)

A(k) = Φ̆k, BT (s) = Φ̆−sK̆(s, s). Here, Φ̆ is the state transition matrix for the state vector x̆(k). The
system matrix Φ̆ in the state equation (5) is given by

Φ̆ =















0 Im×m 0 · · · 0
0 0 Im×m · · · 0
...

...
...

. . .
...

0 0 0 · · · Im×m

−ăN −ăN−1 −ăN−2 · · · −ă1















. (7)

Also, by putting Kz̆(k, s) = Kz̆(k − s) = E
[

z̆(k)z̆T (s)
]

, the auto-variance function K̆(k, k) of the state
vector x̆(k) is expressed as

K̆(k, k) = E





























z̆(k)
z̆(k + 1)

...
z̆(k + N − 2)
z̆(k + N − 1)















×
[

z̆T (k) z̆T (k + 1) · · · z̆T (k + N − 2) z̆T (k + N − 1)
]]

=















Kz̆(0) Kz̆(−1) · · · Kz̆(−N + 2) Kz̆(−N + 1)
Kz̆(1) Kz̆(0) · · · Kz̆(−N + 3) Kz̆(−N + 2)

...
...

. . .
...

...
Kz̆(N − 2) Kz̆(N − 3) · · · Kz̆(0) Kz̆(−1)
Kz̆(N − 1) Kz̆(N − 2) · · · Kz̆(1) Kz̆(0)















.

(8)
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By using Kz̆(k − s), the Yule-Walker equation for the AR parameters is given by

K̂(k, k)















aT
1

aT
2

...
aT

N−1

aT

N















= −















KT

z̆
(1)

KT

z̆
(2)
...

KT

z̆
(N − 1)

KT

z̆
(N)















,

K̂(k, k) =















Kz̆(0) Kz̆(1) · · · Kz̆(N − 2) Kz̆(N − 1)
KT

z̆
(1) Kz̆(0) · · · Kz̆(N − 3) Kz̆(N − 2)
...

...
. . .

...
...

KT

z̆
(N − 2) KT

z̆
(N − 3) · · · Kz̆(0) Kz̆(1)

KT

z̆
(N − 1) KT

z̆
(N − 2) · · · KT

z̆
(1) Kz̆(0)















.

(9)

Let Kxx̆(k, s) = Kxx̆(k − s) = E[x(k)x̆T (s)] represent the cross-covariance function of the state vector
x(k) with x̆(s) in wide-sense stationary stochastic systems. Let Kxx̆(k, s) be expressed in the form of

Kxx̆(k, s) = α(k)βT (s), 0 ≤ s ≤ k, (10)

α(k) = Φk, βT (s) = Φ−sKxx̆(s, s). Here, Φ is the state transition matrix for the state vector x(k).
Let the fixed-point smoothing estimate x̂(k, L) of the state vector x(k) at the fixed point k be

expressed by

x̂(k, L) =
L

∑

i=1

h(k, i, L)y̆(i) (11)

in terms of the observed values {y̆(i), 1 ≤ i ≤ L}. In (11), h(k, i, L) is a time-varying impulse response
function. Let us consider the estimation problem, which minimizes the MSV

J = E[||x(k) − x̂(k, L)||2] (12)

of the fixed-point smoothing error. From an orthogonal projection lemma [24],

x(k) −
L

∑

i=1

h(k, i, L)y̆(i)⊥y̆(s), 1 ≤ s ≤ L, (13)

the impulse response function satisfies the Wiener-Hopf equation

E[x(k)y̆T (s)] =

L
∑

i=1

h(k, i, L)E[y̆(i)y̆T (s)]. (14)

Here ‘⊥’ denotes the notation of the orthogonality. Substituting (1) into (14), from (4) and (8), and
noting that E[x(k)y̆T (s)] = Kxx̆(k, s)H̆T = Kxz̆(k, s), we obtain

h(k, s, L)R = Kxx̆(k, s)H̆T −

L
∑

i=1

h(k, i, L)H̆K̆(i, s)H̆T . (15)

Here, Kxz̆(k, s) represent the cross-covariance function of the state vector x(k) with the degraded signal
z̆(s) as E[x(k)z̆T (s)].

3 Robust RLS Wiener Fixed-Point Smoothing and Filtering Algorithms

Under the linear least-squares estimation problem of the signal z(k) in section 2, Theorem 1 presents the
robust RLS Wiener fixed-point smoothing and filtering algorithms.

Theorem 1 Let the state equation and the observation equation, including the uncertain quantities
∆Φ and ∆H respectively, be given by (1). Let Φ and H represent the system and observation matrices
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respectively for the signal process of z(k). Let Φ̆ and H̆ represent the system and observation matrices
respectively for the degraded signal process of z̆(k), fitted to the AR model (3) of the order N . Let the
variance K̆(k, k) of the state vector x̆(k) for the degraded signal z̆(k) and the cross-variance function
Kxx̆(k, k) of the state vector x(k) for the signal z(k) with the state vector x̆(k) for the degraded signal
z̆(k) be given. Let the variance of the white observation noise v(k) be R. Then, the robust RLS Wiener
algorithms for the fixed-point smoothing estimate ẑ(k, L), at the fixed point k, and the filtering estimate
ẑ(k, k) of the signal z(k) consist of (16)-(26) in linear discrete-time stochastic systems.

Fixed-point smoothing estimate of the signal z(k): ẑ(k, L)

ẑ(k, L) = Hx̂(k, L) (16)

Fixed-point smoothing estimate of the state vector x(k): x̂(k, L)

x̂(k, L) = x̂(k, L − 1) + h(k, L, L)(y̆(L) − H̆Φ̆ˆ̆x(L − 1, L − 1)),
x̂(k, L)|L=k = x̂(k, k)

(17)

Smoother gain: h(k, L, L)

h(k, L, L) = [Kxx̆(k, k)(Φ̆T )L−kH̆T − q(k, L − 1)Φ̆T H̆T ]

×{R + H̆[K̆(L, L) − Φ̆S0(L − 1)Φ̆T ]H̆T }−1
(18)

q(k, L) = q(k, L − 1)Φ̆T + h(k, L, L)H̆[K̆(L, L) − Φ̆S0(L − 1)Φ̆T ],
q(k, k) = S0(k)

(19)

Filtering estimate of the signal z(k): ẑ(k, k)

ẑ(k, k) = Hx̂(k, k) (20)

Filtering estimate of x(k): x̂(k, k)

x̂(k, k) = Φx̂(k − 1, k − 1) + G(k)(y̆(k) − H̆Φ̆ˆ̆x(k − 1, k − 1)),
x̂(0, 0) = 0

(21)

Filter gain for x̂(k, k) in the equation (21): G(k)

G(k) = [Kxz̆(k, k) − ΦS(k − 1)Φ̆T H̆T ]

×{R + H̆[K̆(k, k) − Φ̆S0(L − 1)Φ̆T ]H̆T }−1,

Kxz̆(k, k) = Kxx̆(k, k)H̆T

(22)

Filtering estimate of x̆(k): ˆ̆x(k, k)

ˆ̆x(k, k) = Φ̆ˆ̆x(k − 1, k − 1) + g(k)(y̆(k) − H̆Φ̆ˆ̆x(k − 1, k − 1)),
ˆ̆x(0, 0) = 0

(23)

Filter gain for ˆ̆x(k, k) in the equation (23): g(k)

g(k) = [K̆(k, k)H̆T − Φ̆S0(k − 1)Φ̆T H̆T ]

×{R + H̆[K̆(k, k) − Φ̆S0(L − 1)Φ̆T ]H̆T }−1
(24)

Auto-variance function of ˆ̆x(k, k): S0(k) = E[ˆ̆x(k, k)ˆ̆xT (k, k)]

S0(k) = Φ̆S0(k − 1)Φ̆T + g(k)H̆[K̆(k, k) − Φ̆S0(k − 1)Φ̆T ],
S0(0) = 0

(25)

Cross-variance function of x̂(k, k) with ˆ̆x(k, k): S(k) = E[x̂(k, k)ˆ̆xT (k, k)]

S(k) = ΦS(k − 1)Φ̆T + G(k)H̆[K̆(k, k) − Φ̆S0(k − 1)Φ̆T ],
S(0) = 0

(26)
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Proof

The impulse response function h(k, s, L) satisfies (15). Subtracting h(k, s, L − 1)R from h(k, s, L)R,
we have

(h(k, s, L) − h(k, s, L − 1))R = −h(k, L, L)H̆K̆(L, s)H̆T

−
L−1
∑

i=1

(h(k, i, L) − h(k, i, L − 1))H̆K̆(i, s)H̆T .
(27)

Introducing

J0(s, L)R = Φ̆−sK̆(s, s)H̆T −
L

∑

i=1

J0(i, L)H̆K̆(i, s)H̆T , (28)

we obtain

h(k, s, L) − h(k, s, L − 1) = −h(k, L, L)H̆Φ̆LJ0(s, L − 1). (29)

Subtracting J0(s, L − 1)R from J0(s, L)R, we have

(J0(s, L) − J0(s, L − 1))R = −J0(L, L)H̆K̆(L, s)H̆T

−
L−1
∑

i=1

(J0(i, L) − J0(i, L − 1))H̆K̆(i, s)H̆T .
(30)

From (28) and (30), we obtain

J0(s, L) − J0(s, L − 1) = −J0(L, L)H̆Φ̆LJ0(s, L − 1). (31)

The filtering estimate is given by

x̂(k, k) =

k
∑

i=1

h(k, i, k)y̆(i). (32)

From (15), the impulse response function h(k, s, k) satisfies

h(k, s, k)R = Kxx̆(k, s)H̆T −

k
∑

i=1

h(k, i, k)H̆K̆(i, s)H̆T . (33)

Introducing

J(s, k)R = Φ−sKxx̆(s, s)H̆T −

k
∑

i=1

J(i, k)H̆K̆(i, s)H̆T , (34)

we obtain

h(k, s, k) = ΦkJ(s, k). (35)

Subtracting J(s, L − 1)R from J(s, L)R, we have

(J(s, k) − J(s, k − 1))R = −J(k, k)H̆K̆(k, s)H̆T

−
k−1
∑

i=1

(J(i, k) − J(i, k − 1))H̆K̆(i, s)H̆T .
(36)

From (28) and (36), we obtain

J(s, k) − J(s, k − 1) = −J(k, k)H̆Φ̆kJ0(s, k − 1). (37)

From (34), J(k, k) satisfies

J(k, k)R = Φ−kKxx̆(k, k)H̆T −

k
∑

i=1

J(i, k)H̆K̆(i, k)H̆T . (38)
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Using (6) and introducing

r(k) =
k

∑

i=1

J(i, k)H̆B(i), (39)

we obtain

J(k, k)R = Φ−kKxx̆(k, k)H̆T − r(k)AT (k)H̆T . (40)

Subtracting r(k − 1) from r(k), we have

r(k) − r(k − 1) = J(k, k)H̆B(k) +

k−1
∑

i=1

(J(i, k) − J(i, k − 1))H̆B(i). (41)

Introducing

r0(k) =

k
∑

i=1

J0(i, k)H̆B(i), (42)

from (37), we obtain

r(k) − r(k − 1) = J(k, k)H̆B(k) − J(k, k)H̆Φ̆kr0(k − 1),
r(0) = 0.

(43)

Substituting (43) into (40), we have

J(k, k) = [Φ−kKxx̆(k, k)H̆T − r(k − 1)AT (k)H̆][R + H̆K̆(k, k)H̆T

−H̆Φ̆kr0(k − 1)(Φ̆T )kH̆T ]−1.
(44)

Introducing the function

S0(k) = A(k)r0(k)AT (k), A(k) = Φ̆k, (45)

we rewrite (44) as

J(k, k) = [Φ−kKxx̆(k, k)H̆T − r(k − 1)AT (k)H̆][R + H̆K̆(k, k)H̆T

−H̆Φ̆S0(k − 1)Φ̆T H̆T ]−1.
(46)

Subtracting r0(k − 1) from r0(k) and using (31), we obtain

r0(k) − r0(k − 1) = J0(k, k)H̆B(k) +
k−1
∑

i=1

(J0(i, k) − J0(i, k − 1))H̆B(i)

= J0(k, k)H̆(B(k) − A(k)r0(k − 1)),
r0(0) = 0.

(47)

From (28), J0(k, k) satisfies

J0(k, k)R = Φ̆−kK̆(k, k)H̆T −

k
∑

i=1

J0(i, k)H̆K̆(i, k)H̆T .

From (6) and (42), it follows that

J0(k, k)R = Φ̆−kK̆(k, k)H̆T − r0(k)AT (k)H̆T . (48)

Substituting (47) into (48), we obtain an expression for J0(k, k) as

J0(k, k) = [BT (k)H̆T − r0(k − 1)AT (k)H̆T ][R + H̆K̆(k, k)H̆T

−H̆Φ̆S0(k − 1)Φ̆T H̆T ]−1.
(49)
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From (45) and (47), it follows that

S0(k) = A(k)[r0(k − 1) + J0(k, k)H̆(B(k) − A(k)r0(k − 1))]AT (k)

= Φ̆S0(k − 1)Φ̆T + A(k)J0(k, k)H̆(K̆(k, k) − Φ̆S0(k − 1)Φ̆T ),
S(0) = 0.

(50)

Let us introduce a function
g(k) = A(k)J0(k, k). (51)

From (49) and (51), it follows that

g(k) = [K̆(k, k)H̆T − Φ̆S0(k − 1)Φ̆T (k)H̆T ][R + H̆K̆(k, k)H̆T

−H̆Φ̆S0(k − 1)Φ̆T H̆T ]−1.
(52)

Now, from (32) and (35), the filtering estimate x̂(k, k) of x(k) is given by

x̂(k, k) = Φk

k
∑

i=1

J(i, k)y̆(i). (53)

Introducing a function

e(k) =

k
∑

i=1

J(i, k)y̆(i), (54)

the filtering estimate is expressed as
x̂(k, k) = Φke(k). (55)

Subtracting e(k − 1) from e(k), using (31) and introducing a function

e0(k) =
k

∑

i=1

J0(i, k)y̆(i), (56)

we obtain

e(k) − e(k − 1) = J(k, k)(y̆(k) − H̆Φ̆k
k−1
∑

i=1

J0(i, k − 1)y̆(i))

= J(k, k)(y(k) − H̆Φ̆ke0(k − 1),
e0(0) = 0.

(57)

Let us introduce a function
ˆ̆x(k, k) = Φ̆ke0(k), (58)

which represents the filtering estimate of x̆(k). Subtracting e0(k−1) from e0(k) and using (31), we obtain

e0(k) − e0(k − 1) = J0(k, k)(y̆(k) − H̆Φ̆ˆ̆x(k − 1, k − 1)),
e0(0) = 0.

(59)

Substituting (57) into (55), we have

x̂(k, k) = Φx̂(k − 1, k − 1) + ΦkJ(k, k)(y̆(k) − H̆Φ̆ke0(k − 1))

= Φx̂(k − 1, k − 1) + G(k)(y̆(k) − H̆Φ̆ˆ̆x(k − 1, k − 1)),
G(k) = ΦkJ(k, k),
x̂(0, 0) = 0.

(60)

From (44), and by introducing a function

S(k) = Φkr(k)(Φ̆T )k, (61)

G(k) is expressed as

G(k) = [Kxx̆(k, k)H̆T − ΦS(k − 1)Φ̆T H̆][R + H̆K̆(k, k)H̆T

−H̆Φ̆S0(k − 1)Φ̆T H̆T ]−1.
(62)

8 Frontiers in Signal Processing, Vol. 3, No. 1, January 2019

FSP Copyright © 2019 Isaac Scientific Publishing



From (58) and (59), it follows that

ˆ̆x(k, k) = Φ̆ke0(k − 1) + Φ̆kJ0(k, k)(y̆(k) − H̆Φ̆ˆ̆x(k − 1, k − 1))

= Φ̆ˆ̆x(k − 1, k − 1) + g(k)(y̆(k) − H̆Φ̆ˆ̆x(k − 1, k − 1)),
ˆ̆x(0, 0) = 0.

(63)

From (43) and (61), it follows that

S(k) = Φkr(k − 1)(Φ̆T )k + G(k)(H̆B(k) − H̆Φ̆kr0(k − 1))(Φ̆T )k

= ΦS(k − 1)Φ̆T + G(k)H̆(K̆(k, k) − Φ̆S0(k − 1)Φ̆T ),
S(0) = 0.

(64)

From (15), h(k, L, L) satisfies

h(k, L, L)R = Kxx̆(k, L)H̆T −
L
∑

i=1

h(k, i, L)H̆K̆(i, L)H̆T

= Kxx̆(k, k)(Φ̆T )L−kH̆T −
L
∑

i=1

h(k, i, L)H̆B(i)AT (L)H̆T .

(65)

Introducing a function

P (k, L) =

L
∑

i=1

h(k, i, L)H̆B(i), (66)

we have an expression for h(k, L, L)R as

h(k, L, L)R = Kxx̆(k, k)(Φ̆T )L−kH̆T − P (k, L)(Φ̆T )LH̆T . (67)

Subtracting P (k, L − 1) from P (k, L), from (29) and (42), we have

P (k, L) − P (k, L − 1) = h(k, L, L)H̆B(L) +
L−1
∑

i=1

(h(k, i, L) − h(k, i, L − 1))H̆B(i)

= h(k, L, L)H̆B(L) − h(k, L, L)H̆Φ̆L
L−1
∑

i=1

J0(i, L)H̆B(i)

= h(k, L, L)H̆B(L) − h(k, L, L)H̆Φ̆Lr0(L − 1).

(68)

Let us introduce a function
q(k, L) = P (k, L)(Φ̆T )L. (69)

From (45), (68) and (69), it follows that

q(k, L) = q(k, L − 1)Φ̆T + h(k, L, L)(H̆K̆(L, L) − H̆Φ̆S0(L − 1)Φ̆T ). (70)

From (67), it is clear that

h(k, L, L)R = Kxx̆(k, k)(Φ̆T )L−kH̆T − q(k, L)H̆T . (71)

Substituting (70) into (71), we have

h(k, L, L) = [Kxx̆(k, k)(Φ̆T )L−kH̆T − q(k, L − 1)Φ̆T ]

×[R + H̆(K̆(L, L) − Φ̆S0(L − 1)Φ̆T )H̆T ]−1.
(72)

From (35), (39), (61), (66) and (69), the initial condition q(k, k) on (70) for q(k, L) at L = k is given by

q(k, k) = P (k, k)(Φ̆T )k

=
k

∑

i=1

h(k, i, k)H̆B(i)(Φ̆T )k

= Φk
k

∑

i=1

J(i, k)H̆B(i)(Φ̆T )k

= Φkr(k)(Φ̆T )k

= S(k).

(73)
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The fixed-point smoothing estimate is given by (11). Subtracting x̂(k, L − 1) from x̂(k, L) and using
(29), (56) and (58), we have

x̂(k, L) = x̂(k, L − 1) + h(k, L, L)(y̆(L) − h(k, L, L)H̆Φ̆L
L−1
∑

i=1

J0(s, L − 1)y̆(i))

= x̂(k, L − 1) + h(k, L, L)(y̆(L) − H̆Φ̆Le0(L − 1))

= x̂(k, L − 1) + h(k, L, L)(y̆(L) − H̆Φ̆ˆ̆x(L − 1, L − 1)),
x̂(k, L)|L=k = x̂(k, k).

(74)

(Q.E.D.)

For the stability of the filtering and fixed-point smoothing algorithms, the following conditions are
required.

1. All the real parts in the eigenvalues of the matrix Φ̆ − g(k)H̆Φ̆ are negative.
2. R + H̆[K̆(k, k) − Φ̆S0(L − 1)Φ̆T ]H̆T > 0

Also, the robust RLS fixed-point smoothing and filtering algorithms, using the covariance information,
are summarized in Corollary 1.

Corollary 1 Let the auto-covariance function K̆(k, s) of the state vector x̆(k) be given by (6). Let
the cross-covariance function of the state vector x(k) with x̆(s) be given by (10). Let the observation
matrix H for the signal z(k) and the observation matrix H̆ for the degraded signal z̆(k) be given in
(2) and (4) respectively. Let the state equation and the observation equation, including the uncertain
quantities ∆Φ and ∆H be given in (1). Let the variance of white observation noise be R. Then, by using
the covariance information, the robust RLS algorithms for the fixed-point smoothing estimate ẑ(k, L),
at the fixed point k, and the filtering estimate ẑ(k, k) of the signal z(k) consist of (75)-(87) in linear
discrete-time stochastic systems.

Fixed-point smoothing estimate of the signal z(k): ẑ(k, L)

ẑ(k, L) = Hx̂(k, L) (75)

Fixed-point smoothing estimate of the state vector x(k): x̂(k, L)

x̂(k, L) = x̂(k, L − 1) + h(k, L, L)(y̆(L) − H̆A(L)e0(L − 1)) (76)

Smoother gain: h(k, L, L)

h(k, L, L) = [α(k)βT (k)(AT )L−kH̆T − P (k, L − 1)AT (L)H̆T ]

×{R + H̆[B(L) − A(L)r0(L − 1)]AT (L)H̆T }−1
(77)

P (k, L) = P (k, L − 1) + h(k, L, L)H̆[B(L) − A(L)r0(L − 1)],
P (k, k) = A(k)r(k)

(78)

Filtering estimate of z(k): ẑ(k, k)
ẑ(k, k) = Hx̂(k, k) (79)

Filtering estimate of x(k): x̂(k, k)
x̂(k, k) = α(k)e(k) (80)

e(k) = e(k − 1) + J(k, k)(y̆(k) − H̆A(k)e0(k − 1)),
e(0) = 0

(81)

J(k, k) = [βT (k)H̆T − r(k − 1)AT (k)H̆]

×{R + H̆[B(k) − A(k)r0(k − 1)]AT (k)H̆T }−1
(82)

r(k) = r(k − 1) + J(k, k)H̆(B(k) − A(k)r0(k − 1)),
r(0) = 0.

(83)
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Filtering estimate of x̆(k): ˆ̆x(k, k)
ˆ̆x(k, k) = A(k)e0(k) (84)

e0(k) = e0(k − 1) + J0(k, k)(y̆(k) − H̆A(k)e0(k − 1)),
e0(0) = 0

(85)

J0(k, k) = [BT (k)H̆T − r0(k − 1)AT (k)H̆T ]

×{R + H̆[B(k) − Akr0(k − 1)]AT (k)H̆T }−1
(86)

r0(k) = r0(k − 1) + J0(k, k)H̆(B(k) − A(k)r0(k − 1)),
r0(0) = 0

(87)

Proof

From (6), (56) and (74), (76) is obtained. From (6), (10), (42), (67) and (68), (77) is obtained. From
(6) and (68), (78) is obtained. From (35), (39) and (66), P (k, k) is obtained. From (6) and (55), (80) is
obtained. From (6) and (57), (81) is obtained. Initial condition e(0) = 0 is given from (54). From (6),
(10) and (44), (82) is obtained. From (6), and (43), (83) is obtained. Initial condition r(0) = 0 is given
from (39). From (6) and (53) and (54), (84) is given. From (6), (58) and (59), (85) is obtained. From (6),
(45) and (49), (86) is obtained. (87) is equivalent to (47). Initial condition r0(0) = 0 is given from (42).

(Q.E.D.)

4 Filtering Error Variance Function of Signal

In this section the filtering error variance function P̃z(k) for the signal z(k) is shown. Let the auto-
covariance function K(k, s) of the state vector x(k) be expressed by

K(k, s) =

{

Ax(k)BT
x

(s), 0 ≤ s ≤ k,
Bx(k)AT

x
(s), 0 ≤ k ≤ s,

Ax(k) = α(k) = Φk, BT
x

(s) = Φ−sK(s, s).
(88)

The filtering error variance function is given by

P̃z(k) = H[K(k, k) − E[x̂(k, k)x̂T (k, k)]HT

= H[K(k, k) − E[x(k)x̂T (k, k)]HT .
(89)

By using (10) and (53), and introducing a function,

rs(k) =

k
∑

i=1

J(i, k)β(i), (90)

(89) is written as
P̃z(k) = H(K(k, k) − α(k)rT

s
(k)(αT )k)HT . (91)

Subtracting rs(k − 1) from rs(k) and introducing a function

r0(k) =

k
∑

i=1

J0(i, k)β(i), (92)

we have
rs(k) = rs(k − 1) + J(k, k)(β(k) − H̆Φ̆kr0(k − 1)),
rs(0) = 0.

(93)

Subtracting r0(k − 1) from r0(k), we have

r0(k) = r0(k − 1) + J0(k, k)(β(k) − H̆Φ̆kr0(k − 1)),
rs(0) = 0.

(94)
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Hence, the filtering error variance function P̃z(k) is calculated by (91) with (82), (83), (86), (87), (93)
and (94) recursively.

Since P̃z(k) is the semi-definite function, the filtering variance function HE[x̂(k, k)x̂T (k, k)]HT =
HΦkrT

s
(k)(ΦT )kHT is upper bounded by HK(k, k)HT and lower bounded by the zero matrix as

0 ≤ HE[x̂(k, k)x̂T (k, k)]HT ≤ HK(k, k)HT . (95)

This shows the existence of the robust filtering estimate ẑ(k, k) of the signal z(k).

5 A Numerical Simulation Example

Let a scalar observation equation and the state equation for x(k) be given by

y(k) = z(k) + v(k), z(k) = Hx(k), H =
[

1 0
]

, x(k) =

[

x1(k)
x2(k)

]

,

x(k + 1) = Φx(k) + Γw(k), Φ =

[

0 1
−a2 −a1

]

, a1 = −0.1, a2 = −0.8, Γ =

[

0
1

]

,

E[v(k)v(s)] = RδK(k − s), E[w(k)w(s)] = QδK(k − s), Q = 0.52.

(96)

In (96) the signal process of z(k) is expressed by the second order AR model. Let the state-space model
containing the uncertain quantities ∆H(k) and ∆Φ(k) be given by

y̆(k) = z̆(k) + v(k), z̆(k) = H̄(k)x̄(k), x̄(k) =

[

x̄1(k)
x̄2(k)

]

,

H̄(k) = H + ∆H(k) =
[

1 + ∆3(k) 0
]

, ∆H(k) =
[

∆3(k) 0
]

, ∆3(k) = 0.05ζ(k),

x̄(k + 1) = Φ̄(k)x̄(k) + Γw(k), Φ̄(k) = Φ + ∆Φ(k), ∆Φ(k) =

[

0 0
∆2(k) ∆1(k)

]

,

∆1(k) = 0.01ζ(k), ∆2(k) = −0.1ζ(k)

(97)

in linear discrete-time stochastic systems. It should be noted that the uncertain quantities ∆H(k) and
∆Φ(k) are not known. It is a task to estimate the signal z(k) recursively in terms of the observed value
y̆(k), which is given as the sum of the degraded signal z̆(k) and the observation noise v(k). ζ(k) in (97)
represents the uniform random variables between 0 and 1 generated by the MATLAB command “rand”.
∆1(k), ∆2(k) and ∆3(k) consist of the deterministic mean values and the stochastic variables with the
mean zero. Let z̆(k) be fitted to the N -th order AR model of

z̆(k) = −ă1z̆(k − 1) − ă2z̆(k − 2) − · · · − ăN z̆(k − N) + ĕ(k),

E[ĕ(k)ĕ(s)] = Q̆δK(k − s).
(98)

From (4), for the scalar observation equation (96), the degraded signal z̆(k) is given by

z̆(k) = H̆x̆(k), H̆ =
[

1 0 0 · · · 0 0
]

. (99)

In this example, the state equation for x̆(k), given by (5), corresponds to the case of m = 1. K̆(k, s) =
K̆(k−s) represents the auto-covariance function of the state vector x̆(k) in wide-sense stationary stochas-
tic systems. K̆(k, s) is expressed in the form of the semi-degenerate function (6). In (6), Φ̆ represents the
state transition matrix for the state vector x̆(k). Φ̆ is given by (7). Also, from Kz̆(k − s) = Kz̆(s − k) =
E[z̆(k)z̆(s)] for the scalar degraded signal z̆(k), the auto-variance function K̆(k, k) of the state vector
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x̆(k) is expressed as

K̆(k, k) = E





























z̆(k)
z̆(k + 1)

...
z̆(k + N − 2)
z̆(k + N − 1)





























×
[

z̆(k) z̆(k + 1) · · · z̆(k + N − 2) z̆(k + N − 1)
]

=















Kz̆(0) Kz̆(1) · · · Kz̆(N − 2) Kz̆(N − 1)
Kz̆(1) Kz̆(0) · · · Kz̆(N − 3) Kz̆(N − 2)

...
...

. . .
...

...
Kz̆(N − 2) Kz̆(N − 3) · · · Kz̆(0) Kz̆(1)
Kz̆(N − 1) Kz̆(N − 2) · · · Kz̆(1) Kz̆(0)















.

(100)

Let Kzz̆(k, s) = E[z(k)z̆(s)] represent the cross-covariance function between the signal z(k) and the
degraded signal z̆(s). From (4) and (96), the cross-covariance function Kxx̆(k, s) is expressed as

Kxx̆(k, s) = Φk−sKxx̆(s, s), 0 ≤ s ≤ k,

Kxx̆(k, k) = E

[[

x1(k)
x2(k)

]

[

z̆(k) z̆(k + 1) · · · z̆(k + N − 2) z̆(k + N − 1)
]

]

=

[

E[x1(k)z̆(k)] E[x1(k)z̆(k + 1) · · · E[x1(k)z̆(k + N − 2)] E[x1(k)z̆(k + N − 1)]
E[x2(k)z̆(k)] E[x2(k)z̆(k + 1) · · · E[x2(k)z̆(k + N − 2)] E[x2(k)z̆(k + N − 1)]

]

=

[

E[z(k)z̆(k)] E[z(k)z̆(k + 1)
E[z(k + 1)z̆(k)] E[z(k + 1)z̆(k + 1)

· · · E[z(k)z̆(k + N − 2)] E[z(k)z̆(k + N − 1)]
· · · E[z(k + 1)z̆(k + N − 2)] E[z(k + 1)z̆(k + N − 1)]

]

=

[

Kzz̆(k, k) Kzz̆(k, k + 1) · · · Kzz̆(k, k + N − 2) Kzz̆(k, k + N − 1)
Kzz̆(k + 1, k) Kzz̆(k + 1, k + 1) · · · Kzz̆(k + 1, k + N − 2) Kzz̆(k + 1, k + N − 1)

]

.

(101)

The AR parameters ă1, ă2, · · · , ăN−1, ăN in (98) are calculated by















Kz̆(0) Kz̆(1) · · · Kz̆(N − 2) Kz̆(N − 1)
Kz̆(1) Kz̆(0) · · · Kz̆(N − 3) Kz̆(N − 2)

...
...

. . .
...

...
Kz̆(N − 2) Kz̆(N − 3) · · · Kz̆(0) Kz̆(1)
Kz̆(N − 1) Kz̆(N − 2) · · · Kz̆(1) Kz̆(0)





























ă1

ă2

...
ăN−1

ăN















=















−Kz̆(1)
−Kz̆(2)

...
−Kz̆(N − 1)

−Kz̆(N)















.

Substituting H, H̆, Φ, Φ̆, Kxx̆(k, k), K̆(k, k) = K̆(L, L) and R into the robust RLS Wiener estimation
algorithms of Theorem 1, the fixed-point smoothing and filtering estimates are calculated recursively. In
evaluating Φ̆ in (7) for m = 1, K̆(k, k) in (100) and Kxx̆(k, k) in (101), 2,000 number of the signal and
degraded signal data are used. Fig.1 illustrates the signal z(k), the fixed-point smoothing estimate ẑ(k, k+
2) and the filtering estimate ẑ(k, k) of the signal vs. k for the white Gaussian observation noise N(0, 0.32)
in the case of the AR model order N = 5. Fig.2 illustrates the signal process z(k) and its degraded signal
z̆(k) by the uncertain parameters for the white Gaussian observation noise N(0, 0.32). Fig.2 shows, in
comparison with the signal process, that the degraded signal is influenced by the uncertain parameters
in the observation vector and the state transition matrix in (97). Fig.3 illustrates the mean-square values
(MSVs) of the filtering errors z(k) − ẑ(k, k) and the fixed-point smoothing errors z(k) − ẑ(k, k + Lag)
vs. Lag, 0 ≤ Lag ≤ 5, for the white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52) and
N(0, 0.72) in the case of the AR model order N = 5. For Lag = 0, the MSV of the filtering errors
z(k) − ẑ(k, k), 1 ≤ k ≤ 2000, is shown. Similarly, Fig.4 illustrates the MSVs of the filtering and the fixed-
point smoothing errors vs. Lag for the white Gaussian observation noises N(0, 0.12), N(0, 0.32), N(0, 0.52)
and N(0, 0.72) in the case of the AR model order N = 10. From Fig.3 and Fig.4. for the white Gaussian
observation noises N(0, 0.12) and N(0, 0.32), it is seen that, as Lag increases, the MSVs increase and the
estimation accuracy of the robust fixed-point smoother is degraded in comparison with the robust filter.
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In Fig.3 and Fig.4, among the filter and the fixed-point smoother, for the white Gaussian observation
noise N(0, 0.52), the estimation accuracy of the fixed-point smoother at Lag = 2 is most feasible. Also,
the MSVs of the filtering and fixed-point smoothing errors for the AR model order N = 5 is smaller than
those for the AR model order N = 10. Fig.5 shows the MSVs of the filtering errors by the RLS Wiener
filter [23] for the AR model orders N = 5, the robust Kalman filter [21], and the robust RLS Wiener filter,
proposed in this paper for the AR model orders N = 5 and N = 10, vs. the standard deviation of the
observation noise. Here, by using the parameter notations in [21], the quantities used in the simulation of

the robust Kalman filter are as follows. Fk =

[

0.1ζ(k) −0.1ζ(k)
0 0.1ζ(k)

]

, E =

[

0.1 0
0 0.01

]

, H1 =

[

0 0
−10 0

]

, H2 =
[

10 10
]

, εk = 8. From Fig.5 the MSV by the robust RLS Wiener filter for the AR model order N = 5
is smaller slightly than that for the AR model order N = 10. From Fig.3, Fig.4 and Fig.5, it is seen
that the proposed robust RLS Wiener filter and fixed-point smoother for 1 ≤ lag ≤ 5 for are preferable
in estimation accuracy to the RLS Wiener filter [23] and the robust Kalman filter [21]. Here, the MSVs

of the fixed-point smoothing and filtering errors are evaluated by
2000
∑

i=1

(z(k) − ẑ(k, k + Lag))2/2000 and

2000
∑

i=1

(z(k) − ẑ(k, k))2/2000 respectively.

0 50 100 150 200
-3

-2

-1

0

1

2

3

4

time k

S
i
g
n
a
l
,
 
f
i
l
t
e
r
i
n
g
 
a
n
d
 
f
i
x
e
d
-
p
o
i
n
t
 
s
m
o
o
t
h
i
n
g
 
e
s
t
i
m
a
t
e
s

Signal

Filtering estimate

Fixed-point smoothing estimate

Figure 1. Signal z(k), fixed-point smoothing estimate ẑ(k, k + 2) and filtering estimate ẑ(k, k) of the signal vs.
k for the white Gaussian observation noise N(0, 0.32) in the case of the AR model order N = 5.
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Figure 2. Signal z(k) and degraded signal z̆(k) by the uncertain parameters for the white Gaussian observation
noise N(0, 0.32).

6 Conclusions

As a purpose of estimating the signal process, this paper has proposed the robust RLS Wiener fixed-point
smoother and filter in linear discrete-time stochastic systems with stochastic parameter uncertainties.
The uncertain parameters are contained in the observation matrix and the system matrix. The uncertain
parameters generate the degraded signal. In this paper, in Theorem 1, by fitting the degraded signal
process to the finite order AR model, the robust RLS Wiener estimators are designed. This paper,
in Corollary 1, proposes the robust recursive fixed-point smoother and filter, by using the covariance
information of the state vector for the degraded signal, the cross-covariance information of the state
vector for the signal with the state vector for the degraded signal, the observation matrices for the
degraded signal and the signal besides the variance of the white observation noise.

A numerical simulation example, in estimating the signal process expressed by the second order AR
model, has shown that the robust RLS Wiener filter and fixed-point smoother for 1 ≤ lag ≤ 5 are
superior in estimation accuracy to the robust Kalman filter [21] and the RLS Wiener filter [23].
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