
 Open access Proceedings Article DOI:10.1109/ROBOT.2010.5509274

Robust robotic assembly through contingencies, plan repair and re-planning
— Source link

Frederik W. Heger, Sanjiv Singh

Institutions: Carnegie Mellon University

Published on: 03 May 2010 - International Conference on Robotics and Automation

Topics: Motion planning and Robustness (computer science)

Related papers:

 Adaptation to robot failures and shape change in decentralized construction

 TERMES: An Autonomous Robotic System for Three-Dimensional Collective Construction

 Three-Dimensional Construction with Mobile Robots and Modular Blocks

 Adaptive robot path planning in changing environments

 Adaptive path planning for flexible manufacturing

Share this paper:

View more about this paper here: https://typeset.io/papers/robust-robotic-assembly-through-contingencies-plan-repair-
4ojmb5zjwq

https://typeset.io/
https://www.doi.org/10.1109/ROBOT.2010.5509274
https://typeset.io/papers/robust-robotic-assembly-through-contingencies-plan-repair-4ojmb5zjwq
https://typeset.io/authors/frederik-w-heger-2fazkbngkg
https://typeset.io/authors/sanjiv-singh-4238r7t8bm
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/conferences/international-conference-on-robotics-and-automation-27g6ts5l
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/topics/robustness-computer-science-gkpqgcat
https://typeset.io/papers/adaptation-to-robot-failures-and-shape-change-in-22aje86goh
https://typeset.io/papers/termes-an-autonomous-robotic-system-for-three-dimensional-3tfqn4vq01
https://typeset.io/papers/three-dimensional-construction-with-mobile-robots-and-2rnq522m7n
https://typeset.io/papers/adaptive-robot-path-planning-in-changing-environments-4p4bkb9dd1
https://typeset.io/papers/adaptive-path-planning-for-flexible-manufacturing-6ni4zs9y1n
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/robust-robotic-assembly-through-contingencies-plan-repair-4ojmb5zjwq
https://twitter.com/intent/tweet?text=Robust%20robotic%20assembly%20through%20contingencies,%20plan%20repair%20and%20re-planning&url=https://typeset.io/papers/robust-robotic-assembly-through-contingencies-plan-repair-4ojmb5zjwq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/robust-robotic-assembly-through-contingencies-plan-repair-4ojmb5zjwq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/robust-robotic-assembly-through-contingencies-plan-repair-4ojmb5zjwq
https://typeset.io/papers/robust-robotic-assembly-through-contingencies-plan-repair-4ojmb5zjwq

Robust Robotic Assembly through

Contingencies, Plan Repair and Re-Planning

Frederik W. Heger and Sanjiv Singh

Abstract— Enabling mobile robots to assemble large struc-
tures in constrained environments requires planning systems
that are both capable of dealing with high complexity and
can provide robust execution in the face of run-time failures.
We achieve execution robustness through exception handling
capabilities that are seamlessly integrated throughout the plan-
ning system. Having these recovery mechanisms in place allows
us to leverage their capabilities to compensate for problems
introduced by approximations made during planning. Turning
an apparent problem into an opportunity, we are able to plan
complex assembly tasks and execute them robustly without
the computational cost associated with more sophisticated
planners and apply some of the savings toward recovering
from unforeseen run-time errors. We show results where simple
planning strategies paired with exception-handling are able to
achieve the same outcomes (and in less time) as more elaborate
methods would.

I. INTRODUCTION

The first reaction to the term “robotic assembly” is usu-

ally a mental picture of an industrial assembly line where

stationary robots perform repetitive tasks at high speeds and

with high precision. That is not the kind of “assembly” our

work is about. Instead, we consider mobile manipulators

retrieving components from a storage location, transporting

them through their environment and assembling them into a

large structure. We are developing a framework for planning

assembly tasks that, given a desired goal structure, automat-

ically decomposes the task and commands robots to execute

them. As with all real-robot systems, things can (and will)

go wrong during task execution. We leverage the availability

of a skilled operator to provide exception-handling at all

levels of the system – from low-level behaviors, to task-level

execution to high-level (re-)planning. The result is a robotic

assembly system capable of robustly executing complex tasks

in constrained environments with implicit flexibility to adapt

and modify the plan in response to run-time errors.

A. Motivation

With robotic manipulation increasing in capability and

availability, a natural next step for mobile robots to advance

beyond merely navigating through and sensing their sur-

roundings is to actively modify their environment. Assembly

of structures is an important application on its own, and it

is a good example of a class of tasks that require complex

coordination of multiple robots.

F. Heger is a Ph.D. student and S. Singh is a Research Profes-
sor at the Field Robotics Center, The Robotics Institute, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, U.S.A.
{fwh,ssingh}@ri.cmu.edu

Fig. 1. A nearly completed lattice of 21 components. Three robots (a mobile
manipulator, a dedicated sensing agent and a crane) cooperate to perform
the assembly. Our system can plan for and execute the construction of any
subset of this grid.

While multiple robots may have to tightly cooperate for

certain parts of the assembly (e.g., where large components

are involved), large portions of the work can usually be

performed by multiple robots in parallel, working on separate

parts of the structure largely independently. Since they are

still all operating in a constrained environment, in order to

ensure safety, robots either have to be well coordinated even

when their tasks may not require it (i.e., motions planned in

the joint configuration space of all robots, as well as with

time dependence), or there have to be other mechanisms in

place to avoid collisions and impasses that arise.

Interesting structures are comprised of numerous compo-

nents that have to be brought together and connected into a

growing obstacle for the robots performing the work. The

complexity of the problem quickly reaches the limits of

current planning techniques. At the same time, for a robotic

assembly system to be useful in real-world scenarios, it has

to be robust to execution-time failures.

We see the inevitability of failures occurring during exe-

cution not as a problem, but an opportunity. Instead of ex-

pending much effort on using highly sophisticated planning

methods (which still need another level of error handling

to provide the desired robustness of the overall system), we

use simpler (and faster to compute) techniques that produce

solutions for many nominal situations and equip the system

with powerful recovery mechanisms to resolve problems as

they arise.

sanjivsingh
Text Box
In Proceedings ICRA 2010, May 2010,Anchorage, Alaska.

sanjivsingh
Text Box

B. Overview

Our work extends the traditional three-tier architecture

(planning, executive, behaviors, [1]) by seamlessly integrat-

ing recovery mechanisms for execution-time exceptions at

all levels of the hierarchy (earlier efforts focused exclu-

sively on error recovery at the lowest behavioral level).

This paper investigates how these comprehensive strategies

for error recovery can be employed to ensure robust robot

performance even as strong simplifying approximations are

made to improve planning efficiency. The main idea is

that since error recovery methods are essential for robust

operation in any system, they can be leveraged to compensate

for any discrepancies between the planner’s (simplified and

approximated) representation and the real world.

After reviewing related work, we present the details of our

approach that enable robust robotic assembly by incorporat-

ing powerful exception handling mechanisms throughout the

system. We show results of an experiment to test the ef-

fectiveness of our approach in simulated assembly scenarios

and discuss our findings before concluding and pointing out

directions of future work.

II. RELATED WORK

Prior work relevant to assembly planning falls into two

main categories: approaches that treat assembly as a sequenc-

ing problem on an abstract symbolic level, and ones that

consider fine-grained motions of the robots involved. We see

both as integral aspects of a larger problem that cannot be

solved well with either method alone.

1) Symbolic Planning: Symbolic methods abstract prob-

lems into simple operators with preconditions and effects. A

sequence of operators that transform given initial conditions

into desired final configurations describes a plan for the

scenario [2], [3]. Such approaches efficiently exploit the

step-by-step nature of many problems by abstracting away

difficult to compute constraints into simple heuristics. This

abstraction, however, limits the reasoning about the real

world to queries that have to be answered by an outside

process (e.g., an oracle). Infeasibility of a plan often cannot

be detected until the robots – during execution – come to

a dead end because a workspace constraint was unknown

during planning. Plan verification systems can help reduce

such problems by verifying a symbolic plan step by step

either after it is completed or while it is being planned [4].

2) Motion Planning: Other applicable work focuses on

the motion planning aspects of the problem [5], [6], [7], but

plans produced by those approaches do not always satisfy

critical structural constraints imposed by the structure to

be assembled. Koditschek et al.’s navigation functions, for

example, assumes that all states between the initial and final

configurations are valid (including partially assembled com-

ponents), which is not the case in assembly scenarios. There

is no guarantee that extrema in the navigation functions

where assembly roles change coincide with valid assembly

states where such a change is allowed.

In the context of this paper, motion planners that are

capable of planning for robots with complex motion models

(i.e., non-holonomic motion constraints, etc.) are of particu-

lar interest [8]. Planning on a lattice that encodes the robots’

motion capabilities, they can guarantee feasible plans, but

they also are computationally expensive.

Since assembly scenarios have a distinct underlying step-

by-step structure, pure motion planning approaches do not

produce the results we are looking for. Stilman et al.’s

navigation among movable obstacles [9] plans first in an

abstract graph of configuration space segments and then uses

motion planning techniques to evaluate paths suggested by

graph edges. Manipulation planning is faced with similar

challenges to assembly planning at a finer level of detail

(e.g., dextrous motions to grasp and re-grasp components

[10], [11]). An assembly plan sets up manipulation planning

problems for each step in the plan.

3) Assembly Planning: Homem de Mello developed a

representation for describing mechanical assembly sequences

based on AND/OR graphs [12], [13] similar to our rep-

resentation [14]. Using this graph structure, he presented

a complete and correct algorithm for generating assembly

sequences of a desired configuration by planning the dis-

assembly of the goal structure [15]. Existing approaches

are limited to highly structured environments (e.g., work

cells, [12], [4]) and are usually concerned with assembly

feasibility and serviceability of parts in assemblies. The

focus is on optimal plans to maximize efficiency of the

assembly/production process. Once a plan has been found,

it will be executed thousands of times without variation.

4) Robotic Assembly: In addition to our own work in

multi-robot assembly [1] we are aware of one other group

where real robots cooperate to assemble a (simple) structure

[16]. Both efforts thus far focus on the execution part of the

problem and operate according to a simple script written by

hand that is followed by the robots. The planning system

we describe here will replace manual scripting of assembly

actions with automatic tasking of assembly robots based on a

high-level goal specification of the structure to be assembled.

III. APPROACH

For robotic assembly systems to be useful in real-world

applications, they must be able to operate robustly, meaning

the desired structure must be assembled, even if exceptions

occur along the way. We split the overall assembly planning

process into three stages: a first (offline) pass that considers

only structural constraints, a second (also offline) pass where

available robots and their capabilities are considered, and

a final (online) process to adapt and modify the plan to

changing conditions and exceptions during execution.

Our approach is to use simple planning strategies (that

are efficient to compute and yield good plans within their

limited representation), and then provide exception handling

mechanisms (both autonomous ones and expert-operator-

based ones) to repair and re-plan tasks as execution-time

exceptions occur. Fig. 2 provides an overview of our robotic

assembly system. Given as input a desired structure to be

assembled by mobile manipulators in their environment, the

assembly planner represents the problem as an assembly

Assembly Planner
(generates assembly graph and 

finds good sequence)

Sequence‐Level Execu6ve
(instan8ates task tree and passes sub‐

task trees on to agents)

Task‐Level Execu6ve
(parameterizes behaviors 

according to sub‐task trees)

environment with obstacles

Robot Behaviors
(command robots according 

 to parameteriza8on)

commands

state

operator

E
x
e
cu
6
v
e

P
la
n
n
e
r

B
e
h
a
v
io
rs

desired structure

 
params

 task

tree

assembly

sequence

con6ngency

step repair

re‐plan

Fig. 2. A high-level overview of the robotic assembly system. Exception
handling capabilities are seamlessly integrated throughout the system to
recover from unforeseen errors where it is most appropriate.

graph that it searches for the best assembly plan. As the

quality of a plan directly depends on robots’ motions through

the workspace, motion planning techniques are required to

evaluate different assembly steps. Once an assembly plan is

found, the executive is responsible for tasking robots and

parameterizing behaviors. As errors occur, they escalate up

through the system until they can be resolved and execution

can continue.

The key to our approach is that we are specifically

using motion planning techniques that make simplifying

assumptions. The idea is that the simple strategies are often

sufficient, and where they are not, the exception handling

mechanisms are powerful enough to maintain overall system

robustness. In contrast, more elaborate planners often will

provide only marginally better solutions in significantly

longer computation time, and they also cannot entirely avoid

execution-time exceptions.

We have presented our representation of assembly plan-

ning problems and the general process of plan generation in

previous work [14]. For the purpose of this paper, we focus

specifically on the underlying planning methods used, and

how error recovery strategies tie back in with the overall

representation.

A. Planning with Approximations

Assembly planning, even for small structures of up to

20 components, requires many (as many as 600,000 for

a structure of 21 components) motion and manipulation

planning problems to be solved to find a feasible and desir-

able assembly sequence. While the bulk of this computation

occurs offline prior to execution, we still want to keep

planning time to a reasonable amount, especially as the

number of robots involved in assembly steps grows.

The correct way of planning motions for several robots

operating in a constrained environment to build a structure

would be to plan in the joint configuration space of all robots

involved. Given the ever-changing geometry of the environ-

ment and the robots carrying components, this approach soon

reaches the limits of tractability as the number of robots

increases. In addition, unless time dependence and delays

caused by runtime failures are specifically taken into account,

any break in synchronization between the robots can cause

problems requiring potentially expensive re-planning.

The key to our approach is to recognize that even though

there can be multiple robots involved in the assembly, most

of the time they are working on separate tasks in the same

environment, and many of their transfer motions lead through

mostly open space until they get close to the structure.

Our first simplifying approximation is to plan motions

for individual robots, only considering the structure obstacle

while ignoring other robots in the environment. Clearly, left

at that, this is a recipe for disaster where robots will pile up

in the center of the workspace as their paths intersect.

The second simplification comes from using simple mo-

tion models for the robots during planning (e.g., plan for

a holonomic robot, even though the actual robot is skid-

steered) instead of more accurate models that are more

expensive to plan with. As before, robot motions between the

storage location and the structure that mostly lead through

free space are minimally affected by this discrepancy. As the

robots get closer to the structure, problems will start to arise

that need to be addressed.

In our system, motion plans are generated using a PRM-

based motion planner from Stanford’s MPK package [17]

which allows us to easily specify the changing environ-

ment, as well as robots traveling alone or while carrying

components. While the planner can handle several robots at

once (in their combined configuration space), the required

planning time grows so quickly that in practice, as we will

show, planning for individual robots and dealing with the

consequences works very well.

Our solution to the problems created by the two simpli-

fications mentioned above is to rely on the same failure

recovery techniques already in place to ensure execution

robustness. The robots are able to detect exceptions (in this

case: blocked paths), stop safely and request help (either

from an autonomous repair/re-plan system or from a human

operator). Depending on the situation, the recovery response

can be a simple “continue now” (if the cause of the exception

has passed, e.g., another robot temporarily in the way), a new

motion plan from the current location (again with the same

simplifications), or a larger-scale re-plan.

Figs. 3, 4 and 5 illustrate examples of how the approximate

planning approach can lead to problems, and how those

problems can be addressed by our system. Consider first a

single robot. If its motion is planned assuming holonomic

motion capabilities, but the robot is a skid-steered vehicle, it

will attempt to “cut corners” when driving around obstacles

(Fig. 3). If the robot stops before a collision occurs and

generates a new path from there to its goal, it may get

lucky and find a viable solution (still assuming holonomic

motion) simply by starting from a different location in the

environment. In practice, however, it is more likely that

the new path will send the robot right back into the same

obstacle. In this case, additional help is required to get the

Fig. 3. A path planned assuming holonomic motion can cause a non-
holonomic robot to “cut corners”. Planning a new path from the failure
location can sometimes solve the problem. Other times the new plan leads
right back into the same problem, and more help is required.

robot unstuck. In our system, this request for help would be

handled by the operator.

Planning paths for multiple robots operating in parallel on

an individual robot basis leads to the obvious problem of

paths crossing (Fig. 4). If only one of the robots is affected

by the crossing (i.e., detects an imminent collision and stops

to avoid it), it can usually resolve the exception by yielding

to the other robot and then continuing once the original path

is clear. If, however, both robots block each other, more

assistance is needed. In this case, the operator is alerted

and can decide how the robots should proceed (e.g., by

backing up one robot, allowing the other to proceed, and

finally releasing the first to follow its path).

Fig. 4. If robots do not consider other robots in the environment, their paths
are likely to cross at times. In the example shown, one robot yields and then
can continue once the original path is clear. If the robots are blocking each
other, additional help is required.

Fig. 5 shows a scenario where one robot’s approach to

an installation site is blocked by another robot (that was

not considered during planning). Instead of waiting for the

other robot to complete its task and move out of the way,

the system (autonomously or with the help of the operator)

can make slight modifications to a robot’s immediate task to

complete it in an alternate way. In the example scenario, the

beam is installed from the right after the approach from the

left as originally planned was found to be blocked.

Fig. 5. If one robot’s position keeps another one from reaching its desired
target, the immediate assembly step may be repaired to achieve the original
goal in a slightly different way.

All the problems we mentioned that are caused by using

strong approximations during planning can be compensated

for by recovery mechanisms built into the system.

B. Execution and Exception Handling

We consider three levels of failure recovery (see Fig. 2):

1) Contingencies: At the lowest level, as a first recovery

attempt, each behavior has simple contingency responses for

things that are known to go wrong from time to time. Often

“try again” is a valid recovery strategy, or the operator can

take control via teleoperation. For such contingency recovery

actions, the assembly planner never gets involved. After a

number of contingency attempts fail, more work is required

to continue on with the task.

2) Assembly Step Repair: Each failed assembly operation

is associated with an edge in the assembly graph. As a first

attempt of recovery at the level of the assembly planner,

we consider the failed graph edge and attempt to repair

this particular step (Fig. 6 (left)). Enforcing the same final

condition as in the original plan and taking into account any

new information available due to the failure, the planner

checks to see if there are alternative parameterizations of

the failed task that allow it to repair the plan and then

continue on as originally planned. Depending on how far

along the assembly step the error occurred, the planner may

have different (or none at all) options available to repair a

step. If a repair is possible, the affected assembly step is

reparameterized and execution continues (until more errors

require further repairs).

. . .

.

. . .

Motion Planner

re-parameterize task

exception

new parameters

✗

✓ . . .

.

. . .

Assembly Planner

update task cost

exception

new sequence

✗

Fig. 6. Plan repair and re-planning. As execution-time failures occur, they
are seamlessly handled at the appropriate level of the system hierarchy.

3) Assembly Sequence Re-Plan: If no repair is possible

(either because the task had already progressed too far to

allow for alternative parameterizations while still enforcing

the required final condition, or because there is no other

way to perform this particular step at the current point in

the overall sequence), the exception jumps up to a higher

level in the executive, and the planner is queried for a

new sequence from the current state of the assembly to the

desired goal state. In this case, the offending graph edge is

marked impassable, and a new graph search is run from the

source state of the failed edge to the original target state

(Fig. 6 (right)). Note however, that the failed assembly step

left the robot somewhere along its task, possibly carrying a

component that it is trying to install. Thus, the re-planned

sequence needs to be prepended with setup tasks that return

the robots to a clean state from where to continue on with

the new plan. In our case, carried components are returned

to their storage location and the braced structure is released

before the new plan can be followed.

IV. EXPERIMENT

We conducted an experiment to determine the effects

of trading off sophisticated planning techniques (in the

interest of planning time) for a comprehensive exception

handling system (in the interest of robustness) that patches

any problems caused by the optimistic motion planner. We

noticed that as the number of exceptions increase (not

unexpectedly) if the robot’s motion is more complicated than

the planner’s assumptions, execution robustness can still be

achieved with only a small number of directed instances of

operator assistance that get the robot back on track.

A. Setup

Using our simulated assembly environment, we planned

the assembly of a two-square structure (a 13-component sub-

structure of the lattice shown in Fig. 1) at two different

goal locations (Fig. 7). We considered two different robots:

a holonomic base that is able to move as the planner thought

it could, and a skid-steer vehicle (planned for assuming

holonomic motion capabilities).

Obstacle

O
b
st

a
cl

e
 O

b
sta

cle

Storage Location

Scenario I Goal

Scenario II Goal

Fig. 7. The two experimental scenarios. The goal was to have the
robot assemble a 13-component structure in constrained locations in the
environment.

For each experimental condition, the planner produced an

assembly sequence and then commanded a simulated mobile

manipulator to execute it. During execution, a number of

exceptions were triggered. If the robot detected an imminent

collision of its body or an element it carried with another

object, it stopped and threw a “Clearance” exception (this is

caused by the “corner cutting” problem mentioned above).

In addition, “Sensing” and “Manipulation” exceptions were

generated randomly. For this experiment, 20% of all align-

ments suffered “Sensing” exceptions (i.e., in the real world,

the robot would be unable to sense everything it needs to

align itself with its target), and 40% of all manipulation

attempts would fail (i.e., the robot would try to pick up a

component, but something goes wrong).

“Clearance” exceptions trigger a re-plan of the robot’s

motion from its position where the failure occurred to

the current goal position. “Sensing” and “Manipulation”

exceptions are recovered from using a “Try Again” strategy.

After five exceptions in a single assembly step, a more

elaborate plan repair is triggered where the current step is

re-parameterized from the current state to the step’s goal

state. If, after three repair attempts there is still no solution,

the exception escalates to a re-planning strategy where the

assembly graph is queried for an alternative sequence to the

assembly goal state.

B. Results

For each scenario and experimental condition, we recorded

the number of each type of exception that occurred, as well

as the number of required operator interventions and the

outcome of the run. Each experimental condition was run

five times and the results averaged.

Mode C
le

a
ra

n
ce

S
en

si
n

g

M
a

n
ip

u
la

ti
o

n

O
p

.
A

ss
is

ta
n

ce

R
ep

a
ir

R
e-

P
la

n
n

in
g

S
u

cc
es

s

holonomic 0.0 20.8 16.6 0.0 3.0 0.0 100%

non-holonomic 6.4 14.6 17.4 1.6 2.4 0.0 100%

TABLE I

SCENARIO I: CENTERED IN WORKSPACE. THE TABLE SHOWS THE

AVERAGE NUMBER OF EACH TYPE OF EXCEPTION AND RECOVERY

EVENTS, AND THE SUCCESS RATE OF ALL RUNS.

In the less constrained structure goal position (Scenario

I, Table I), the difference between the two experimental

conditions (with the exception of “Clearance” exceptions and

operator interventions) was very small. Since the holonomic

robot moved the way the planner assumed it would, there

were no instances of the robot trying to cut corners, and

consequently, no operator assistance was required.

In Scenario II (Table II), in addition to the occurrence

of “Clearance” exceptions and operator interventions for the

realistic robot case, the system required more plan repair

operations to complete the assembly, but as with all exper-

imental conditions, all assembly runs finished successfully

with the structure built as desired.

The repair instances where the system requested operator

intervention could all be recovered by simply backing the

robot up slightly or turning it away from an obstacle before

the autonomous system could take control and continue on

with task execution.

Mode C
le

a
ra

n
ce

S
en

si
n

g

M
a

n
ip

u
la

ti
o

n

O
p

.
A

ss
is

ta
n

ce

R
ep

a
ir

R
e-

P
la

n
n

in
g

S
u

cc
es

s

holonomic 0.0 15.8 11.4 0.0 2.2 0.8 100%

non-holonomic 15.6 22.8 17.8 4.2 5.4 1.0 100%

TABLE II

SCENARIO II: CLOSE TO OBSTACLE AT EDGE OF WORKSPACE. THE

TABLE SHOWS THE AVERAGE NUMBER OF EACH TYPE OF EXCEPTION

AND RECOVERY EVENTS, AND THE SUCCESS RATE OF ALL RUNS.

V. DISCUSSION

In terms of overall system performance, the impact of

using an optimistic (and simple to compute) motion planner

to evaluate assembly steps during planning is limited to

requiring some additional repair events, but the success rate

is not affected. For the target applications of our system,

increased execution time can be accommodated to achieve

the required robust performance.

Of the “Clearance” exceptions due to differences between

the optimistic planner and the less capable robot, some were

recoverable autonomously while others required assistance

from the operator. When the robots detected imminent colli-

sions, in some cases the robot simply being in a different

position in the workspace allowed the optimistic motion

planner to generate a different enough recovery trajectory

that the realistic robot was able to successfully follow

around the obstacle. In many cases, however, the autonomous

contingency recovery got stuck in a loop where (in the

representation of the planner) the path was not really blocked,

and thus the “recovery” trajectory was the same as the

initial one, leading to an immediate re-failure. In those cases,

the operator had to move the robot via teleoperation (the

recovery action required less than 30 seconds) before the

system could take over again.

Recovery and re-planning capabilities are necessary for

the system to successfully perform assembly tasks even

when using a motion planner that faithfully represents the

capabilities of the motion planner to deal with unforeseen and

unforeseeable exceptions. Since the complexity of the assem-

bly representation already requires significant resources in

terms of memory, and since during planning a large number

of motion planning solutions need to be found to evaluate

assembly steps, being able to use a simple yet optimistic mo-

tion planner augmented with an exception handling system

that patches any problem during plan execution enables fast

planning and robust execution.

VI. CONCLUSION

The exception handling capabilities already incorporated

into our assembly planning system to ensure robust plan

execution are also able to recover from errors caused by

representational deficiencies and discrepancies between the

motion planner’s representation and the robot’s true capa-

bilities. We can exploit this already-present functionality to

deliberately scale back the representational fidelity required

of the planner we use to speed up planning without sacrific-

ing overall system performance. This trade-off will allow us

to work with larger problems than we could if high-fidelity

planning were required at every step along the way.

The goal of assembly planning is to be able to work

with large structures of many components. The inherent

complexity makes this a challenging problem both from

an efficiency and scalability point of view. We are investi-

gate approaches incrementally searching the assembly graph

where we can focus the search better to promising portions

of the assembly graph, and maybe even avoid constructing

the entire graph unless necessary for a particularly difficult
structure. Scalability is concerned with large structures that

can be broken up into smaller sub-structures, which can

then become atomic parts in larger structures of structures.

Multiple (teams of) robots and cooperative behaviors will

also become increasingly important at that stage.

REFERENCES

[1] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh,
“Coordinated Multi-Agent Teams and Sliding Autonomy for Large-
Scale Assembly,” Proceedings of the IEEE, vol. 94, no. 7, July 2006.

[2] S. E. Fahlman, “A Planning System for Robot Construction Task,”
MIT Artificial Intelligence Laboratory, Tech. Rep. AITR-283, 1973.

[3] H. L. S. Younes and R. Simmons, “VHPOP: Versatile Heuristic Partial
Order Planner,” Journal of Artificial Intelligence Research, vol. 20, pp.
405–430, December 2003.

[4] S. G. Kaufman, R. H. Wilson, R. E. Jones, T. L. Calton, and A. L.
Ames, “The Archimedes 2 Mechanical Assembly Planning System,”
in Proceedings of the International Conference on Robotics and

Automation (ICRA), vol. 4, Minneapolis, MN, April 1996, pp. 3361–
3368.

[5] H. I. Bozma and D. E. Koditschek, “Assembly as a Noncooperative
Game of its Pieces: Analysis of 1D Sphere Assemblies,” Robotica,
vol. 19, pp. 93–108, 2001.

[6] C. S. Karagöz, H. I. Bozma, and D. E. Koditschek, “Feedback-Based
Event-Driven Parts Moving,” IEEE Transactions on Robotics, vol. 20,
no. 6, pp. 1012–1018, December 2004.

[7] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-
Time Robot Motion Planning Using Rasterizing Computer Graphics
Hardware,” Computer Graphics, vol. 24, no. 4, pp. 327–335, 1990.

[8] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially Con-
strained Mobile Robot Motion Planning in State Lattices,” Journal

of Field Robotics, vol. 26, no. 3, pp. 308–333, March 2009.
[9] M. Stilman and J. J. Kuffner, “Navigation Among Movable Obstacles:

Real-Time Reasoning in Complex Environments,” in Proceedings of

the International Conference on Humanoid Robotics (Humanoids),
2004.

[10] C. L. Nielsen and L. E. Kavraki, “A Two Level Fuzzy PRM for Manip-
ulation Planning,” in Proceedings of the International Conference on

Intelligent Robots and Systems (IROS), Takamatsu, Japan, November
2000.

[11] F. Gravot, R. Alami, and T. Siméon, “Playing with Several Roadmaps
to Solve Manipulation Problems,” in Proceedings of the International

Conference on Intelligent Robots and Systems (IROS), Lausanne,
Switzerland, October 2002.

[12] L. S. Homem de Mello and A. C. Sanderson, “Autommatic Generation
of Mechanical Assembly Sequences,” Carnegie Mellon University,
The Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-88-
19, December 1988.

[13] L. S. Homem de Mello, “Task Sequence Planning for Robotic Assem-
bly,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA,
May 1989.

[14] F. W. Heger, “Generating Robust Assembly Plans in Constrained
Environments,” in Proceedings of the International Conference on

Robotics and Automation (ICRA), Pasadena, CA, May 2008.
[15] L. S. Homem de Mello and A. C. Sanderson, “A Correct and Complete

Algorithm for the Generation of Mechanical Assembly Sequences,”
IEEE Transactions on Robotics and Automation, vol. 7, no. 2, pp.
228–240, April 1991.

[16] A. Stroupe, T. Huntsberger, A. Okon, and H. Aghazarian, “Precision
Manipulation With Cooperative Robots,” in Multi-Robot Systems:

From Swarms to Intelligent Automata, L. Parker, F. Schneider, and
A. Schultz, Eds. Springer, 2005.

[17] G. Sanchez and J.-C. Latombe, “A Single-Query Bi-Directional
Probabilistic Roadmap Planner with Lazy Collision Checking,” in
Proceedings of the International Symposium on Robotics Research

(ISRR), Lorne, Victoria, Australia, November 2001.

