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Robust Rough-Terrain Locomotion with a Quadrupedal Robot

Péter Fankhauser, Marko Bjelonic, C. Dario Bellicoso, Takahiro Miki and Marco Hutter

Abstract— Robots working in natural, urban, and industrial
settings need to be able to navigate challenging environments.
In this paper, we present a motion planner for the percep-
tive rough-terrain locomotion with quadrupedal robots. The
planner finds safe footholds along with collision-free swing-leg
motions by leveraging an acquired terrain map. To this end,
we present a novel pose optimization approach that enables the
robot to climb over significant obstacles. We experimentally
validate our approach with the quadrupedal robot ANYmal
by autonomously traversing obstacles such steps, inclines, and
stairs. The locomotion planner re-plans the motion at every
step to cope with disturbances and dynamic environments. The
robot has no prior knowledge of the scene, and all mapping,
state estimation, control, and planning is performed in real-time
onboard the robot.

I. INTRODUCTION

In the quest to get robots working on real-world tasks,

many challenges have to be overcome. One of the fundamen-

tal requirement is the robot’s ability to move in the desig-

nated environment safely. Our work focusses on quadrupedal

robots to advance to places which traditional wheel- and

track-based robots cannot reach. With legs, a robot can climb

over difficult terrain by selectively choosing safe footholds

and using all joints to move the limbs around obstacles and

to adapt the posture to the terrain. To plan these climbing

motions, the robot needs to understand its environment to

select footholds and to avoid collisions. Once planned, the

motions need to be executed robustly, and disturbances need

to be compensated to prevent divergence from the planned

motion. Finally, while moving, the robot needs to keep track

of its pose relative to the environment continuously.

In this work, our focus lies on the planning and execution

of climbing motions over rough terrain with a quadrupedal

robot. As rough terrain, we refer to ground with various

obstacles with a height up to 40 % of the robot’s leg length.

Fig. 1 shows a set of stairs as one example of this type of

terrain. Building up on our previous work on control [1], state

estimation [2] and terrain mapping [3], we combine these

elements to a fully integrated system, capable of traversing

difficult terrain. We emphasize the robustness and mean

that the task is achieved in a realistic scenario without any

previous knowledge or external equipment:

• The environment is previously unseen, and the robot has

to perceive, plan, and adapt its motion as it travels. The

robot might be disturbed, and the environment might

change during locomotion.

The authors are with the Robotics Systems Lab (RSL), ETH Zurich,
Switzerland, peterfankhauser@me.com

This work has been conducted as part of ANYmal Research, a community
to advance legged robotics.

Fig. 1. The robot ANYmal [4] climbing a set of standardized stairs (17 cm
× 29 cm). With help of onboard sensors, a terrain map is generated to plan
the footholds (red dots) and base and leg motions (red lines). A video is
available at https://youtu.be/CpzQu25iLa0.

• All sensing and computation is onboard, and the robot

runs fully self-contained. Sensors and actuators are

corrupted by noise, drift, and delay and we take no

assumptions on any ‘perfect’ data.

• All algorithms run real-time in the sense that the robot

never stops to ‘think’ about the next steps.

Under these requirements, only a few systems have been

presented. Most prominently are Boston Dynamics’ Spot

and SpotMini robots, which have been shown to traverse

difficult terrain including stairs at a high pace. However, very

little information about this technology and the experimental

setup is available. A few research groups have been working

on the control and planning for the LittleDog robot (e.g.,

[5, 6, 7]). While impressive performances were shown, the

approaches relied on an external motion capture system

and high resolution pre-scanned terrain models. Recent ad-

vances towards a fully integrated system were published

for the Messor II robot [8]. This work uses an A* guided

Rapidly-exploring Random Tree (RRT)-based planner to find

a kinematic plan, integrating foothold selection and motion

planning in one sampling-based planner. While some results

have been shown in combination with online state estimation

and mapping, the robot is tethered to an external computation

and power source, and no information about obstacle height

and execution speed is given. Closest to our approach is the

work on the hydraulic quadruped HyQ (90 kg, 1 m height)

by [9, 10, 11]. While still tethered, the robot has shown

autonomous climbing over previously unseen obstacles. The

work of [10] builds upon the architecture of [5] and extends

it among others with online state estimation and terrain

mapping. With this, the authors report a max. achieved step

https://youtu.be/CpzQu25iLa0
https://youtu.be/CpzQu25iLa0
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Fig. 2. Based on a goal pose or velocity, the locomotion planning framework generates a new motion plan which is tracked by the whole-body controller.
Sensory information is used to estimate the robot’s pose and to build a map of the surrounding terrain. The terrain map is processed, and valid footholds
are identified. At every step, new foothold locations and swing leg trajectories are planned to account for disturbances and changing environments.

height of 15 cm (20 % leg length) at a speed of 7–13 cm/s.

While our work is similar in structure to [5] and [10],

we contribute a novel robot pose generation based on non-

linear optimization. During locomotion planning, the pose

optimization is coupled with the foothold selection to exploit

the full range of motion of the robot. Additionally, a leg

motion planner ensures safe swing leg motions over and

around obstacles. With this, our robot platform ANYmal

(30 kg, 0.5 m height) [4] reaches obstacles up to 20 cm, which

is an increase of 100 % in comparison to [10] regarding the

different leg lengths. At the same time, we achieve robust

behavior and high success rates (∼90%) with the help of our

control framework [1] even under disturbances and changing

environments. In our experiments, we have achieved average

velocities of 8–15 cm/s in rough terrain, which is an increase

of 50 % over [10] regarding the different leg lengths. Our

approach is built on our robot-centric elevation mapping

approach with which consistent terrain maps are obtained

solely based on proprioceptive localization, such as legged

odometry with kinematic and inertial sensing. This alleviates

the need for an accurate exteroceptive localization which can

be problematic in environments with insufficient geometrical

or visual features [8, 9]. Furthermore, our approach makes

use of the torque-controllable actuation of ANYmal to apply

the appropriate contact forces on inclined terrain based on

the surface normal information from the terrain map.

In the following, we give an overview of our approach

in Section II. We introduce the map processing steps in

Section III and present the footstep planning and pose and

swing leg motion planning in Section IV. The results for

various experiments are given in Section V and the work is

concluded in Section VI.

II. OVERVIEW OF THE METHOD

Our proposed method consists of several modules that are

all interconnected but run in parallel at different update rates.

Fig. 2 shows an overview of the modules and the information

flow. Starting with a desired final goal pose (defined by

a position and a yaw-orientation angle) or desired velocity

command, a next intermediate goal pose is computed. This

is to ensure that the robot does not walk long distances in

a direction in which no range sensor is mounted. The range

sensor continuously measures the distance to the terrain and

is used together with the robot pose estimate to create an

elevation map around the robot at 10–20 Hz depending on

the type of range sensor. This terrain map is shifted along

with the motion of the robot and stores the height information

beneath and around the robot and fuses existing data with

new measurements. At a lower rate of 2–5 Hz, the elevation

map is processed to compute foot score values, surface

normal vectors, and a three-dimensional Signed Distance

Field (SDF). The foot score values reflect the suitability of

an area in the map to place a foot on.

The terrain information is used in the locomotion planner

to find a feasible motion of the robot over the perceived

terrain. The final output of the planner is the target foothold

together with the swing leg motion for the next step. First,

based on the goal pose and the current stance (position

of the legs), a sequence of (planar) footsteps is generated.

These footsteps do not consider the terrain but represent the

nominal gait sequence and step lengths. To find a feasible

footstep, the area around the nominal footstep position is

searched for the closest valid foothold. Since valid footholds

are not necessarily reachable, a pose optimizer is used to

check if a stable robot configuration can be found which

respects stability and kinematic constraints. Once a candidate

foothold is verified by the pose optimizer, the swing trajec-

tory can be planned. Based on the terrain’s SDF, a collision-

free swing trajectory is planned which connects the current

foot position and the optimized foothold target. As the map

is updated continuously and because the robot might not

reach previously planned footholds (due to slip or compliant

ground), this sequence of steps in the locomotion planner is

performed at every footstep to adapt to these changes.

Based on the target foothold and the swing leg motion

plan, the Free Gait Core module synthesizes a whole-body

motion. Internally, it uses the same pose optimizer for the

generation of the base motion as previously in the locomotion



planning process, ensuring that the planned leg motions are

feasible. Given the full motion plan, the whole-body con-

troller executes and stabilizes the robot’s behavior around the

desired trajectories. The controller runs at 400 Hz to generate

the actuator commands from a closed-loop with the state

estimator. It uses the terrain surface normal information from

the map to generate contact forces that respect the boundaries

of the friction cones. Rather than executing the trajectories

regardless of the current state, the controller ensures that

the desired contact situations are reached (contact manager).

Because the motion plans always contain errors, this is a

crucial step in the robust tracking of the motion.

III. MAP PROCESSING

In our previous work [3], we presented an approach

to create 2.5 D elevation maps from the combination of

pose estimate and a range measurement sensor. In this

representation, each cell of the grid holds a height and a

lower and upper confidence bound. Our approach takes the

uncertainty of the pose estimate and the range measurements

explicitly into account to obtain consistent maps even without

requiring an additional localization system such as GPS or

vision- or laser-based registration. The elevation mapping

framework works with different range sensors such as laser

range sensors, time-of-flight, structured light, and (assisted)

stereo cameras. Given the continuously updated robot-centric

elevation map, the terrain is processed to compute surface

normals, find valid footholds, and build a three-dimensional

signed distance field (SDF) used for planning of collision-

free swing trajectories.

A. Surface Normal Vectors

We use a standard way to extract the surface normals

from the noisy surface representation based on the Principal

Component Analysis (PCA) [12]. Given the surface points

in a circular region and subtracting their mean position,

the surface normal can be estimated from the Eigen vector

associated to the smallest Eigen value of the subset. As the

nearest neighbors for each cell in the grid can be accessed

directly, the surface normals can be computed efficiently for

the entire map.

B. Foothold Scores

Each cell in the elevation map is associated with a foothold

score s(x,y) ∈ [0,1]. This value represents the quality of the

foothold, where a cell with s = 1 is a safe foothold, and a

cell with s= 0 might cause the foot to slip. Similarly to other

work [10, 13], we have found that a linear combination of

different quality measures

s(x,y) = max

(

1−∑
i

wi

vi(x,y)

vcrit

,0

)

(1)

provides a simple but reliable foothold score. The variable wi

represents the weight factor for each quality measure i with

value vi(x,y) and max. allowed/critical value vcrit. As quality

measures, we evaluate the slope and curvature (derived from

the surface normals) and the roughness (height standard

Valid footholds

Invalid footholds

Fig. 3. The elevation map is processed to differentiate regions with valid
(blue) and invalid footholds (red). The foothold classifications is based on
local terrain features such as slope, curvature, roughness, and uncertainty
of the map data.

deviation) from the neighboring cells. We additionally use

the uncertainty interval (the difference between lower and

upper confidence bound) of the cell as a quality measure to

steer the robot away from potentially hazardous regions such

as steps and gaps. This approach enables robust foothold

selection even under the influence of drift from the state

estimation of the robot. To further simplify the foothold

selection process, we create a binary foothold score ŝ based

on a threshold to map s to either 0 or 1. Fig. 3 shows an

elevation map where the color represents the binary foothold

score ŝ for valid and invalid footholds.

C. Signed Distance Field

Planning collision-free trajectories can be solved with the

help of an SDF map representation. We generate a three-

dimensional SDF from the elevation map, where each voxel

holds the distance to the nearest surface. The SDF can be

efficiently computed with the approach presented in [14].

IV. MAP-BASED MOTION PLANNING

Based on the current state of the robot, the goal pose,

and the terrain information (Section III), the goal is to find

a feasible sequence of contacts and whole-body motions to

let the robot overcome the rough terrain. Our approach is a

motion planner that, starting from a nominal footstep, finds

the next feasible foothold (one-step planning horizon) with

the help of the combination of the binary foothold score

map and a robot pose optimizer. Once a foothold is verified

to be feasible from both the foothold score map and the pose

optimizer, the swing leg is planned in a second step. Finally,

the desired motion plan is executed while accounting for

errors in sensing and actuation.

A. Footstep Generation

For generating the nominal footsteps, we employ a geo-

metrical approach which is recomputed at each step (Fig. 4):

First, the current stance position and orientation (start pose)

is determined based on the current foot positions. The start

position is given by the geometrical center of the feet and the
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Fig. 4. Illustration of the two first steps of the nominal footstep generation.
At every step, a sequence of default stances is (re-)computed that guide the
robot from the start pose to the goal. The foot position in the default stance
of the subsequent pose is selected as the target for the current swing leg.
This procedure converges to a skew between left and right legs of the robot,
which is important for stability and speed.

start orientation is given by the orientation of the connecting

line between the midpoints between hind and forefeet. Based

on the difference between the start and goal pose, the

main direction (longitudinal, lateral, and yaw rotation) is

determined. Given the main direction and the default step

length, the path between the start and goal pose is linearly

sampled with n equal default stances. Here we use a priori

knowledge of a default step length for longitudinal, lateral,

and yaw orientation steps. Each stance is a representation

of how much the robot travels for a full cycle in the main

direction with the default step length. The leg sequence is

determined with the main direction and is given by the

optimality analysis by [15]. For the forward direction, the

leg sequence is right-hind, right-fore, left-hind, left-fore.

The new footstep location is given by the position of the

corresponding foot in the first default stance after the start

pose. If the main direction changes, the leg with the largest

first step is chosen as the new start of the sequence.

This entire procedure is repeated after every step and

provides a suitable default foothold pattern. Apart from being

simple and extremely quick to compute, there are several

important properties of the approach: The algorithm can start

from any configuration of the feet and always ends up in

the default stance at the goal pose. Since the algorithm is

recomputed every step, this method converges to a foothold

pattern with a skew between left and right legs. This skew

is essential for speed and stability and reduces the required

base motion [7]. Finally, this approach is robust against any

deviation from the original plan and allows the robot to re-

compute the next step towards the goal at each step.

B. Footstep Optimization

The footstep determined by the nominal footstep generator

is verified for kinematic and terrain feasibility. If the nominal

footstep is not a feasible foothold location, the nearest

neighbor valid foothold location is found as illustrated in

Nominal foothold

Adjusted foothold

Terrain: invalid

Kinematics: valid

Terrain: valid

Kinematics: invalid

Terrain: invalid

Kinematics: invalid

Terrain: valid

Kinematics: valid

Search region

Support polygon

Fig. 5. Starting with the nominal foothold (Section IV-A), candidate
footholds in the search region are checked for their validity. Terrain validity
is indicated by the foothold scores based on the local geometric features
(Section III-B). Kinematic validity is checked with the solution of a pose
optimization (Section IV-C). The nominal foothold is adjusted to the closest
candidate foothold which is valid for both terrain and kinematics.

Fig. 5. The positions around the nominal foothold are iterated

through with increasing Euclidian distance from the nominal

foothold. Each position is checked for its validity by check-

ing the binary foothold score for the cells in a patch around

the candidate position. We choose a circular patch with a

diameter of 8 cm, which is slightly larger than the foot size

of ANYmal to account for foot rolling during locomotion. If

all binary foothold scores in the patch are valid, a candidate

foothold is found.

Although the candidate foothold might be a feasible

position based on the terrain, the robot might not be able

to reach it due to kinematic constraints. For this reason,

every candidate foothold is checked for its reachability by

running the pose optimizer with the current and the candidate

foothold as input. If the pose optimizer does not find a

solution, the iteration continuous. Once the search region

is exhausted, the procedure is stopped, and the method

signalizes that no valid footstep could be found.

C. Pose Optimization

The pose optimization is a crucial part of our approach to

enable climbing up and down high obstacles. When reaching

for places that are far apart from the previous foot location,

the robot needs to adapt its pose such that the new foothold

can be reached without sacrificing stability or running into

joint position limits. This task can be formulated as an opti-

mization problem as follows: Given N foot locations rFi
, the

goal is to find a robot base position rIB and orientation ΦIB

which maximizes reachability and the stability margin under

the constraint of static stability and allowed joint limits. We

encode the reachability in the cost function f (rIB,ΦIB) by

penalizing the difference between a default foot position r̂Fi

and the foot position resulting from the optimized posed

rFi
(rIB,ΦIB). Additionally, we maximize the static stability

margin by adding a term that penalizes the distance between

the planar projection of the centroid of the Support Polygon



Fig. 6. Our pose optimization formulation efficiently finds the full base
pose (6D position and orientation) for given contact situations.

(SP) r̄SP and the planar projection of the position of the

Center Of Mass (COM) r̄COM(rIB,ΦIB):

minimize f (rIB,ΦIB) =
N

∑
i=0

∥

∥r̂Fi
−rFi

(rIB,ΦIB)
∥

∥

2

2
(2)

+wCOM

∥

∥ r̄SP − r̄COM(rIB,ΦIB)
∥

∥

2

2

subject to ASP rCOM(rIB,ΦIB)≤ bSP (3)

lmin,i ≤
∥

∥li(rIB,ΦIB)
∥

∥

2
≤ lmax,i ∀i ∈ N . (4)

We use the support polygon as the area defined by the convex

hull of the support feet positions projected along the direction

of gravity. The robot is statically stable if the projection along

gravity of the COM r̄COM lies with the support polygon. As

the COM position BrCOM is a function of the joint state

vector q, we employ inverse kinematics to find q from

BrFi
for each leg i. We encode the static stability in (3)

where ASP and bSP are the linear constraints spanned by the

support polygon. Optionally, we add a support margin which

offsets the support polygon inwards to increase robustness (as

illustrated in Fig. 6). The joint limits are expressed with the

inequality constraint (4) with li the leg length given by the

distance from the hip joint to the foot for leg i. By adjusting

the weighting term wCOM in (2), we can achieve a suitable

trade-off between maximizing the kinematic reachability and

the stability margin (we choose wCOM = 2 for ANYmal).

We can solve this non-linear optimization problem with

Sequential Quadratic Programming (SQP) with an analytical

derivation of the gradients and Hessians of the cost function

(as shown in [16]). Due to the non-linearity of this problem,

the success of finding a solution is dependent on the initial

guess. To this end, we use an initial guess based on a least

square optimization of the kinematic error for leg i

ei(rIB,ΦIB) = IrIB +ΦIB(Br̂Fi
)− IrFi

. (5)

This error can be minimized by transforming it to an Eigen

value problem when parametrizing the rotation ΦIB as a unit

quaternion [17].

Fig. 6 depicts the solution of the pose optimization for-

mulation for different contact situations. Depending on the

situation, the robot’s base is lowered and pitched to satisfy

the kinematic and stability constraints. With our implementa-

tion (quadratic problem solved with the QuadProg++ active

set implementation, hardware details see Section V), the pose

ε
δ
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confidence bound Swing trajectory
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d0 d2

d r
F 
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0/f 
)1

Collisision field c(r)

Fig. 7. Collision-free swing leg trajectories are planned with help of the 3D
collision fields (here shown in 2D). The collisions field represents the upper
confidence bound of the map, to take the uncertainty of the mapping process
into account. The higher the uncertainty, the higher and ‘more careful’ the
robot will step when approaching and leaving the terrain (red arrow).

optimizer yields a solution to all practical situations within

0.5–2.5 ms with maximal 30 iterations of the SQP.

D. Swing Leg Planning

Given the start and target foothold position, the trajectory

of the swing leg needs to be planned to find the shortest

collision-free trajectory. We reduce this task to the problem

of finding a trajectory of the foot only and limit the collision

checking with the terrain to a sphere (diameter 6 cm) around

the foot. Inspired by the CHOMP trajectory planner [18],

we formulate the planning problem as an optimization. We

parametrize the swing leg trajectories as cubic Hermite

splines and optimize directly over the knot points (except

for the start and target). Herewith, the optimization yields

continuous paths that can be smoothly tracked by the robot.

We stack the 3D knot positions as a vector u and the position

on the spline for time t is given by r(u, t). The optimization

cost function is expressed as a weighted sum of length and

collisions costs, fl(u) and fc(u), respectively:

minimize f (u) = wl fl(u)+wc fc(u) (6)

= wl

t f
∫

t=t0

∥

∥ṙF(u, t)
∥

∥

2
dt +wc

t f
∫

t=t0

c(rF(u, t))
∥

∥ṙF(u, t)
∥

∥

2
dt

subject to zmin ≤ ui,z ≤ zmax ∀ui ∈ u . (7)

We constrain the knot points z-coordinate ui,z to lie within

a minimum clearance zmin and maximum height zmax. The

function c(rF) represents a collision field based on the terrain

map

c(r) = ct(r)ct0(r)ct f
(r) . (8)

The function ct(r) is a smooth potential function for distance

to an obstacle based on the distance to an obstacle d(r)
acquired from the SDF [18]. Note that we use the upper

confidence bound of the elevation map for the generation

of the SDF as illustrated in Fig. 7, where ε is the allowable

distance threshold. This ensures that the foot does not collide



with the terrain even if the knowledge of the terrain is

coupled with uncertainties. The functions ct0(r) and ct f
(r)

create funnels in the collision function to allow the foot to

create collision-free contact at the start t0 and end t f of the

swing motion. They are expressed as a smooth function based

on the dead zone d0 and the desired funnel angle δ (Fig. 7):

ct0, f (rF(t)) =
1

2

(

1+ tanh

(

d0, f (rF(t))

d2

))

, (9)

d0, f (rF(t)) =
∥

∥rF(t)−rF(ts, t f )
∥

∥

2
−d0 , (10)

d2 =
d1

tanδ
. (11)

We solve the swing motion optimization problem with SQP

and derive the gradients and Hessians numerically. For the

integrals in (6) we use a time resolution of ∆t = 50ms to

provide a dense resolution for collision checking. As this

optimization might get stuck in a local minimum, we restart

the optimization with an increased number of knots until a

solution is found.

E. Integration with Motion Control

In the presented approach, the generated motion plan

is based on a geometrical representation of the terrain.

However, the ground might be compliant (e.g., sand or grass)

and objects might move or be deformable (e.g., a plastic bag)

in reality. For the successful execution the generated motion

plan, we build upon our Free Gait controller framework [1].

The locomotion planner outputs the desired footsteps as foot

swing trajectory knot points in the elevation map frame. With

this information, the controller can track the motion relative

to the terrain and any slip or error of the robot base control is

compensated for. During execution, the Free Gait controller

uses the presented pose optimization (Section IV-C) with

which it interpolates between robot poses that comply with

desired motion plan. At every step, the controller has to

ensure that the contact between foot and terrain is achieved.

To this end, the controller (contact manager) handles pre-

and post-mature contact switches with a strategy described

in [16].

V. RESULTS

We have implemented the approach described in this

paper on the quadrupedal robot ANYmal [4]. The robot

weights 30 kg and has a leg length of 0.5 m. ANYmal’s has

three joints per leg which are driven by electrically driven

series elastic actuators (ANYdrive), enabling accurate torque

control. All the presented algorithms run on two onboard

PCs1 which are powered by a battery which allows for a

power autonomy of up to 3 h. As range sensors, we either

use a rotating laser range sensor (Hokuyo UTM-30LX-EW,

update rate 0.5 Hz for a full rotation) or an assisted stereo

camera (Intel RealSense ZR300, update rate at 20 Hz for a

full depth image) which are mounted in the front and back of

the robot. The robot’s underlying motion controller consists

of a virtual model controller for the base and a contact force

1Intel Core i5 2.3 GHz, 16 Gb for control and planning / Intel Core i7
3.1 GHz, 16 Gb for terrain mapping

TABLE I

SUCCESS RATES FOR STEPPING UP AND DOWN A STEP (10 TRIALS EACH)

Step height Avg. velocity w/o map w/ map

Step up 7 cm
13 % leg length 15 cm/s

100 % 100 %
Step down 7 cm 100 % 100 %

Step up 14 cm
25 % leg length 11 cm/s

70 % 100 %
Step down -14 cm 90 % 100 %

Step up 21 cm
38 % leg length 8 cm/s

0 % 90 %
Step down -21 cm 80 % 80 %

distribution optimization [16]. A video2 showing the results

is accompanied to this paper.

A. Step Up and Down

We have commanded ANYmal to walk over a flat step at

various heights, which includes a step up and a step down

maneuver. For comparison, we have conducted the experi-

ments for the pure reactive walking without exteroceptive

perception (without map) and with active range sensing (with

map). At each trial, the robot started each from different

positions. For the experiments without mapping, we have

globally adjusted the step height to match the obstacle. The

success rate out of ten trials for each type of combination

is summarized in Table I. The average velocity is measured

as the total covered horizontal distance divided the duration

that the robot takes to clear the obstacle.

For a step height of 7 cm (13 % of leg length), both

approaches never failed during our trails. For the step with

14 cm (25 % of leg length), stepping up without perception

led to some failure cases, where the footstep would be

placed to close to the step and experienced a collision during

the following step. This was successfully prevented with

active perception. For the 21 cm step (38 % of leg length),

stepping up without perception was not possible, due to

the fact that reaching this height without tilting the pose

cannot be achieved. However, stepping down was still mostly

successful due to the step recovery approach of the motion

controller [16]. Stepping up to 21 cm was again significantly

improved with active perception. Fig. 8 shows snapshots of

one trial on the step with 21 cm height with active mapping.

One can observe how the base is tilted to facilitate stepping

up (Fig. 8a, b). At later stages (Fig. 8c–e), the leg length

constraint in the pose optimizer prevents over-extension of

the legs.

B. Inclined Surfaces

With the help of the torque-control capability of ANYmal,

we make use of the knowledge of the surface normals from

the elevation map (Section III-A). The controller takes the

tilted friction cones in the force distribution as constraints

into account. This extends ANYmal capability to overcome

difficult terrain with inclined surfaces. Fig. 9 shows an image

from an experiment on a concave and a convex structure.

In this situation, the contact forces are regulated such that

2Available at https://youtu.be/CpzQu25iLa0

https://youtu.be/CpzQu25iLa0


(a) (b) (c) (d) (e)

21 cm

Fig. 8. The locomotion planner is used to climbing over a step of 21 cm with active terrain mapping with the frontal laser range sensor. The planning
framework finds a sequence of safe footholds, base poses, and swing trajectories that guide the robot over the obstacle with an average velocity of 8 cm/s.

Fig. 9. Surface normals are computed from the terrain map to enhance
the controller performance on inclined surfaces. Based on the orientation
of the friction cones, the contact forces are regulated to respect the friction
constraints preventing the feet from slipping.

they push ‘inwards’ or ‘outwards’ to prevent slippage. In our

experiments, walking over the same obstacles without taking

the surface normals into account was not possible.

C. Changing Environment

Demonstrating the reactivity of our approach, we expose

ANYmal to a quickly changing environment. As depicted in

Fig. 10, we have commanded forward velocity while placing

cinder blocks in front of the robot. The continuous map

updates and step re-planning allowed successful planning of

the footholds and trajectories around the obstacles.

D. Stairs

Stairs can be seen as a concatenation of multiple steps

in both upward and downward direction. However, they are

significantly more demanding because the front and hind legs

are often multiple steps apart which makes it difficult to

find a motion that fulfills the kinematic, stability, and joint

torque limitations. We have evaluated our approach on a

standardized set of stairs with a rise of 17 cm and a run of

29 cm as shown in Fig. 1. The system has no prior knowledge

about the shape of the stairs and the planning framework

deals with it like with any other obstacle. ANYmal was able

to climb the stairs upwards and downwards multiple times.

However, climbing the stairs up turned out to be more robust

than climbing down because of the limited view on the lower

stairs when heading downwards.

E. Robustness and Versatility

We have conducted several experiments to illustrate the ro-

bustness of our approach. In multiple trials we have disturbed

the execution of approaching a goal, requiring the robot to

adapt and replan the motion. For the experiment shown in

Fig. 11a, we have moved the whiteboard ∼1 m while the

robot was walking over it. In this case, the robot localized

with respect to the environment with Iterative Closest Point

(ICP) [19] such that the navigation goal could be tracked in a

global frame. While moving the board, the robot successfully

kept balance, updated the terrain map, and replanned the

footsteps such that it could reach the goal. Other experiments

further demonstrate the robustness of the framework such as

walking over a thin ledge and climbing over a seesaw and a

human (Fig. 11b–d).

VI. CONCLUSIONS

We presented a motion planning method for the percep-

tive rough-terrain locomotion with a quadrupedal robot. All

sensing and computation run onboard the robot in real-time

without any prior knowledge of the terrain. Based on the

acquired elevation map, the framework finds a sequence of

suitable footholds and generates base and swing leg trajec-

tories that guide the motion of the robot over the obstacles.

A core element of the framework is the proposed pose

optimization which efficiently finds full robot poses for given

foot placements. The planner is tightly coupled with the

terrain mapping, robot controller, and localization, allowing it

to continuously re-plan the motion while robustly accommo-

dating disturbances and changes in the environment. We have

evaluated the effectiveness of our approach in experiments

including climbing over steps, inclined surfaces, stairs, and

various disturbance tests with changing environments.

In this work, the primary assumption for foothold planning

is that we can find a feasible motion by planning the

next step while executing the previously planned step. This

approach is limited by the greedy behavior of the one-

step planning horizon. However, we have found that this

approach works reliably for the tested terrains described in

Section V including stairs. A similar experience was reported

by [5, 20], where multi-step look-aheads were only necessary

for obstacles larger than ∼50% of the leg length. Another

assumption is that we can apply a sequential approach in

which the swing leg trajectory is planned after the foothold

selection similar to other works [7, 10]. Thereby, it is not

guaranteed that the swing leg planner can find a feasible

solution. However, we have found that with the help of the

base motion towards to next stance during the swing motion

and the large range of motion of our hardware, this is almost

never an issue. We also reduce the collision checking to the

https://youtu.be/CpzQu25iLa0?t=40s
https://youtu.be/CpzQu25iLa0?t=1m11s


Fig. 10. As the robot is commanded to walk forward, obstacles are placed in front of it. The mapping framework continuously updates the map which
allows the locomotion planner to adapt to the changing terrain.

Disturbance

(a)

(c) (d)

Goal

(b)

Fig. 11. (a) The robot replans the motion to adapt to the disturbance
which has been introduced by relocating the board during execution. In this
demonstration, the robot localizes itself with the rotating laser range sensor
and can robustly track and reach the desired goal location. (b)–(d) Various
experiments demonstrating the versatility and robustness of our approach.

geometry of the foot, and we neglect other parts of the leg.

This simplification still yields satisfactory results in practice,

as the unique form of ANYmal’s shank avoids most of the

shin collisions as can be observed for example in Fig. 8d.

In future work, we are focussing on extending the maximal

obstacle height to over 50 % of the leg length by extending

our motion planner with a multi-step planning horizon.

Furthermore, an increase of the locomotion speed is targeted

by employing fully dynamic gaits such as a trot.
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