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ighway authorities in marginal
winter climates are responsible
for the precautionary gritting/

salting of the road network in order to
prevent frozen roads. Winter road
maintenance is a truly challenging task
that has a direct impact on both busi-
nesses and daily life of people all over
the world. It also represents a
global market costing many
countries millions of
pounds (or dollars) each
year. In the case of UK, there are
approximately 3,000 precautionary grit-
ting routes that cover about 120,000 km
or 30% of the entire road network. On
nights with forecasted snow or ice, these
routes require treatment to safeguard
the road network, i.e., the safety of road
users. Typically, the cost of maintenance
for a winter season is from £200/
lane km to £800/lane km [1].

For efficient and effective road
maintenance, accurate road surface tem-
perature prediction is required. How-
ever, this information is useless if an
effective means of utilizing this informa-
tion is unavailable. This is where grit-
ting route optimization plays a crucial
role. The decision whether to grit the
road network at marginal nights is a dif-
ficult problem. The consequences of
making a wrong decision are serious, as
untreated roads are a major hazard.
However, if grit/salt is spread when it is
not actually required, there are unneces-
sary financial and environmental costs.
The goal here is to minimize the finan-
cial and environmental costs while
ensuring roads that need treatment will

be gritted in time. Road Weather Infor-
mation System (RWIS) has been used
worldwide to aid this decision making,
but it is imperative that gritting routes
are planned in advance to make effec-
tive use of limited resources (e.g., trucks

and salts) within the constraints
(e.g., road condi-
tions, budget
and time).

In practice,
optimization has

traditionally been a
manual task and is heavily reliant on
local knowledge and experience. Cur-
rently, a ‘static,’ often paper-based,
approach is used to optimize gritting
routes within certain constraints, includ-
ing the road network, vehicle capacity,
number of vehicles and personnel. In
this article, a Salting Route Optimiza-

tion (SRO) system that combines evo-
lutionary algorithms with the neXt gen-
eration Road Weather Information
System (XRWIS) is introduced. The
synergy of these methodologies means
that salting route optimization can be
done at a level previously not possible. 

The neXt generation Road Weather
Information System (XRWIS)
XRWIS is a high-resolution route-
based forecast system which predicts
road temperature for a 24-hour period.
Instead of modelling road conditions at
a single site and interpolating tempera-
tures by thermal maps (literally a static
map showing the variation of tempera-
ture across the road network), XRWIS
models surface temperature and condi-
tion at thousands of sites in the road
network. This is achieved by consider-

H

FIGURE 1 Temperature distributions for two nights in South Gloucestershire (UK): (a) on a
cold night and (b) on a marginal night.
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ing the influence of local geography on
the climatology of the roads. Data are
collected along each gritting/salting
route by conducting a survey of the
sky-view factor (a measure of the degree
of sky obstruction by buildings and
trees) [2]. This is then combined with
other geographical parameters (latitude,
longitude, altitude, slope, aspect, road
construction, thermal map residual tem-
perature, land use and traffic volume) to
produce a high-resolution geographical
parameter database.

The geographical data are combined
with mesoscale meteorological data in
an energy balance model to predict
road conditions at typical spatial and
temporal resolutions of 20 meters and
20 minutes, respectively. The output is
displayed as a color-coded map of road
temperature and condition that is then
disseminated through the Internet to the
highway engineer. Figure 1 shows
example temperature forecasts of the
road network in the South Gloucester-
shire, UK, for two nights. The colour
of each point represents the temperature
predicted by XRWIS, varying from
dark blue for cold points to pink for
warm points.

Salting Route Optimization 
(SRO) System
Figure 2 shows the overall architecture
of our Salting Route Optimization
(SRO) system. XRWIS in the system
provides typical temperature distribu-
tions to the Evolutionary Algorithm
module. After evolution, predicted
temperature distributions are given to
an acquired robust route to yield actu-
al routes for daily operation. Tempera-
ture distributions presented by
XRWIS are combined with ‘commer-
cial off the shelf’ vector routing data
before being translated into Capacitat-
ed Arc Routing Problem (CARP)
instances [3]. Evolutionary Algorithms
then find solutions that show the best
performance for the CARP instances
simultaneously. A Memetic Algorithm,
which is based on a hybrid algorithm
of Evolutionary Algorithms and local
search methods, for finding robust
solutions is used [4].

The main steps of the Memetic
Algorithm include: selecting parents,
reproducing offspring, applying local
search to offspring, and replacing resul-
tant offspring if the offspring is better
than the worst individual
in the population. A dis-
tinct feature of the pro-
posed method is that a
crossover operation and
local search methods are
applied to only one
CARP instance at each
generation while the fit-
ness function is composed
of an ensemble of evaluations of several
CARP instances. That is, at the begin-
ning of each generation, a CARP
instance is selected for further evolu-

tionary variations in this generation.
This selection is based on weights,
which are also used in fitness evalua-
tion. By selecting one CARP instance
at every generation, the Memetic

Algorithm can concentrate on optimiz-
ing the selected CARP instance. The
weights are updated for every prede-
fined interval of generations as

FIGURE 2 The system architecture of the Salting Route Optimization (SRO) System.
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FIGURE 3 The graphical user interface of the Salting Route Optimization (SRO) System.
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The geographical data are combined
with mesoscale meteorological data in
an energy balance model to predict
road conditions at typical spatial and
temporal resolutions.
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described in the “Weights and Their
Update” section. 

Since the SRO system is ultimately
designed for practical use, an intuitive
GUI, as shown in Figure 3, is devel-
oped to display the optimized and
robust routes. The GUI is also used by
highway authorities to incorporate into
the SRO system additional local knowl-
edge not available in ‘commercial off
the shelf’ vector routing data, such as
road preference by drivers, desirable
turns, one-way roads, etc.

Robust Solutions for Salting 
Route Optimization
Searching for robust solutions is cur-
rently one of the most significant topics
in evolutionary optimization in uncer-
tain environments [5]. Robust solutions
are needed for problems whose decision
variables or environmental parameters1

are subject to perturbation. We require
the solutions to be as similar to each
other as possible for different variables
and parameters while pursuing opti-
mality of the solutions. This is an
important practical consideration
because, as an example, it would be
confusing to the highway authority and
truck drivers if every different road tem-
perature gave rise to an entirely different
set of optimized routes.

In the case of Salting Route Opti-
mization, robust solution can be repre-
sented by an optimal design value X for
the following function:

F(X ) =
∫

E (X , a)p(a)da, (1)

where X and a indicate design vari-
ables, i.e., gritting routes and possible
temperatures. E (X , a) denotes the
distance of gritting routes X on tem-
perature a. p(a) indicates the temper-
ature distribution.

Warmer and colder roads exist
mainly as a result of microclimatologi-
cal effects caused by the local geogra-
phy. Although the distribution in
temperature will vary daily across a
road network, warmer sections are

usually warmer than the rest of the
road network and colder sections are
usually  colder. As a result, even on
cold nights, some warmer sections of
road may not require salting whereas
colder sections of the road network
may need treatment even on the least
marginal nights. It is difficult to com-
pute exactly equation (1) since the
number of possible values of a is large
and the probability distribution p(a) is
unknown. Hence, a number of typical
temperatures are used in our SRO sys-
tem in evolving robust solutions.

Let Ae be a set of temperatures used
in evolution. The following function is
useful for evaluating the robustness of
salting routes:

F̂(X ) =
∑
a i∈Ae

1
|Ae |E (X , a i). (2)

Chromosome Representation 
and Fitness Evaluation
A permutation encoding method is
employed in our evolutionary algorithm.
The chromosome of an individual is
composed of several special symbols and
edge IDs. Special symbols s1 indicate the
beginning of tours for each truck. For
example, the following chromosome:

2 6 s1 5 4 7 1 s2 8 3

indicates tours for two trucks: T1 =
{5 4 7 1} and T2 = {8 3 2 6}.

Because our Evolutionary Algorithm
tends to find solutions biased toward
easier E (X , a i) in the case of equation
(2), a normalized function EN (X , a i) is
employed in our fitness function:

F̂(X ) =
∑
a i∈Ae

wiEN (X , a i), (3)

where wi (0 < wi < 1,
∑

a i∈Ae
wi = 1)

denotes the weight for temperature a i .
The normalized function EN (X , a i) is
defined as follows:

EN (X , a i) = E (X , a i) − E ∗(a i)

E ∗(a i)
, (4)

where E ∗(a i) is a real number indicat-
ing the difficulty of solving the CARP
instance at temperature a i , such as
lower bounds and the distance searched

by other algorithms. E ∗(a i) is, in
essence, defined as the shortest route
distance for the CARP instance at
temperature a i searched in advance by
using the Memetic Algorithm pro-
posed previously [6].

Weights and Their Update
Weights in our system are used to bal-
ance the importance we give to route
optimization at different temperatures.
Weight updates correspond to changes
in the direction of evolution driven by
our Evolutionary Algorithm. For a
predefined interval of generations L ,
the weight w j is updated by using the
best tour evaluation E b

N (X , a i) found
so far by the Evolutionary Algorithm:

w j = exp E b
N (X , a j)∑m

k=1 exp E b
N (X , ak)

, (5)

where m is the number of different tem-
peratures considered by the algorithm.

Evolutionary variation operators,
including crossover, and local search
methods are applied to only one CARP
instance in every generation. The EAX
operation proposed by Nagata and
Kobayashi [7], which utilizes distance
information among edges, is employed
as our crossover operator. The follow-
ing probability distribution is used to
randomly decide which CARP instance
is subject to variation operators:

s i = wi∑
w j

. (6)

We select one CARP instance at
each generation because changing sever-
al CARP instances in a single generation
is likely to pull evolution toward differ-
ent and conflicting directions. Further-
more, easier CARP instances may be
optimized faster, which may make the
optimization of harder CARP instances
more difficult because the evolution was
led to a part of the search space, by the
easier CARP instances, that are not
amenable to finding near-optimal solu-
tions to harder CARP instances. How-
ever, much future work needs to be
done on this topic to fully understand
the search dynamics.

1The environmental parameters indicate parameters
that characterize the fitness function.
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Comparison with Existing 
Solutions in the Real World
Robust solutions were
evolved by using 10 different
temperatures and then com-
pared with the routes cur-
rently used by the South
Gloucestershire Council.
Two more temperature dis-
tributions that are not used in
evolution are also employed.
Figures 4 and 5 show routes
on marginal and cold days,
where gray lines, colored
thick lines and colored thin
lines denote routes with no
trucks, routes with a truck,
and deadheading edges,
respectively. In comparison
with the routes currently in
use, our robust solution can
provide more than 10% sav-
ings in terms of total distance
travelled by trucks.

Conclusions
Route optimization for grit-
ting/salting trucks during
winter is a typical  real-world
problem that can benefit
from powerful evolutionary
algorithms, especially hybrid
algorithms. Our SRO 
system has incorporated a
number of new technologies
from evolutionary computa-
tion and geography. Al-
though the system was
developed for finding opti-
mized robust solutions for
salting trucks, the core algo-
rithms used can be adapted for many
other real-world problems, e.g., waste
collection and parcel delivery. In fact,
many real-world problems in optimiza-
tion and data mining have been solved
successfully by CERCIA (http://
www.cercia.ac.uk) using various com-
putational intelligence techniques.
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FIGURE 4 (a) Optimized robust routes by our SRO system and (b) the existing routes for a marginal tem-
perature distribution.  
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FIGURE 5 (a) Optimized robust routes by our SRO system and (b) the existing routes for a cold tempera-
ture distribution.

Truck 1
Truck 2
Truck 3

Truck 4
Truck 5
Truck 6
Truck 7
Truck 8
Truck 9
Truck 10
Truck 11

Truck 1
Truck 2
Truck 3

Truck 4
Truck 5
Truck 6
Truck 7
Truck 8
Truck 9
Truck 10
Truck 11

(a) (b)


