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Abstract—We present an algorithmic framework for stochastic
model predictive control that is able to optimize non-linear sys-
tems with cost functions that have sparse, discontinuous gradient
information. The proposed framework combines the benefits of
sampling-based model predictive control with linearization-based
trajectory optimization methods. The resulting algorithm consists
of a novel utilization of Tube-based model predictive control.
We demonstrate robust algorithmic performance on a variety of
simulated tasks, and on a real-world fast autonomous driving
task.

I. INTRODUCTION

Autonomous robots are increasingly being asked to solve

safety critical tasks in highly dynamic and non-linear environ-

ments. In order to competently operate in such environments, a

robot needs to be able to plan and execute trajectories utilizing

the full range of its dynamic capabilities, while ensuring that

it achieves any relevant task objectives. Theoretically, the

generation of flexible, safe, and high performance behaviors

for non-linear systems can be achieved through an optimal

control or stochastic optimal control framework. In optimal

control, a high level cost function is specified, and then the

generation of a trajectory and control plan is achieved by

minimizing the cost with respect to the system dynamics.

When a dynamics model is unknown a-priori, this approach

is referred to as model-based reinforcement learning. This

optimization based approach can be especially effective in a

model predictive control (MPC) framework, where planning

and execution are continuously interleaved.

Although optimal control theory provides an elegant math-

ematical framework for controlling robotic systems, and has

many practical successes, specification of a cost or reward

function is a non-trivial and time consuming problem [20].

This is because the solutions to optimal control problems are

heavily constrained by the system dynamics, and are therefore

very difficult to obtain. The result is that cost and constraint

function specifications often become more about creating

smooth cost functions with few local minima, as opposed to

creating an easy to interpret encoding of a high-level behavior.

For simple tasks, this is merely frustrating. However, in actual

deployments of autonomous robots in complex environments,

it could be crippling. In autonomous driving, for instance, it

is impossible to test how a certain cost function would work

in all of the scenarios an autonomous vehicle could encounter.

Therefore, engineers designing robotic systems must have

confidence that the representation of the robot’s objective will

lead to the desired behavior in all circumstances, without

extensive tuning.

One possible solution to this challenging problem is to

use gradient-free, sampling based optimal control methods,

such as cross-entropy or path integral control [8, 21, 10].

Recently, these frameworks have been applied in MPC settings

[25, 6, 4], where they have demonstrated the ability to control

high-dimensional, non-linear systems. Since these methods

do not require a gradient, they can theoretically utilize very

simple encodings of tasks descriptions with sparse gradient

information. For example, in this paper we consider cost

functions encoded with weighted indicator functions:

N
∑

i=1

wi✶Ci
(x). (1)

These types of functions have the advantage of clearly encod-

ing whatever task is specified, and it is possible to compose

many of them together since there are no gradients that can

interfere with each other. However, the fact that the gradient of

these functions is zero wherever it is defined, makes it difficult

to use these cost functions with any type of gradient-based

optimization.

In contrast to gradient-based optimization methods,

sampling-based MPC can, in theory, handle cost functions

of the form of Equation 1. In practice, unfortunately, when

using cost functions with such sparse objective information,

sampling based MPC methods are brittle and prone to failure

in the face of unexpected disturbances and non-linear dynam-

ics. The fundamental problem is that sampling based methods,

while gradient free, are still iterative local search methods.

This is simply because it is intractable to fully sample high
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Fig. 1: Effect of disturbances on sampling based MPC. In (a),

an autonomous vehicle has a good sampling distribution. In

(b) the vehicle executes the control, but hits a disturbance,

resulting in (c) the sampling distribution leads to high cost.



dimensional state spaces, and as a result such methods require

a good initialization in order produce reliably good results.

In an MPC setting, the initialization takes the form of a

warm start, where if (u0,u1, . . .uT−1) is the current control

solution, then (u1,u2, . . . ) will be used to initialize the next

iteration. Implicit in this procedure is the assumption that the

actual next state is close to the predicted next state. In the

presence of disturbances, that assumption may fail. Figure 1

gives an example. Without a consistent gradient signal to lead

the sampling distribution back to the low cost region, the

sampling procedure may get stuck in a bad local minimum

or diverge entirely.

In this paper, we develop a novel solution to the robustness

problem that is inherent in sampling based MPC. Our key

contribution is to augment a sampling based MPC method with

an ancillary controller for disturbance rejection by utilizing

Tube-MPC [16, 15]. Tube-MPC was originally developed as a

way to guarantee robustness for constrained linear systems in

the presence of disturbances, and was later extended to non-

linear systems. The original version of non-linear Tube-MPC,

which we utilize in this work, consists of two model predictive

controllers. The first controller, termed the nominal controller,

attempts to solve the primary optimal control problem for an

idealized nominal state, and the second controller, called the

ancillary controller, has the goal of rejecting disturbances in

order to keep the actual system state close to the nominal state.

II. RELATED WORK

Sampling-based approaches to motion planning and control

have a long history in robotics. RRTs and variants thereof

[12, 9] have emerged as the dominant frameworks for motion

planning, and the winning robot in the 2005 DARPA Grand

Challenge [22] used an on-line path planning method based

on trajectory sampling. Motion planning methods sample in

state or path space, and typically only produce kinematically

feasible plans, which have to be executed with a low level

controller. This can be a problematic paradigm when operating

noisy systems near their dynamic limits, since failure may

occur if a planned path is not feasible or if disturbances push

the trajectory off the initially planned path. Within the motion

planning literature, our work is most closely related to [14],

which also endeavors to control a system state by keeping

it within a tube. However, this method restricts behavior to a

finite library of pre-generated maneuvers, and requires both the

initial library generation and a stabilizing feedback controller

to be pre-specified. In our method, we only need to be given

a dynamics model and cost function.

Outside of motion planning, sampling based control algo-

rithms can be directly derived from stochastic optimal control

theory. For example, a number of sampling based methods

have been derived using a bayesian approximate inference

approach to stochastic optimal control [19, 13], path integral

control theory [21, 8, 5, 25], and the cross-entropy method

[4, 24, 10, 11]. Despite all of the success in these areas, on-line

sampling of trajectories with un-stable, non-linear dynamics

in the presence of disturbances remains a key problem, and is

usually addressed via ad-hoc cost function tuning.

In this work, we make use of non-linear Tube-MPC to

prevent the divergence of the importance sampling distribution

in sampling-based MPC. In addition to [15], which used a

second MPC as an ancillary controller, there have been several

non-linear variants of Tube-MPC which utilize alternative

methods to devise a non-linear ancillary controller [18, 7, 3].

In [17], the advantages and disadvantages of Tube-MPC are

discussed, and several modifications to the original scheme are

suggested, which we also utilize in our approach.

The purpose of these earlier works is fundamentally differ-

ent than our goal in this paper. Previous Tube-MPC approaches

aimed to improve performance or provide guarantees for

traditional MPC methods (e.g methods that utilize gradient

based optimization in order to stabilize a system or track a

trajectory). This work is the first usage of Tube-MPC for

solving general optimal control problems, with a sampling

based nominal controller. Our goal with combining these

methods is not to simply improve performance, but to enable

the solution of entirely new classes of stochastic optimal

control problems.

III. PRELIMINARIES

We consider general discrete time non-linear systems of the

form:

xt+1 = F(xt,ut + ǫt) +wt, (2)

where x ∈ RN is the state, and u ∈ RM is the control input.

The term ǫ ∈ N (0,Σ) is a disturbance directly on the control

input which is a reasonable assumption for robotic systems

where an outputted control signal is used as a set-point for a

lower level controller. The term w is an external disturbance,

which exists due to a combination of modeling error and

purely stochastic or unobserved environmental effects. In this

paper our goal is to optimize systems with running costs of

the following form:

L(x,u) = C(x) + λuTΣ−1
u, (3)

C(x) = k(x)TQk(x) +

N
∑

i=1

wi✶Ci
(x). (4)

Our assumption is that the control cost is inversely propor-

tional to that control channels variance, so that very noisy

inputs are cheap to control and vice versa. For the state

dependent portion of the cost, the term k(x) is a (preferably

simple) state feature, Q is a positive definite weight matrix,

wi is a cost weighting, and ✶C is the indicator function for

the set C, which is 1 if x ∈ C and 0 otherwise.

The goal of the first portion of the cost is to encode some

overarching directive to the robot (e.g. go a certain speed),

and the second portion of the cost acts to encode constraint

like objectives into the system, and has a zero (or undefined)

gradient. Using this type of cost function has a variety of

benefits: these costs are readily interpretable and easy to

encode, even though they are technically soft constraints they

act like hard constraints in the sense that all of the penalty is



obtained immediately upon crossing the constraint boundary.

However, unlike hard constraints, they have the additional

benefit that the importance of different constraints can be

delineated by setting different weights.

IV. ROBUST SAMPLING BASED MPC

In this section we describe our robust sampling based MPC

method, which is based on Tube-MPC. The linear version of

Tube-MPC utilizes a nominal controller, a nominal state, an

ancillary controller, and the actual system state. The nominal

controller is able to select the initial nominal state (subject

to it being nearby the actual system state) and the nominal

solution, both of which are readily computable via the solution

of a quadratic program. The ancillary controller then takes the

form of a simple linear feedback gain, which maintains the

actual state of the system in a tube around the nominal state

solution.

In non-linear Tube-MPC, which is the basis for our ap-

proach, much of the convenience of the solution for the linear

case is lost. However, the algorithmic structure and the end

result remain the same. We consider the two systems:

x̄t+1 = F(x̄, ū), (5)

xt+1 = F(x,u+ ǫ) +w. (6)

These systems are identical, except that one is disturbed via

noise, and the other is disturbance free. The nominal controller

then takes the form of a non-linear model predictive controller,

which can consider general costs and constraints, and it com-

putes a solution {(x̄0, x̄1, . . . x̄T−1, x̄T ) , (ū0, ū1, . . . ūT−1)}.
The nominal system is allowed to ignore system disturbances,

so we can have x̄0 6= x0, where x0 is the actual state of the

system. The role of the ancillary controller is to then track the

nominal system state. We implement the ancillary controller

as a gradient based MPC method which solves a standard

tracking problem.

Unlike the linear Tube-MPC case, the nominal controller

does not consider the initial nominal state as an input variable,

however in certain instances, the nominal state can be reset

back to the actual state. As in the linear case, it can be shown

that the actual system state stays within a tube centered about

the idealized nominal state. However, the bound on the size

of the tube is difficult to compute in practice, and in this

study we are more concerned with demonstrating the practical

ability of Tube-MPC to prevent the divergence of sampling

based controllers. Therefore we do not concern ourselves with

computing this bound. There are then 3 components of the

Tube-MPC algorithm that we need: (1) a nominal controller,

(2) a method for setting the nominal state, and (3) an ancillary

controller. We use an information theoretic interpretation of

model predictive path integral control (MPPI) [26], so we will

hereon refer to our method as Tube-MPPI.

A. Nominal Controller - Model Predictive Path Integral

The nominal controller is required to be a sampling based

method so that it can handle the types of sparse cost functions

that we are interested in. We use an information theoretic

interpretation of path integral control implemented in an MPC

setting (MPPI). In MPPI, we consider stochastic trajectory

optimization problems of the form:

U∗ = argmin
U

EQ

[

φ(xT ) +
T−1
∑

t=0

L(xt,ut)

]

, (7)

Where φ is a terminal cost, and L a running cost in the form

of (3). The term Q is the distribution corresponding to the

dynamics: F(x,u + ǫ). These dynamics consider sources of

noise directly acting on the control input, but not sources due

to modeling error or environmental disturbances. Note that we

are actually optimizing with the assumption that there is some

noise in the system, even though the nominal system is noise

free. We do this because the assumption of noisy inputs is

necessary in order to utilize sampling based methods derived

from stochastic optimal control theory, and we do not consider

it to be detrimental: since noise is present in the actual system

it does not hurt to plan for it even if the theory does not

explicitly require it.

In the information theoretic approach to MPPI, the trajec-

tory optimization problem is transformed into a probability

matching problem. Suppose that U = {u0,u1, . . .uT−1} is a

sequence of commanded inputs, and then let V be the resulting

sequence of perturbed inputs such that:

V = U + E , E = {ǫ0, ǫ1, . . . ǫT } (8)

With each ǫt ∼ N (0,Σ). Then, by using an information

theoretic lower bound, it is possible to show that there exists

an “optimal” distribution over controls, in the sense that tra-

jectories sampled from that distribution have a lower expected

cost than any other distribution. It can be shown [26] that this

takes the form:

q∗(V ) ∝ exp

(

−
1

λ
S(V )

)

p(V ),

p(V ) =
1

(

√

2π‖Σ‖
)T−1

exp

(

T−1
∑

t=0

v
T
t Σ

−1
v

)

,

S(V ) = φ(xT ) +

T−1
∑

t=0

(

k(x)TQk(x) +

N
∑

i=1

wi✶Ci
(x)

)

.

The goal is to then minimize the KL-Divergence between

the controlled and optimal distribution, which results in the

formula:

U∗ =

∫

q∗(V )V dV, (9)

where the optimal controls take the form of an expectation

with respect to the optimal distribution q∗(V ). This equation

is impossible to compute directly, but it can be approximated

using an iterative importance sampling method where the k+1



iterate is related to the kth iterate via:

Uk+1 = Uk +

N
∑

i=1

w(Ei)Ei, (10)

w(E) =
1

η
exp

(

−
1

λ

(

S(Uk + Ei) + λ
T−1
∑

t=0

u
TΣ−1ǫt

))

.

(11)

where Ei is the disturbance sequence that generates the ith
trajectory sample out of a total of N samples. Notice how

the negative exponentiation in the importance sampling weight

enables the algorithm to remove trajectories with significantly

higher cost than other samples from the solution. This is

important for the kinds of cost functions that we are con-

sidering, since trajectories that do not trigger the indicator

cost terms will be weighted much less than trajectories that

do. Using a GPU, it is possible to parallelize the sampling,

Algorithm 1: Nominal Controller (MPPI)

Parameters: F: Transition Model;

K,T : Number of samples, timesteps;

Σ, φ, C: Cost functions/parameters;

while not done do

x̄0 ← SetNominalState();

for k ← 0 to K − 1 do

x← x0;

Sample Ek =
(

ǫk0 . . . ǫ
k
T−1

)

, ǫkt ∈ N (0,Σ);
for t← 1 to T do

x̄← F(x̄, g(ūt−1 + ǫkt−1));
Sk += C(xt) + λūt−1Σ

−1ǫkt−1;

Sk += φ(x);

ρ← mink [Sk];
for k ← 1 to K do

w̃k ← exp
(

− 1

λ
(Sk − ρ)

)

;

η += w̃k;

for t← 0 to T − 1 do

Ū ← Ū + 1

η

∑K
k=1

w̃kE
k;

X̄ ← Simulate(g(Ū));
PublishSolution(g(Ū), X̄);
for t← 1 to T − 1 do

ūt−1 ← ūt;

which makes it possible to run MPPI with expensive non-

linear dynamics. Algorithm 1 describes in psuedo-code the

MPPI algorithm. Control constraints are handled by augment-

ing the dynamics with an element-wise clamping function

g(u) = max(min(umax, u), umin). Note that this procedure

only changes the system dynamics, and therefore does not

affect the convergence of the MPPI algorithm.

One of the keys to MPPI, as well as other sampling based

methods, is re-using the left-over portion of the previously

optimized control sequence to warm-start the optimization at

the next time-step. This enables the method to run on-line,

but also makes it vulnerable to catastrophic failures if there

are large disturbances coupled with sparse cost information.

This is because the planned control sequence, (u1,u2, . . .uT ),
is assumed to be near optimal for initial conditions drawn

from x̂ ∼ F(x0,u0 + ǫ), but the actual next state is drawn

from x ∼ F(x0,u0 + ǫ) +w. Even in linear systems, a small

change in the initial condition can lead to a large change in

resulting behavior. This means that if w pushes x into a region

where the distribution induced by F(x,u+ǫ) has small or zero

probability mass, then the planned control sequence may result

in a much different state sequence than anticipated. If there is

a consistent gradient signal to follow back to low cost regions,

then the algorithm can recover. But in our case, this gradient

signal does not exist, and the algorithm can easily become

stuck in local minima or diverge. Secton V-A demonstrates

how this can happen even for a simple linear system.

B. Setting the Nominal State

The nominal controller controls the state of the idealized

noise free nominal system, termed the nominal state. In the

original description of non-linear Tube-MPC, the nominal

state is initially set equal to the actual state, and then it is

simulated forward without ever receiving feedback from the

actual system. This scheme has two primary drawbacks, the

first being that the algorithm is completely reliant on the

tracking ability of the ancillary controller. In cases where the

ancillary controller fails, the nominal state and actual state will

diverge resulting in a failure of the overall control scheme. The

second issue is that most disturbances are not catastrophic to

the nominal controller, and in those cases it is preferable to

let feedback enter the nominal controller in order to re-plan

from the actual system state. In some cases, disturbances can

even be beneficial. If the fortunate situation occurs where a

disturbance improves the state, it should be taken advantage

of, not rejected.

In [17] a modification to Tube-MPC is suggested whereby

two copies of the nominal controller are run, one from the

nominal state and one from the actual system state. If the

nominal controller finds a better solution using the actual

state of the system, then the superior solution is used and

the nominal state is reset back to the actual system state

before moving onto the next time-step. We propose a similar,

albeit more relaxed version of this mechanism, where we

accept the solution from the nominal controller using the actual

system state as long as the cost is less than the nominal

state solution plus some threshold. The threshold is set as

follows: let {Ci0 , Ci1 , . . . CiM } denote the sets of constraints

that are considered safety critical, then the minimum of

{wi0 , wi1 . . . wiM } is set as the threshold. This mechanism

ensures that a disturbance can never push the solution of the

nominal controller into a constraint region. The procedure of

accepting or rejecting the solution and setting the nominal state

is shown in Alg. 2.



Algorithm 2: Nominal State Selection

Input: x̄: Current nominal state;

x: Current (actual) state;

K: Threshold for accepting solution from actual state;

Ū , X̄ ← MPPI(x̄);
U,X ← MPPI(x);
if S(U) ≤ S(Ū) +K then

x̄← x ;

Ū , X̄ ← U,X;

return x̄, Ū , X̄;

C. Ancillary Controller - iLQG

The last component of the Tube-MPPI controller is an

ancillary controller which solves a tracking problem in order

to keep the actual system state within a tube centered about

the nominal state. This is a standard tracking problem, where

there is a small initial error and a quadratic cost, and there

are numerous effective solutions. We elected to used iterative

linear quadratic gaussian control iLQG (as in [23]) as the an-

cillary controller, and found that it provided good performance

at a relatively small computational cost.

D. Implementation Details and CPU/GPU Utilization

In our real-time implementation, which we used for the

autonomous vehicle system, the two MPPI iterations run

together in a single loop where the bulk of the computation

is off-loaded to a GPU. Each instantiation of MPPI samples

1200 2 second long trajectories with a control frequency of

50 Hz, which requires over 100,000 queries of the non-linear

system dynamics per control cycle. The nominal controller

publishes solutions at a rate of 50 Hz. The ancillary controller

runs asynchronously on a separate CPU thread, and performs

optimization for the latest solution published by the nominal

controller. The ancillary controller optimizes for a shorter time

horizon (1 second), but runs at a faster frequency (100Hz).

V. EXPERIMENTAL RESULTS

We tested the Tube-MPPI algorithm on: a simulated linear

point mass system, a simulated helicopter landing task, and

both a simulated and real-world autonomous racing task.

Through-out these experiments we refer to 3 different experi-

mental conditions for MPPI:

i) Baseline-MPPI refers to MPPI operating on a system

where there is no additional disturbance beyond the con-

trol dependent noise assumed in the MPPI framework.

ii) Disturbance-MPPI refers to the normal MPPI algo-

rithm operating on a system with additional disturbances

besides the what has been assumed by the MPPI algo-

rithm. Depending on the system, this additional noise

takes the form of extra noisy control inputs or non-

control dependent noise.

iii) Tube-MPPI refers to the algorithm described in Sec. IV

operating on the same extra-noisy system as disturbance

MPPI.

Note that the Baseline-MPPI method is impossible to imple-

ment in reality, since it requires a perfect description of the

systems dynamics and noise distribution. We include it in the

experiments in order to highlight the fundamental role that

un-anticipated disturbances have on sampling based MPC.

A. Illustrative Example: Point Mass System

This illustrative example visually demonstrates the advan-

tage of Tube-MPPI in terms of stabilizing the optimization

for the nominal controller. Consider the simple 2-D double

integrator system:

xt+1 =

(

I2 I2∆t
0 I2

)

xt +

(

0
I2∆t

)

(ut + ǫt) . (12)

The goal is to move this system at a constant velocity while

staying within a ring centered about the origin, this can be

interpreted mathematically as:

C(xt) =
(√

v2x + v2y − vdes
)2

+ 1000 (✶C(x)) , (13)

C = {x | 1.875 <
√

x2 + y2 < 2.125}. (14)

The level of noise that MPPI assumes present is ǫ ∈ N (0,Σ)
with Σ = I . For Disturbance-MPPI and Tube-MPPI the

actual noise present in the system is set ten times higher at

Σ̃ = 10I . Fig. 2 shows the accumulation of the warm-start
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Fig. 2: Point mass system results of for Baseline-MPPI

(top-left), Disturbance-MPPI (top-right), Tube-MPPI’s nom-

inal controller’s importance sampling (bottom left) (c), and

ancillary control plan (bottom right).

trajectories for each condition. These trajectories are obtained

by simulating the control sequence used to warm-start MPPI

at each iteration from the new initial state of the system. This

trajectory defines the mean of the sampling distribution (in the

linear case), so it is essential that it lies in a good region of

the state-space.

Baseline-MPPI performs perfectly, and the system state is

always kept within C. With Disturbance-MPPI the increased



noise in the system results in the state leaving C, and even-

tually diverging. The reason for this failure is that the system

disturbances push the warm-start trajectories into poor regions

of the state space, since sampling takes place locally around

the warm-start trajectory, it becomes likely that no trajectory

that stays within C is sampled. With Tube-MPPI, the nominal

control plan is prevented from leaving the constraint set due to

the condition for selecting the nominal state, this results in the

importance sampling behaving similarly to the Baseline-MPPI

condition, even with the increased system noise.

B. Simulated Helicopter Landing

In this simulated example we demonstrate the advantage of

using weighted indicator costs as atomic elements for building

objectives with a complex cost structure. We consider the task

of landing a helicopter on a circular pad subject to Gaussian

disturbances. For helicopter dynamics we use the non-linear

model described in [2]. The state space for this helicopter is

position (x, y, z), orientation (φ, θ, ψ), body frame velocity

(vx, vy, vz), and body frame angular velocity (p, q, r). The

control inputs are collective thrust uτ , roll rate up, pitch rate

uq , and yaw rate ur. The cost function for the landing task

then takes the form:

C(x) = x
TQx+

8
∑

i=1

wi✶Ci
,

C1 = {x | (|φ| > .15 ∨ |θ| > .1) ∧ z < −9.5},

C2 = {x | (‖(vx, vy, vz)‖ > 5 ∨ vz > 2.5) ∧ z > −8},

C3 = {x | ‖(x, y)‖ > 1.0 ∧ z > −8},

C4 = {x | x < −1.0}, C5 = {‖(vx, vy, vz‖ > 12},

C6 = {x | z > max(−.5‖(x, y)‖ − 7.5,−50) ∧ ‖(x, y‖ > 1},

C7 = {x | |φ|+ |θ| > .33},

C8 = {x | z > −7.5 ∧ x /∈ C1 ∧ x /∈ C2 ∧ x /∈ C3},

w1 = w2 = w3 = w4 = 10000, w5 = w6 = 1000

w7 = 100, w8 = −10000.

The first three terms direct the helicopter to land in the proper

area with limits on the orientation and speed. The fourth term

disallows the helicopter from over-shooting the landing area,

the fifth and sixth terms prevent the helicopter from going

too fast or using too aggressive of a combined roll and pitch

angle, the seventh term directs the vehicle to stay above a

certain glide-path, and the last term is a reward for successfully

meeting all the landing criteria. The constraints are tightened

to allow for some error in the final landing criteria, since

we expect Tube-MPPI to keep the actual system close to the

nominal state, but with a small amount of error.

Note that creating a cost function with a smooth gradient

for this task, with either soft or hard constraints, would be

extremely challenging! Many of the conditions have non-

differentiable components (e.g. the max and norm operators)

and composing a cost with eight different non-linear terms

could easily result in local minima being created. In this case,

specifying the cost function is easy and intuitive, and results

in predictable behavior.

(a) (b) (c)

Fig. 3: Results of helicopter landing experiment for ((a))

Baseline-MPPI, ((b)) Disturbance-MPPI (worst trial by pitch

magnitude), ((c)) Tube-MPPI (worst trial by pitch magnitude).
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Fig. 4: Helicopter landing positions (left) and orientations

(right) for 100 random trials of Baseline-MPPI, Disturbance-

MPPI, and Tube-MPPI with large noise. Dashed lines are

specified landing area, colored line indicate 3-sigma bounds

for a Gaussian distribution fitted to the 100 trials.

MPPI assumes that there is noise in the control inputs with

Σu = Diag(0.75, 0.125, 0.125, 0.125), and for Disturbance-

MPPI and Tube-MPPI we inject additional noise into the sys-

tem by increasing Σu and adding the additional disturbances

for the velocities and orientation:

Σu = (1.25)I4, Σvx,vy,vz = (1.25)I3, Σφ,θ,ψ = (0.0125)I3

Figure 4 shows the results over 100 randomized trials for

Baseline, Disturbance, and Tube-MPPI. Baseline-MPPI per-

forms perfectly, and never violates any constraints while

landing the helicopter. Disturbance-MPPI ends most trials

with a satisfying landing. However, there are several large

outliers that significantly miss the target region, this would be

catastrophic on an actual helicopter system. The distribution

for Tube-MPPI closely mirrors that for Baseline-MPPI, but

with a higher covariance. With Tube-MPPI there are not any

outliers which miss the landing conditions by a significant

amount.

Figure 3 shows the resulting orientations for the trials with

the highest pitch magnitude, in the case of Tube-MPPI the

worst case pitch is still within an acceptable landing envelope,

whereas with Disturbance-MPPI the result would be the tail

contacting the platform before the wheels touched down. Table

I shows the mean, standard deviation, and worst case over the

100 trials for total distance from origin, roll angle, and pitch

angle at touch-down.

C. Simulated Autonomous Racing

In this simulation experiment, we used a Gazebo simulation

of 1/5 scale autonomous vehicles operating on a roughly



TABLE I: Helicopter Landing Statistics

Distance Roll Pitch

MPPI - Small Noise 0.66 +/- 0.025 0.02 +/- 0.03 -0.09 +/- 0.00

MPPI - Large Noise 0.77 +/- 0.25 0.0 +/- 0.08 -0.04 +/- 0.05

Tube - MPPI 0.69 +/- 0.15 0.02 +/- 0.05 -0.07 +/- 0.02

elliptical track [1], Fig. 5. In this simulation environment, we

do not have access to the underlying model, so we fit one

using a hybrid physics-neural networks approach. The state

space of the vehicle is x = (x, y, θ, r, vx, vy, θ̇), and the model

has the form: F(x,u) = xt +
(

WTφ(x,u) +N(x,u; θ)
)

∆t
where W is a linear weight matrix, and N(x,u; θ) represents

a neural network. This model is fit via a combination of

linear regression and stochastic gradient descent, and there is

a significant error between the learned model and the actual

system dynamics. This error is the source of disturbances in

this experiment.

Learning a model means that we cannot apply the Baseline-

MPPI condition (since we cannot remove the extra distur-

bances), so instead we compare our novel controller to a

version of MPPI that has been extensively tuned with a cost

function for this track. We refer to this as Tuned-MPPI. This

is an important comparison, as it quantifies our ability to use

an intuitive indicator function-based cost structure to approach

a level of performance only achievable previously through

extensive hand-tuning. The cost function for Tube-MPPI was:

C(x) = ‖vx − v
des
x ‖

2 + w1✶Ctrack
(x) + w2✶Cslip

(x) (15)

Cslip =

{

x
∣

∣

∥

∥

∥

∥

arctan−1

(

vy
|vx|

)
∥

∥

∥

∥

< 1.25

}

(16)

w1 = w2 = 10000 (17)

Ctrack is the set of points that lie inside the track boundaries.

The first component of the cost tells the vehicle to try and

achieve a desired velocity, the second component tells the

vehicle to stay on the track, and the last term tells the vehicle

to keep the slip angle below 1.25 radians (70 degrees). In the

case of Tuned-MPPI the cost function takes the form:

C = w1M(x,y) + w2‖vx − v
des
x ‖

2 + w3 tan
−1

(

vy
vx

)2

(18)

+ βt
(

w4✶Ctrack
(x) + w5✶Cslip

(x)
)

(19)

w1 = 100, w2 = 4.25, w3 = 250, w4 = 10000 (20)

w5 = 10000, β = 0.9 (21)

The first term M(x, y) is a signed distance function for the

set Ctrack. This term helps push the sampling distribution back

towards the track if large disturbances are found. Note that

Fig. 5: Gazebo simulation environment

TABLE II: Racing Simulation Statistics

Avg. Lap Time Max Speed Max Slip

Disturbance -MPPI 11.87 +/- .47 5.22 +/- 0.06 0.04 +/- 0.04

Tuned - MPPI 8.33 +/- 1.05 7.53 +/- 0.04 0.09 +/- 0.15

Tube - MPPI 9.39 +/- 0.76 7.51 +/- 0.18 0.12 +/- 0.10

even with this term it is still necessary to add a time decay

on the hard-cost weighted indicator terms, which prioritizes

avoiding trajectories that immediately violate constraints.

For each experimental condition, the target speed was

gradually increased from 5 m/s until the algorithm could no

longer consistently complete 100 laps while staying on the

track. For Tuned-MPPI the maximum target speed was 8 m/s,

and for Tube-MPPI this was 9 m/s. For Disturbance-MPPI

there was a massive performance drop-off, with the maximum

target speed only reaching 5 m/s. The performance statistics

for each of the three trial conditions is shown in Table III. Both

Tube-MPPI and Tuned-MPPI achieve top velocities slightly

over 7.5m/s, and sub 10 second lap times. However, since

Tube-MPPI optimizes with slightly tightened boundaries it

takes a longer overall path around the track, which results

in longer lap times.

D. 1/5 Scale Autonomous Racing Experiment

In order to validate the performance of the Tube-MPPI

controller in the real-world, we tested the algorithm on the

task of aggressive driving using the AutoRally 1/5 scale

autonomous vehicle platform. This platform is approximately

1 meter long, weighs over 20 kilograms, and has a top speed

over 20 m/s. Previous works have demonstrated that the MPPI

controller (with tuned soft cost terms) is capable of navigating

this type of vehicle around a simple elliptical track [25, 26],

which we did our best to match in our simulation experiments.

Our real-world experiments use the same type of vehicle as

these prior works, but in a more challenging environment

(Fig. 8). This track features a variety of different radius

turns, and a long straight-away. An important detail of this

track is that there are several areas where the boundaries for

different segments of the track either touch or are very close to

each other. This makes designing a smooth cost or constraint

function based on a signed distance function difficult, since

such a function would have local minima that would encourage

the vehicle to drive over the track boundaries. However, using

only weighted sums of indicator functions we obtain a very

simple cost design based on a grid of binary values that

represent the set of points on the track. The cost function for

this task is the same as for the Gazebo simulation environment,

where there’s a term for speed, a term for staying on the track,

and a term for avoiding excessive slip angle. The desired speed

was set to 9 m/s, and we collected 12 laps around the test track,

which is approximately 2 kilometers worth of driving data.

Figure 6 depicts the trajectory traces of the 12 trial laps

around the track. This figure identifies one of the main benefits

of using sparse indicator cost functions: since the vehicle is

only penalized for leaving the track, it is free to use the

entire track surface in order to achieve its primary goal of

going fast. As a result, the position of the vehicle on the
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Fig. 6: Trajectory traces of test run with Tube-MPPI
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Fig. 7: Magnitude of the state divergence over a test lap.

track does not follow the center line, but significantly varies

depending on the upcoming track geometry (note that the

overall direction of travel is clockwise). A key component

of the Tube-MPPI algorithm is the tracking performance of

the ancillary controller. Figure 7 shows the magnitude of the

state divergence as the vehicle navigates the track over the

course of one lap. Overall, the magnitude of the positional

state divergence stays relatively small compared to the overall

track width. The mean state divergence for the lap shown is 14

centimeters, and the maximum is 47 centimeters over the trial.

Footage from the trials is available in the video supplement.

TABLE III: Racing Experiment Statistics

Avg. Lap Time Max Speed Max Slip

Tube - MPPI 32.02 +/- 7.27 8.52 +/- -0.26 0.88 +/- 0.48

Fig. 8: Test track for 1/5 scale vehicle.

VI. CONCLUSION

We have proposed a novel robust sampling-based MPC

framework based on a combination of model predictive path

integral control and nonlinear Tube-MPC. The benefit of

combining these methods is that the Tube-MPC procedure

stabilizes the importance sampling distribution, which means

that a gradient signal is not necessary to help the sampling

distribution recover from large disturbances. This enables the

use of very simple cost terms, such as weighted sums of in-

dicator functions, in formulating the optimal control problem.

Our method also takes advantage of the different hardware

(CPU/GPU) requirements of the nominal and ancillary con-

trollers. We carried out a variety of simulation experiments

which demonstrate the advantage of our method in terms of

solving the underlying problem of stabilizing the importance

sampling distribution, thereby enabling the use of simple cost

functions that are easy to compose into complex performance

criteria.

The focus of this paper was on the practical ability of Tube-

MPPI to optimize with simple, easily composed cost functions,

and we therefore did not focus on the theoretical aspects of

Tube-MPC. However, the theoretical guarantees of Tube-MPC

are an important component of making the proposed approach

a complete system. For instance, in the helicopter example we

would like to be able to estimate the size of the tube in order

to tighten the landing area constraints enough to ensure that

the helicopter never misses a landing. Future work will focus

on how to guarantee that a bound for the tube exists, and on

how to incorporate the bound into the optimal control problem

solved by the nominal controller.

Stochastic optimal control provides the most general and

elegant mathematical framework for generating behaviors for

autonomous systems, but generating cost functions that both

describe the task at a high level and are easy to optimize with

remains a key challenge. This paper is a step forward in easily

specifying and solving general classes of stochastic optimal

control problems.
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