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Abstract—This paper describes a methodology for making
robust day-ahead operational schedules for controllable residen-
tial distributed energy resources (DER) using a novel energy
service decision support tool. The tool is based on the consumers
deriving benefit from energy services and not on electric energy.
It maximizes consumer net benefit by scheduling the operation
of DER. The robust schedule is derived using a stochastic
programming approach formulated for the DER scheduler:
the objective function describing the consumer net benefit is
maximized over a set of scenarios that model the range of
uncertainty. The optimal scenario set is derived using heuristic
scenario reduction techniques. Robust operational schedules are
formulated for a ‘smart’ home case study with four controllable
DER under stochastic energy service demand, availability of
storage DER, and status of dynamic peak pricing. The robust
schedule results in a lower expected cost but at the expense of
long computation times. The computation period however is not
much of a disadvantage because schedules are computed off-line.
The consumer can prepare several DER schedules and simply
choose the one to implement according to their perception of
the coming day. The robust schedules are formulated using an
improved version of co-evolutionary particle swarm optimization.

Index Terms—Energy services, ‘smart’ home, distributed en-
ergy resources, robust scheduling, scenario trees, scenario reduc-
tion, particle swarm optimization.

I. INTRODUCTION

The term ‘smart’ home is increasingly being used to refer to
a residential building equipped with embedded intelligence and
communication infrastructure that enable automatic response
to external and internal stimuli and make pro-active actions
with respect to forecast information. This paper describes
how an energy service decision-support tool (ES-DST) we
previously described in [1] may be used to formulate robust
decisions with respect to the operation of residential DER in a
‘smart’ home. DER are fine-grained equipment and practices
that are co-located or near the consumer and can provide some
of the functions of the electric utility. The ES-DST is essen-
tially the combination of a novel approach for modeling the
demand for, and perceived benefits from, energy services and a
DER scheduler that suggests how controllable DER available
to the end-user may be operated. In this paper, the ES-DST
is used to formulate robust day-ahead operational schedules
for various DER under stochastic energy service demand,
uncertain availability of some DER, and status of dynamic
peak pricing (DPP). The robust schedules are generated by
solving the optimization problem associated with the DER

scheduler over an optimal set of scenarios that approximates
the range of overall uncertainties.

This paper is organized as follows: Section II describes an
approach to solving stochastic optimization problems that is
applicable to our scheduling problem, Section III describes the
ES-DST, Section IV describes the ‘smart’ home case study and
the simulation results, and Section V lists the conclusions.

II. STOCHASTIC PROGRAMMING USING OPTIMAL

SCENARIO TREES

A. General Formulation of Problems

A stochastic programming problem may be described by

min f0(a, x) (1)

s.t. fi(a, x) ≤ 0, i = 1, ...,mf (2)

gi(a, x) = 0, i = 1, ...,mg (3)

x ∈ D0 (4)

where f0 is the objective function, fi and gi are constraint
functions, x is the decision vector that should be within the
set D0, and a is the vector of stochastic variables [2]. The
stochastic optimization problem may be solved by converting
it to a substitute deterministic optimization problem. A pos-
sible substitute optimization problem for (1) is to discretize
the probability distributions of the stochastic variables and
to minimize the expected value of f0 over a finite set of
scenarios that are chosen to model the range of uncertainty
[3]. Therefore, the substitute problem is given by

min E{f0(x, a)} = min
N∑
i=1

π(ai)f0(x, ai),
N∑
i=1

π(ai) = 1

(5)
In these equations, π(a) is the probability of the occurrence
of the scenario corresponding to a particular realization of a.

The range of uncertainty involved in the problem may
be approximated by using a large number of scenarios. The
computational complexity grows with the number of scenarios
therefore their number must be restricted in order to keep the
computations within a tractable range [4]. There is also a trade-
off between the accuracy of approximation and the number of
scenarios to consider.

B. Generating the Optimal Scenario Set

The optimal scenario set to which (5) is evaluated may be
generated using the following two-step process:
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Step 1: A large number of scenarios is generated by sam-
pling the stochastic variables.

Step 2: The elements of the optimal reduced scenario set
(or optimal scenario tree) are chosen from the sample set
using the heuristic scenario reduction methods described in
[5]: (a) backward scenario reduction and (b) forward scenario
selection. These methods are described below.

Several papers have already adopted optimal scenario trees
to model the uncertainties in different aspects of power system
operation [6]–[8].

1) Backward Scenario Reduction: Scenarios with low prob-
abilities which are very similar to other scenarios with higher
probabilities are sequentially removed until the desired set size
is reached:

1. Let S be the set of chosen scenarios, initially containing
all scenarios. Let R be the set of all deleted scenarios, initially
an empty set.

2. Compute the distances D(ai, aj) between all scenario
pairs (ai, aj) in S:

D(ai, aj) = ‖ai − aj‖2 =

√√√√ T∑
t=1

(ati − atj)
2 (6)

3. For each scenario ai in S, find the scenario ac closest to
it, and compute the utility U(ai):

U(ai) = π(ai)D(ai, ac) (7)

4. Choose the scenario ai with the smallest utility value
a. Remove ai from S and add it to R
b. Update the probability of ac:

π(ac) = π(ac) + π(ai) (8)

5. Repeat steps 3 and 4 until the desired number of scenar-
ios is reached.

2) Forward Scenario Selection: Scenarios with high proba-
bilities which are very similar to a number of low probability
scenarios are sequentially added to the optimal scenario set
until the desired size is reached:

1. Let S be the set of chosen scenarios, initially an empty
set. Let R be the set of all deleted scenarios, initially contain-
ing all scenarios.

2. For each scenario ai ∈ R, build a scenario set P =
S ∪ {ai}

a. For each scenario aj ∈ R, i �= j, compute D(aj , ak)
for all ak ∈ P using (6)

b. Choose min D(aj , ak)
c. Compute the utility of scenario ai, U(ai):

U(ai) =

N∑
j=1,aj /∈P

π(aj)minD(aj , ak) (9)

3. Choose the scenario ai with the lowest utility. Add ai to
S and remove it from R

4. Repeat steps 2 and 3 until the desired number of scenar-
ios is reached

5. Re-compute the probabilities of the chosen scenarios

a. For each deleted scenario ai ∈ R, find the chosen
scenario ac ∈ S closest to it

b. Update the probability of ac

π(ac) = π(ac) + π(ai) (10)

III. THE ENERGY SERVICE DECISION SUPPORT TOOL

The ES-DST is inspired by the notion that end-users value
their energy services and not electricity in its basic form.
The energy service model, therefore, is based on putting a
monetary benefit to the energy that realizes the service and
not to the kWh of electricity that the end equipment that
delivers the service consumes. In this paper, the energy that
realizes the service is called the “energy equivalent” of the
service being consumed. Examples of “energy equivalents”
are the thermal energy that realizes the space heating and hot
water services and the mechanical energy output of machines.
We first described the ES-DST in [1] and we applied it to
formulate operation schedules for a ‘smart’ home with 3 DER.

The energy service model is composed of a demand model
and a benefit model. The demand model is a temporal variation
of demand as described by the hourly variation of the “energy
equivalents” or any other physical variables identified with the
required services (e.g. temperature and liters of hot water).
The benefit model is the temporal variation of the benefit
derived from the services represented by the hourly value of
the monetary benefit derived from each kWh of the “energy
equivalents.”

The second component of the ES-DST, or the DER sched-
uler, formulates the DER operational schedules using the
demand and benefit models. The scheduling is essentially an
optimization problem that aims to find the DER operation
schedule x that maximizes the benefit derived from the en-
ergy services less the cost of energy consumption. That is,
maximize

T∑
t=1

S∑
i=1

[λES,i(t) · UES,i(t,x)]− C (11)

where λES,i and UES,i are the perceived benefit and demand
for the “energy equivalent” of the ith service, C is the cost of
service provision, T is the number of hours in the simulation
period, and S is number of energy services. Many techniques
may be used to solve the complex mathematical optimization
problem described by (11). In this paper, cooperative particle
swarm optimization with stochastic repulsion among particles
(CPSO-SR) is used to find x. CPSO-SR is an improvement to
the canonical formulation of particle swarm optimization that
we proposed in an earlier study [9].

Aside from formulating DER operational schedules, we
have also used the ES-DST in other applications. In [9],
the ES-DST was used to determine the value added by the
coordination among the DER. It was used to determine the
scenarios where the DER should coordinate their operation
and where coordination is not important. In [10], the ES-DST
was used to determine the value of making accurate forecasts.
This knowledge is important because it identifies the forecast
information that are crucial to making effective schedules.



TABLE I
MAPPING OF PERCEIVED BENEFIT OF SERVICES TO MONETARY VALUES

Importance of energy service Value ($/kWh)
Must-run 2.20

High 1.00
Medium 0.25

Don’t Care 0.00
Expense -0.50

TABLE II
ELECTRICITY TARIFF

Tariff (λe(t)) Rate ($/kWh)
Time of Use (ToU)

Peak (2 – 8 PM) 0.3564
Shoulder (7 AM – 2 PM, 8 – 10 PM) 0.1408
Off-peak (10 PM – 7 AM) 0.0814

Dynamic peak price (DPP)
High alert (5 – 8 PM) 2.00

IV. THE ‘SMART’ HOME CASE STUDY

A. Available DER and the Required Energy Services

The ES-DST is used to formulate robust day-ahead sched-
ules for a 4-DER ‘smart’ home with stochastic energy service
demands, status of DPP, and availability of the plug-in hybrid
vehicle (PHEV) as energy storage device. The DER and their
operating characteristics are listed below and the first four are
scheduled.

1) PHEV. 5.9 kWh capacity, 3.0 kW maximum charg-
ing/discharging rate, 90% charging/discharging efficiency, may
be discharged down to 30% of capacity, 0.1% coulomb loss
per hour.

2) Space heater. Maximum heating power is 1.8 kW.
3) Storage water heater. Storage capacity is 80 liters and

the heating element is rated 1.2 kW.
4) Pool pump. Rated 1.1 kW. Should run at most 6 hours.
5) PV system. Peak output = 2.0 kW.

The DER scheduler determines the hourly charging or dis-
charging rate of the PHEV battery, the hourly heating power
of the space heater, the hours when the water heater will be
switched on, and the hours when the pool pump is run.

The dollar values assigned to each kWh of “energy equiva-
lent” of the energy services are listed in Table I. The electricity
tariff structure is shown in Table II. Any exported energy is
compensated at time-of-use (ToU) rates. These are the ToU
rates in Sydney, Australia in 2009, and the DPP rates used by
Energy Australia in their strategic pricing study.

The desired indoor temperature when the house is occupied
the entire day is shown in Figure 1(a). The actual temperature
should be within 1 C◦ from the desired value whenever at
least one resident is at home. The residents put a High value
to the space heating service. If all residents are away, a Don’t
Care value is assigned. The “energy equivalent” of the space
heating service is the heat content of the indoor air.

The residents may or may not use the PHEV when they
leave the house. If they leave the car, the scheduler could use
the car battery as a storage DER. The PHEV should be fully
charged if they plan to use it. The residents put a High value
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Fig. 1. Hourly demand for energy services: (a) desired indoor temperature,
(b) Hot water demand (liters) at Low and High occupancy states, (c) Must-run
energy service demand (kW) for the 3 occupancy states.

to the car charging service, and this benefit applies only to the
hour that the residents leave for the first time. On the other
hours, a Don’t Care value is assigned. The PHEV is fully
discharged (30% of capacity) when the residents return home.
The “energy equivalent” of the PHEV charging service is the
energy stored in the batteries.

The pool-pump should run at most 6 hours a day anytime
from 8 AM to 10 PM. The residents assign a Medium value to
the pool-pumping service during these hours, and an Expense
value outside of this period. An Expense value is assigned to
prohibit the pump from running outside the desired period. The
energy consumption of the pump is assigned as the “energy
equivalent” of the pool pumping service.

All energy services aside from PHEV charging, space and
water heating, and pool pumping are lumped together into an
aggregate must-run energy service. The demand for hot water
and must-run services depends on the level of occupancy of
the house. Three hourly occupancy states are assumed: AWAY,
SOME and ALL. The residents are all away in the first state,
some residents are home in the second state, and all residents
are at home in the last state. The must-run and hot water
demands are mapped to values corresponding to the occupancy
state. The hourly hot water demand when occupancies are
SOME and ALL are shown in Figure 1(b). There is no hot water
demand when the occupancy is AWAY. The must-run energy
service demands are shown in Figure 1(c). The residents put a
High value to the hot water service and a Must-run value for
the must-run service. The actual energy consumption of the



must-run service is taken as its “energy equivalent.” The heat
content of the consumed hot water is the “energy equivalent”
of the hot water service.

The relationship between the “energy equivalents” and the
actual electricity consumption are described in [1], [9], [10].

B. Models for Stochastic Variables

The application of the ES-DST to the ‘smart’ home case
study requires forecast information (or predictions) and knowl-
edge of planned consumer actions for it to generate effective
DER schedules. However, making accurate predictions espe-
cially at the household level is difficult to achieve. Therefore,
there is significant value in formulating robust schedules that
would produce satisfactory results under forecast uncertainty.

The ES-DST should be able to generate robust schedules
under stochastic energy services demands and perceived val-
ues. As we have demonstrated in [10], significant additional
costs may be incurred if the demand forecast is incorrect.

Aside from magnitude and benefit from the required ser-
vices, the scheduler should be able to deal with the uncertainty
on the following variables: (1) activation of dynamic peak
pricing; (2) availability of mobile storage devices (e.g., electric
vehicles); (3) solar insolation; and (4) outdoor temperature.

The ‘smart’ home is under ToU energy tariff with ToU feed-
in rates and occasional DPP events. In this tariff structure,
there is no value in making accurate solar insolation forecasts
(as we have demonstrated in [10]), therefore, the variability
of solar insolation is not considered. Furthermore, it was
assumed that the residents are in possession of accurate
outdoor temperature forecasts.

1) Modeling Stochastic Energy Service Demand: The en-
ergy service requirements within a household are most depen-
dent to the occupancy of the house. The demand depends on
the number of occupants, the times at which the occupants are
active, and the times that the occupants are away [11]–[13].
Aside from the presence of occupants, their identities also af-
fect the amount of energy service demand: different occupants
have different tendencies in carrying out activities that would
require different services. There are several attempts to model
these tendencies, one of which is described in [14].

In the absence of an appropriate model that relates occupant
presence to energy service demand, the simplest approach is
to assume a direct relationship between them. That is, energy
service demand is mapped to a particular occupancy level
at all hours of the day. This assumption therefore needs a
mathematical model for hourly occupancy in dwellings.

Earlier studies have modeled building occupancy as a time-
inhomogeneous Markov process in office [15] and domestic
buildings [16]. In these studies, the variability of occupancy
is modeled as an occupancy transition matrix (OTM). This
paper uses a 3-state OTM to model the hourly occupancy in
the ‘smart’ home. The energy service demand in turn depends
on the occupancy. This approach to service demand modeling
has been utilized before [17].

It is assumed that the OTM is already available and the
values are listed in Table III. The entries are the probabilities

TABLE III
OCCUPANCY TRANSITION MATRIX

Hour AWAY to SOME to ALL to
AWAY SOME ALL AWAY SOME ALL AWAY SOME ALL

1 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.05 0.95
2 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
3 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
4 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
5 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.05 0.95
6 0.00 0.00 1.00 0.00 0.95 0.05 0.05 0.05 0.90
7 0.95 0.05 0.00 0.10 0.90 0.00 0.10 0.10 0.80
8 0.95 0.05 0.00 0.15 0.85 0.00 0.15 0.15 0.70
9 0.95 0.05 0.00 0.30 0.70 0.00 0.30 0.30 0.40

10 0.95 0.05 0.00 0.55 0.45 0.00 0.55 0.30 0.15
11 0.95 0.05 0.00 0.80 0.20 0.00 0.80 0.15 0.05
12 0.95 0.05 0.00 0.95 0.05 0.00 0.95 0.05 0.00
13 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
14 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
15 0.95 0.05 0.00 1.00 0.00 0.00 1.00 0.00 0.00
16 0.90 0.05 0.05 0.00 0.90 0.10 1.00 0.00 0.00
17 0.75 0.10 0.15 0.00 0.85 0.15 0.00 0.10 0.90
18 0.50 0.25 0.25 0.00 0.75 0.25 0.00 0.05 0.95
19 0.25 0.25 0.50 0.00 0.50 0.50 0.00 0.05 0.95
20 0.10 0.20 0.70 0.00 0.30 0.70 0.00 0.05 0.95
21 0.05 0.15 0.80 0.00 0.20 0.80 0.00 0.05 0.95
22 0.05 0.05 0.90 0.00 0.10 0.90 0.00 0.05 0.95
23 0.00 0.05 0.95 0.00 0.05 0.95 0.00 0.05 0.95
24 0.00 0.00 1.00 0.00 0.05 0.95 0.00 0.05 0.95

Fig. 2. Probability of the 3 occupancy states at each hour.

that the previous state will change to one of the 3 possible
states in the current hour. The entries were chosen such that
the house occupancy would follow a typical weekday profile.

The probabilities of the 3 occupancy states every hour may
be derived from the OTM. Starting from an ALL initial state
(Hour 0), the probability of the 3 states every hour is shown
in Figure 2. The figure shows a typical weekday occupancy
profile.

2) Forecasting of DPP Events: Electric utilities take into
account two factors when deciding to activate DPP events: the
projected increase in wholesale prices due to the reduction of
generating capacity in the supply side, and the increase of
consumption due to weather and social events in the demand
side [18]. The supply-side issues are generally not transparent
to consumers, therefore, the activation of DPP from their point
of view may be only correlated to weather and social factors.
To date, we are not aware of any tool that consumers can use
to predict the activation of DPP by utilities. Therefore, what
consumers can do is to assume with certain confidence that
DPP will be announced, and the level of confidence may be
based on the weather forecast. In this paper, the consumers
express as a probability πD that DPP may be active for a



particular day.
3) Forecasting PHEV Availability as Storage: There are

no definite mathematical models that describe the tendency
of consumers to use their electric vehicles (or make them
available as storage devices) when they leave their homes.
In this paper, it is assumed that consumers plan beforehand if
they will take the car as they leave. The uncertainty that the
PHEV will be available as energy storage is therefore modeled
as a probability πP that reflects their plan with respect to
the car. If they plan to take the car, then the probability of
availability is 0%, otherwise, the probability is 100%. If the
consumers cannot commit to the availability of the PHEV, then
the probability is somewhere between the two extremes, and
a 50% probability means that they are absolutely unsure of
their plans.

C. Formulation of the DER Schedule

The ES-DST is used to formulate robust DER schedules
using the stochastic programming formulation described in
Section II. That is, the robust day-ahead schedules are for-
mulated by maximizing (11) using different sets of scenarios
that model the variability of occupancy, confidence of DPP
prediction and PHEV availability. The scenario sets are derived
using both backward scenario reduction and forward scenario
selection.

If A = {a1, ..., an} is the set of scenarios that models the
range of uncertainty, and each scenario aj has probability πj ,
the optimal schedule is derived by

1. Mapping each scenario aj to a corresponding day-ahead
energy service demand dj . The desired indoor temperature is
shown in Figure 1(a) whenever the house is occupied. The
hourly hot water and must-run service consumption depends
on the hourly occupancy, using Figures 1(b) and (c).

2. Maximizing the objective function

20∑
j=1

πj

{
T∑

t=1

S∑
i=1

[λES,i(t) · UES,i(t,x, dj)]− C(x, dj)

}
(12)

The scenario set A has 20 scenarios. A scenario in the set
is represented by a 26-element vector and its probability. The
first 24 entries (ao,1, ..., ao,24) represent the occupancy every
hour (ALL = 1, SOME = 0.5, AWAY = 0), the 25th entry (aP )
is the availability of the PHEV as storage device (available
= 1, not available = 0), and the 26th entry (aD) is the status
of DPP (active = 1, not active = 0). The scenario set A is
generated using a 2-step process:

Step 1: A large number of scenarios are generated by
sampling the stochastic variables. A large number of scenarios
should be generated in order to capture a large percentage of
the entire scenario space, and to achieve a better approximation
of uncertainty. A scenario is generated by:
a. Choosing the occupancy sequence by evolving the occu-
pancy states using the OTM. The probability πOcc of that
sequence is also computed using the OTM.
b. Setting the availability of the PHEV by randomly making
the value of aP to 1 or 0. The probability corresponding aP ,

or πPHEV , is equal to πP if aP = 1, otherwise it is equal to
1− πP .
c. Setting the DPP status by randomly making the value of aD
to 1 or 0. The probability corresponding to the aD, or πDPP ,
is equal to πD if aD = 1, otherwise it is equal to 1− πD.
The probability of the generated scenario is therefore equal to

πi = πOcc πPHEV πDPP . (13)

After generating S initial scenarios, the scenario probabilities
are re-computed such that the total probability is equal to 1:

πN =
S∑

i=1

πi then πi =
πi

πN
(14)

Step 2: The elements of the optimal reduced scenario set
are chosen from the sample set using the heuristic scenario
reduction methods described in Section II-B. Both forward
selection and backward reduction methods are implemented
and the faster method is chosen. The distance between two
scenarios, D(ai, aj), is computed by√√√√ 1

24

{
24∑
t=1

(aio,t − ajo,t)
2

}
+ (aiP − ajP )

2 + (aiD − ajD)2

(15)
The robust DER schedule is labeled as ScenRed. Coop-

erative PSO with stochastic repulsion (CPSO-SR) is used to
determine the schedules. CPSO-SR is briefly described in the
appendix. The schedules are formulated using Matlab R2008b,
on a 2.0 GHz Intel Pentium Dual Core CPU. The simulation
is repeated 10 times and the best schedule is chosen.

D. Description of Simulation Cases and Baseline Schedules

Robust schedules are formulated under stochastic occupancy
patterns, different confidence levels of DPP prediction, and
uncertainty in the plans for making the PHEV available as
energy storage. The cases to which robust schedules are
formulated are described below.
Case A. The residents are absolutely confident that DPP will
not be active for the day, therefore, πD = 0.0. There are two
sub-cases:

Case A-1: The residents will take the PHEV when they
leave, hence πP = 0.0.

Case A-2: The residents will make the PHEV available as
storage, hence πP = 1.0.
Case B. The residents are planning to make the PHEV
available as storage, therefore, πP = 1.0. However, they have
varying levels of confidence in their DPP predictions. There
are three sub-cases:

Case B-1: The residents predict that DPP could be active,
but with low probability. Hence πD = 0.20.

Case B-2: The residents are completely unsure on the status
of DPP. Hence πD = 0.50.

Case B-3: The residents predict that DPP is most likely to
be active. Hence πD = 0.80.
Case C. The residents cannot decide beforehand if they
will take the PHEV when they leave, hence πP = 0.50.



TABLE IV
COMPARISON BETWEEN THE SCENARIO REDUCTION METHODS

Number of
sample

scenarios

Sampled
scenario

space (%)

Time to generate
the initial

scenarios (sec)

Time to reduce (mins)
Backward
reduction

Forward
selection

2000 73 9 0.3 5.2
3000 79 20 0.5 11.8
4000 83 39 1.0 21.0
5000 86 64 1.6 32.8

Furthermore, they are completely unsure on the status of DPP,
hence πD = 0.50.

The simulation cases are chosen to demonstrate the effec-
tiveness of the robust scheduling method against the baseline
schedules as the level of uncertainty increases. In Case A,
the occupancy is stochastic, and the residents have concrete
plans for the PHEV and are very confident with their DPP
status prediction. Case B is similar to Case A except that the
residents are not perfectly confident on their DPP predictions.
Case C has the highest amount of uncertainty among all cases.

Two baseline schedules are considered for each simulation
case. The first baseline schedule, HomeAllDay, assumes the
worst case occupancy scenario: the residents are at home the
entire day (ALL) so all energy services should be provided.
The availability of the PHEV and status of the DPP are the
same as that of the simulation case. For example, schedule
HomeAllDay for Case A-1 assumes that the PHEV is not
available as storage and DPP is not active. The second baseline
schedule, ExpectedOcc, is based on the most likely occupancy
pattern for the day. Using Fig. 2 as reference, the most likely
occupancy is all residents are home (ALL) from 6 PM to
8 AM, and all of them are away (AWAY) from 9 AM to 5
PM. Schedule ExpectedOcc is created by solving (12) over 4
scenarios: the most like likely occupancy combined with the
4 possible combinations of DPP and PHEV availability status.
The number of scenarios to which ExpectedOcc is created is
less than 4 if either πP or πD is 0 or 1.

E. Simulation Results: Choosing Between Backward Reduc-
tion and Forward Selection Methods

The backward reduction and forward selection methods are
compared with respect to the amount of time it takes them
to reduce the initial sample of scenarios. The comparison is
shown in Table IV. The first column is the initial number of
sampled scenarios. The second column is the percentage of the
entire scenario space the initial samples represent. This number
is the probability that any randomly generated scenario is part
of the initial sample.

The backward reduction method takes a much shorter time
to reduce the initial scenario set to 20 scenarios, therefore, it
is chosen as the scenario reduction method for ScenRed.

The initial number of scenarios chosen for the succeeding
simulations is 3000. This number is chosen because increasing
3000 to 4000 would only add a small amount to the sampled
space (around 4%) but the reduction time would double
(from 0.5 to 1 minute). Furthermore, the increase from 2000

scenarios to 3000 added around 6% to the sampled space but
only 0.2 minutes to the simulation time.

F. Simulation Results: Formulation of Robust DER Schedules

The robust and baseline schedules are compared to each
other by evaluating them against large sets of scenarios that
are realizations of the stochastic variables. In this paper, these
sets are called evaluation sets, and each evaluation set contains
10,000 unique scenarios. The sum of the probabilities of
all 10,000 scenarios is around 92%. The evaluation sets are
generated by evolving the occupancy states for the entire day
using the occupancy transition matrix and combining them
with particular PHEV availability and DPP states. Therefore,
there are four evaluation sets:

ES-1: PHEV not available and no DPP (aP = 0, aD = 0)
ES-2: PHEV not available and with DPP (aP = 0, aD = 1)
ES-3: PHEV available and no DPP (aP = 1, aD = 0)
ES-4: PHEV available and with DPP (aP = 1, aD = 1)
The comparisons are shown in Table V. The tables show

the expected costs when the schedules are evaluated across the
relevant evaluation sets and the time to generate the schedules.
When a schedule is evaluated over a scenario, the cost is equal
to the sum of the cost of electricity, the cost of undelivered
services, and the cost of battery discharge (computed using the
cost of a battery over its useful life, based on the maximum
number of discharge cycles), less the value of the energy left
in the storage devices (PHEV battery and hot water tank).
This formula is adopted to reflect the inconvenience caused
by undelivered services and the cost of energy remaining in
the storage devices.

Table V shows the expected costs for Case A and the
evaluation sets used to compare the schedules. In Case B,
if the tendency for DPP is unknown (i.e., it can go either
way), then the expected costs for ES-3 and ES-4 may be
averaged to determine the expected costs. All schedules are
effectively evaluated across 20,000 scenarios belonging to
both scenario sets. Using the same argument in Case C, the
expected costs for the four evaluation sets may be averaged if
the tendency for DPP and the availability of the PHEV cannot
be determined. The schedules are therefore evaluated across
the 40,000 scenarios of the 4 evaluation sets.

The results show that ScenRed is the best schedule based
on the expected cost. The large number of scenarios used to
maximize the net benefit is able to capture a wider range
of stochasticity, as suggested by the optimal scenario set
derived for Case A-1 in Table VI. The optimal scenario set
includes scenarios with different departure and arrival times,
and depicts occupancy transitions between ALL and SOME,
and SOME and AWAY on some scenarios. However, ScenRed
takes the longest to generate because it is optimized over 20
different occupancy, PHEV availability, and DPP scenarios.
On the other hand, HomeAllDay is optimized over 1 scenario
while ExpectedOcc is optimized over at most 4 scenarios. The
results also show that in some cases, it is better to assume the
worst occupancy scenario (HomeAllDay), than the most likely
scenario (ExpectedOcc).



TABLE V
SIMULATION RESULTS: EXPECTED COSTS AND SIMULATION TIMES

Case A:

Case HomeAllDay ExpectedOcc ScenRed Eval. Set
A-1 $6.65 (4.3 mins) $4.66 (4.0 mins) $4.00 (60.3 mins) ES-1
A-2 $3.04 (4.2 mins) $3.41 (4.0 mins) $3.02 (62.4 mins) ES-3

Case B:

Evaluation set: ES-3 ES-4 50-50
HomeAllDay(4.1 mins) $3.60 $3.64 $3.62
Case B-1: DPP prediction = 20%
ExpectedOcc (6.8 mins) $3.69 $3.76 $3.72
ScenRed (66.7 mins) $3.06 $3.51 $3.28
Case B-2: DPP prediction = 50%
ExpectedOcc (6.9 mins) $3.67 $3.83 $3.75
ScenRed (60.2 mins) $3.12 $3.25 $3.18
Case B-3: DPP prediction = 80%
ExpectedOcc (7.1 mins) $3.68 $3.74 $3.71
ScenRed (63.7 mins) $3.16 $3.24 $3.20

Case C:

Evaluation set: ES-1 ES-2 ES-3 ES-4 25-all
HomeAllDay (4.1 mins) $4.79 $7.94 $3.60 $3.64 $4.99
ExpectedOcc (11.4 mins) $4.76 $9.20 $3.40 $3.51 $5.28
ScenRed (58.5 mins) $4.19 $7.94 $3.16 $3.22 $4.63

The time to generate the schedules are enclosed in parenthesis.

TABLE VI
OPTIMAL REDUCED SCENARIO SET FOR CASE A-1

Scenario ID
Probability

(%) Hourly Occupancy* aP aD

ar1 10.2 1 0
ar2 7.4 1 0
ar3 7.2 1 0
ar4 6.8 1 0
ar5 6.6 1 0
ar6 6.1 1 0
ar7 5.8 1 0
ar8 5.2 1 0
ar9 5.1 1 0
ar10 4.7 1 0
ar11 4.7 1 0
ar12 4.3 1 0
ar13 4.3 1 0
ar14 3.6 1 0
ar15 3.5 1 0
ar16 3.2 1 0
ar17 3.2 1 0
ar18 3.1 1 0
ar19 2.9 1 0
ar20 2.3 1 0

* White = AWAY; light gray = SOME; dark gray = ALL.

The lower expected cost for ExpectedOcc may be explained
using the DER operational schedules for Case C shown in
Fig. 3. The expected cost is reduced by (a) charging the PHEV
battery toward the end of the off-peak period (to minimize
leakage) and discharging the stored energy during the DPP
period to supply energy that is otherwise bought from the grid;
(b) preheating the house when the residents leave to minimize
the heater consumption during the peak period; (c) maintaining
the indoor temperature within the comfortable range during the
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Fig. 3. ExpectedOcc DER operational schedules for Case C. Shown are the
desired and actual indoor temperatures, DER schedules, and total grid import
and PV output. The DER operation schedules are described by the stored
energy in the PHEV battery (Batt, % of full capacity), space heater power
(SH, in kW), water heater power (WH, in kW), and pool pump power (PP,
in kW).

morning hours in anticipation of the variable departure times;
and (d) heating an adequate amount of water in anticipation of
variable occupancy periods. The higher expected cost in the
other schedules is due to (a) the failure to utilize the PHEV as
energy storage (e.g., in Case A-1); (b) the inability to preheat
the house by the HomeAllDay schedule; (c) the inability
to provide all required energy services by the ExpectedOcc
schedule (e.g., room temperature beyond comfortable range
when the residents leave late and inadequate hot water during
high occupancy days).

V. CONCLUSION

This paper demonstrates that robust day-ahead DER op-
eration schedules may be generated using the ES-DST by
formulating a stochastic programming problem for the DER
scheduler. The schedule is derived by maximizing the net
benefit function over a set of scenarios that model uncertain
energy service demand, DPP status, and availability of the
PHEV as energy storage device.

The simulation results for the ‘smart’ home case study show
that the robust schedule derived using stochastic programming
results in lower expected cost than baseline schedules that
assume the worst case scenario and the most likely occupancy
pattern. The ScenRed schedule, however, takes the longest
time (around 1 hour) to generate because the objective function
is maximized over 20 different scenarios. On the other hand,
it only takes 4 minutes to generate the HomeAllDay schedule,
and 4 to 11 minutes to generate the ExpectedOcc schedule
depending on the level of uncertainty. The long computation
time is not much of a disadvantage because the schedules
are computed off-line. In fact, in a practical application the
residents can prepare several DER schedules (each optimized
for a probability of DPP activation or PHEV availability [and
even occupancy] uncertainty), and simply choose the one to
implement according to their perception of the coming day. To



illustrate, if the consumers are definite that they will make the
PHEV available as storage, but are uncertain of the probability
of DPP, they can simply choose which among the precomputed
schedules to implement: they can choose among the schedules
for Cases B-1, B-2 or B-3, or even choose the schedule
for Case A-2 if they think that DPP probability is closer to
0% than 20%. Furthermore, if they are not certain on the
availability of the PHEV, they can implement the schedule
for Case C. They can even optimize schedules for different
tendencies with respect to PHEV availability, similar to the
different probabilities for the DPP. All of these schedules may
be prepared days, or even weeks ahead of time.

The scheduling method and results presented in this paper
are all preliminary. The objective is only to demonstrate that
the ES-DST maybe utilized to create robust day-ahead DER
schedules. Further studies may be undertaken, some of which
are: (a) analysis for other tariff structures (e.g. peak demand
charges, net feed-in tariff, and real-time pricing); (b) incorpo-
ration of more stochastic variables (e.g. weather); (c) math-
ematical formulation using another stochastic programming
approach (e.g. chance-constrained formulation); (d) improve-
ment of the selection method for the reduced scenario set;
and (e) adoption of other algorithms to optimize the objective
function over the the optimal scenario sets. While practical
implementation may be some way off, the work highlights the
potential value of focusing on robust automated scheduling of
DER in future ‘smart’ homes where there will be considerable
uncertainties to manage.

APPENDIX

COOPERATIVE PSO WITH STOCHASTIC REPULSION

AMONG PARTICLES

Particle swarm optimization (PSO) is a search technique
that belongs to a class of heuristic optimization algorithms
that mimic how a group of simple particles could achieve
complex collective behaviors. In PSO, a particle represents a
candidate solution and the particles are made to wander around
the solution space. The movement of the particles are guided
by the following speed and position equations:

vi
t+1 = ωvi

t+c1r()(xPb,i
t−xi

t)+c2r()(xGb,i
t−xi

t) (16)

xi
t+1 = xi

t + vi
t+1. (17)

CPSO-SR is an improvement of the canonical formulation
of PSO that we proposed in [9]. In cooperative PSO, the vari-
ables are optimized using a divide-and-conquer approach: the
variables to be optimized are divided into several groups, and
a swarm is used to optimize each group [19]. We introduced
repulsion among the particles to discourage early convergence
and to allow the particles to cover a larger region of the
solution space. Repulsion is achieved by allowing a coordinate
to move away from the global and personal best positions,
and this behavior is conditional to a probability which in turn
depends on the iteration number. When a coordinate moves

away from the other particles, the speed is computed by

vi
t+1 = −ωvi

t − c1r()(xPb,i
t − xi

t)− c2r()(xGb,i
t − xi

t).
(18)

The simulations showed that CPSO-SR can achieve better
results than canonical cooperative PSO.
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