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The critical assumption in 171 (and also here) involves the coefficient 
functions. Namely, it is assumed that the set of possible coefficients 

is a polytope. This will be the case when the ui(q) depend (affine) linearly 
on q and the bounding set Q is obtained by assuming an upper bound and a 
lower bound for each component q, of q.  As a consequence of this 
assumption, it is readily verified that the associated family of polynomials 

P { P ( s ,  q) : q E Q) 

is also a polytope generated from the extreme points of the operating 
range Q, i.e., letting q’denote thejth extreme point of Q, it follows that 
P is the convex hull of the finite set of polynomials of the form 

To complete the discussion of the problem formulation, it should be 
noted that this polytope framework provides a more general setting than 
the one considered in Kharitonov’s Theorem [2]. In [2], it is assumed that 
the coefficient variations are independent, whereas the current formula- 
tion allows for linear dependencies. Fundamental to the attainment of our 
main result is the theorem due to Bartlett, Hollot, and Lin [3]. The authors 
in [3] show that the zeros of a polytope of polynomials P lie in a simply 
connected set D if and only if the edges of P have all their zeros in D .  
Hence, one need only test for D-stability of all convex combinations of the 
form 

(YP,(s)+(l-(Y)P,(s); (Y E [O, 11. 

This same simplification is exploited in [7]. 

II. MAIN RESULT 
Robust Schur Stability of a Polytope of Polynomials 

J. E. ACKERMANN AND B. R. BARMISH 
To obtain a discrete-time extension of the result in [l], we use a 

refinement of the Schur-Cohn stability criterion due to Jury and Pavlidis 
[4]. For a polynomial 

Abstract-The main objective of this note is to provide a necessary and 
sufficient condition for a polytope of polynomials to have all its zeros p ( z ) = c  a k z k = a n  n (z-z,)  
inside the unit circle. The criterion obtained serves as a discrete-time , k=O , = I  

counterpart for results in [l] and [7] for the continuous case. Also, the 
results are reduced to operations on (n - 1) x (n - 1) matrices. define the (n - 1) x (n - 1) matrix 

U, U “ - [  U”_2 ... (73 0 2  - 0 0  

0 U, un-l ’ * ‘  U4-Uo Ug-Ul 

0 -U0 -U1 ... U” - U” - 4  U“_ 1 - U”_ 3 

-U0 -U1 -U* -un-3 U,-U,-2 

det S ( P ) = U : - ’ X n  ( l - Z , Z k ) .  

I. INTRODUCTION AND FORMULATION 

The motivation for this note is derived from the so-called robust 

P( .) whose coefficients are functions of a vector of uncertain parameters 
q,  the problem is to ascertain whether P ( * )  remains stable for all q within 
a prescribed bounding set Q. More specifically, we consider the family of 
polynomials 

stability problem for a family of polynomials. That is, given a polynomial S ( P )  = 

n -  I It is shown in [4] that 
P(s, q ) = s ” + C  a k ( q ) s k ;  4 E Q 

k = O  

k =  I 
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If the uk valy continuous~y, it follows that the z, of the polynomial 
P(z) vary continuously and det s(p) = 0 if a Complex pair Of foots 
crosses the unit circle. There are two other possibilities for crossing a 
stability boundary: P(1) = 0 and P( - 1) = 0. The above three cases are 
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the critical stability constraints. For simplicity, we consider monk 
polynomials in the main result below. 

Theorem: Consider the polytope of monk polynomials P having 
generating points { P,(z)} I= whose zeros are inside the unit circle. Then 
all polynomials P( .) E P also have their-zeros inside the unit circle if and 
only if the following condition holds. For all i, j E { 1, 2, . . ., I}, the 
matrix S(P,)S - l(PJ) has no real eigenvalues in ( - w, 0). 

Proof: In accordance with the Edge Theorem in [3], every 
polynomial in P has all its zeros inside the unit circle if and only if the 
exposed edges of P have all their zeros inside the unit circle. 
Equivalently, given any i, j E (1, 2, . .., I} and any a E [0, I], the 
polynomial aP,(z) + (1 - a)P,(z) must be stable. Now, in view of the 
stability of the generators of P and the critical stability constraints in [4], 
we arrive at the following point: every polynomial in .P is stable if and 
only if given any i ,  j E { 1, 2, . . . , I} and a E (0, l) ,  we have 

i) aP , ( l )  + (1 - a)P,(l) # 0 
ii) aP,(- 1) + (1 - a)P,(- 1) # 0 
iii) det S[(aP, + (1 - a)PJ)] # 0. 

By stability of the generating points, we have P,(l)  > 0, PJ(l)  > 0, 
and therefore aP,(1) + (1 - a)P,(l) > 0. A similar argument holds for 
P,( - l), PJ( - 1). Therefore, conditions i) and ii) are satisfied for all CY E 
(0, 1). 

Now, we observe that condition iii) holds if and only if S[aP, + (1 - 
a)P,] = aS(P, )  + (1 - a)S(P,) is nonsingular for all a E (0, 1). 
Equivalently, S(P, )  - ((a - l)/a)S(PJ) is nonsingular for all a E (0, 
1). To complete the proof, we can divide by S(PJ) (since P,(z) is discrete- 
time stable) and replace (a - 1)/a by a new variable X E ( -  OJ, 0). 
Therefore, all polynomials in P are discrete-time stable if and only if 

det [ X I -  S(P,)S-  I (P,)])  # 0 

for all X E ( -  00, 0) and all i, j E { I ,  2, . . * ,  I}. That is, for each pair i, 
j E { 1, 2, . . . l},,S(P,)S-I(P,) has no real eigenvalues in ( -  03, 0). 

U 
Remarks: 
1) The conditions of the theorem can be checked numerically using 

standard software for matrix inversion and eigenvalue calculation. 
2) If it is desired to find stable ranges for a along the edges, then for all 

negative real eigenvalues Xk of S(P,)S-I(P,),  the corresponding (Yk = 1/ 
(1 - Ik)  at the stability boundaries are easily calculated. 

3) The requirements of the theorem above can be relaxed in two ways. 
First, for nonmonic polynomials, the theorem remains valid as long as the 
leading coefficient a,, does not change sign over the given family P. 
Second, the requirement that one must check S(P,)S-I(P,) for all 
combinations of i and j is stronger than necessary. In fact, one need only 
deal with those values of i and j corresponding to exposed edges of P; see 

4) The dimension of the matrix S i s  (n - 1) x (n - 1). Similarly, the 
PI. 

result of [I]  can be simplified by using the matrix 

instead of the full Hurwitz matrix H. This follows from Orlando's 
formula [5] 

det A=(-1)n("-l)/Zxan-Ix " fi (S,+Sk)  

, = I  
,<k 

If a pair of complex conjugate roots s,, sk crosses the imaginary axis, then 
det H = 0. 

unktable 3 
4 - 

0 1 5 q1 
P(11.0 

Fig. 1. The polytope of polynomials with vertices P I ,  P2, P3, P4 corresponding to the 
operating range Q is not entirely stable. 

111. EXAMPLE 

Consider the polytope of polynomials described by 

P(z, 41, q2)=(-0.825+0.225qj +O.lqz)+(O.895+O.O25qi +O.O9qz)Z 

+ ( - 2.475 + 0.67591 + 0.3q2)Z2 + Z3 

with Q = {q:q1 E [I,  51; 4 2  E [I, 21). 
The four extreme polynomials are 

Pl(Z)=P(z* 5 ,  3 ,  S ( z ) = P ( z ,  5 ,  1) 

P*(z)=P(z, 1, 2), P4(z)=P(z, 1, 1) 

and it is easily verified that their zeros are inside the unit circle. The four 
S matrices are 

Only two of them must be inverted to obtain S(pi)S-I(P,) for the four 
edges. 

i) Edge PI  - P2 
r 1 

with eigenvalues XI = - 0.289 and X2 = - 4.711. 
ii) Edge P4 - P2 

r 1 

with eigenvalues Xl = 2.079 and h2 = 1,098. 
iii) Edge P I  - P3 

with eigenvalues Xl,2 = 1.167 -t j0.260. 
iv) Edge P4 - P3 

1 

with eigenvalues XI  = -0.621 and h2 = -3.760. 
The edges P4 - P2 and PI  - P, do not yield negative real eigenvalues, 

i.e., they are discrete-time stable. Edge P I  - P2, however, has two 
negative, real eigenvalues and stability boundaries at q1 = 4.101 (A in 
Fig. l) ,  and q1 = 1.700 (B in Fig. 1). Edge P4 - P3 intersects the 
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stability boundary at ql = 2.532 (D in Fig. 1) and ql = 4.16 (C in Fig. 
1). Thus, the polytope is not entirely discrete-time stable. 

For comparison, Fig. 1 also shows the true stability boundaries. They 
are obtained by the parameter space method [6] in an implicit form as 

1 I -11.268 I . .. 

where 7 is the real part of a pair of roots on the unit circle in the z-plane. 
The intersections with the edges of Q correspond to 7* = - 0.298, 7c = 
-0.211, 7D = 0.155, and 7B = 0.242. 

IV. CONCLUSIONS 

By the edge result of [3], it suffices to check the exposed edges in order 
to determine whether a polytope of polynomials has all its zeros in a 
simply connected region D. The edges could be tested, for example, by 
plotting a root locus with parameter a and checking whether it is located 
entirely in the desired D region. This sweep along edges can be avoided 
for continuous-time systems with D being the left half-plane; see [l]. In 
the present note this result is extended to the discrete-time case and 
reduced to operations (inversion, eigenvalue calculation) on (n - 1) x (n 
- 1) matrices. 
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A Generalized MFD Criterion for Fixed Modes 

XIAO-MING XU, YU-GENG XI, AND ZHONG-JUN ZHANG 

Abstract-A generalized MFD criterion for fixed modes with arbitrar- 
ily constrained feedback structure is presented. The efficiency of the new 
criterion in structure analysis is illustrated by a numerical example. 

I. INTRODUCTION 

Consider the system [l] 
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Here, GI E RnX”i,  HI E Rnx7i. Let K be the set of block-diagonal 
matrices 

X={KIK=blockdiag(K,, ..., Km) ,  K,  E R ” I ~ ? ~ } .  (1.2) 

Then the set of fixed modes of { F, GI, HI’, i = 1, . . . , m} with respect 
to K is defined as 

where U ( . )  denotes the set of eigenvalues. 
In order to calculate fixed modes, Wang and Davison presented an 

applicable algorithm in [l]. But the algorithm did not give deep insight 
into the mechanism and characterization of fixed modes. 

Anderson and his co-workers studied the algebraic characterization of 
fixed modes and achieved some new results. Their main contributions in 
121 could be summarized in an algebraic criterion for fixed modes based 
upon matrix fraction descriptions (MFD). Although Anderson’s criterion 
is well known in the field of decentralized control, it can only be used for 
blockdiagonal feedback structure matrix. 

In this note, a new criterion for fixed modes with arbitrarily constrained 
feedback is developed which generalizes Anderson’s criterion. 

E. A NEW CRITERION FOR FIXED MODES 

Let X(al ,  . . . , aI/pI ,  * , p,) be the submatrix formed by the rows q, 
. . . , a, and the columns P I ,  . . . , P, of matrix X, X y ( a I ,  * . . , a,; PI, . . . , 
8,) the matrix with replacing the columns a,, . . . , a, of X by the columns 
PI, s . 1 ,  P, of Y, and G(s) = H’(sZ - F ) - %  = A-’(s)B(s) the 
irreducible left matrix fraction description of system (H‘ , F, G) [3]. 

Definition 2.1: For ith order index group Q ,  = (QI, . . . , a,; PI,  * 3 ,  

8,) with 1 5 i 5 m, where both {a l ,  ..., a,} and {&, ..., P I }  are 
strictly increasing subsequences of { 1, . . . , m}, if there exists a K E K 
such that det K(a l ,  * e ,  a,!fl,, . * , P I )  f 0, then Q, is called an ith order 
effective index group of K. The total number of the ith order effective 
index groups is denoted by I , .  We specify that Q, = 4 (empty set) is also 
effective and I, = 1. 

Definition 2.2: If Q; = (a;, . . . , a;; &, . . . ,&) is one of the ith order 
index groups with 0 5 i 5 m, 1 5 j 5 I,, where I ,  is the number of ith 
order effective index groups of K, then 

is called the adjoint polynomial of Q;l .  
Lemma 2. I: There is the following relationship between the closed- 

loop characteristic polynomial of the system (1.1) with feedback U, = 
K,y, and all adjoint polynomials 

r = O  , = I  

whereK = blockdiag{K,, ..., K,}, H = blockdiag{H,, ..., H,} 
and 

The proof of Lemma 2.1 is omitted here and the details can be found in 

Theorem 2.1: s, is a fixed mode, with multiplicity r, of system (H’,  F, 
[41. 

G) w.r.t. K i f  and only if 
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