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Abstract—This paper studies robust transmission schemes for
MISO wiretap channels with imperfect channel state information
(CSI) for the eavesdropper link. Both the cases of direct transmis-
sion and cooperative jamming with a helper are investigated. The
error in the eavesdropper’s CSI is assumed to be norm-bounded,
and robust transmit covariance matrices are obtained based on
worst-case secrecy rate maximization, under both individual and
global power constraints. Numerical results show the advantage
of the proposed robust design. In particular, under a global power
constraint, although cooperative jamming is not necessary for
optimal transmission with perfect eavesdropper’s CSI, we show
that robust jamming support can increase the secrecy rate in the
presence of channel mismatch.

I. INTRODUCTION

Security is an important concern in wireless networks.
There has recently been considerable interest in the use of
physical layer mechanisms to improve the security of wireless
transmissions. The theoretical basis of this area was initiated
by Wyner, who introduced and studied the wiretap channel
[1]. Recently, considerable research has investigated secrecy in
wiretap channels with multiple antennas [2], [3]. In particular,
for multiple-input single-output (MISO) wiretap cannels, the
optimal transmit covariance matrix was found to be single-
stream beamforming obtained via a closed-form solution [4],
[5].

With the additional degrees of freedom in multi-antenna or
multi-node systems, some work has considered improving the
secrecy rate through the use of artificial interference [6], [7].
Some recent work has also considered using friendly helpers to
provide jamming signals to confuse the eavesdropper [8]–[10].
This approach is often referred to as cooperative jamming. The
optimal transmit weights for multiple single-antenna helpers
was studied in [8], where a global power constraint was
imposed. A similar case with individual power constraints
was studied in [9]. However, most of the previous work on
cooperative jamming assumes perfect global channel state
information (CSI), including CSI for the eavesdropper (which
we refer to as ECSI). This motivates us to investigate the case
when the transmitters have only imperfect ECSI.

In this paper, we study robust transmit precoder design
for MISO wiretap channels. We assume that perfect CSI for
the legitimate links is available at both transmitters, while
for the eavesdropper links there exist channel mismatches
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that are norm-bounded by some known constants. Following
[4], Gaussian inputs are assumed in the paper. We focus on
obtaining robust transmit covariance matrices for both direct
transmission (DT) and the cooperative jamming (CJ) schemes
with a helper (friendly jammer), based on maximizing the
worst-case secrecy rate. We begin by studying the optimization
problem under an individual power constraint, and then a
more complicated case with a global power constraint is
investigated.

The organization of the paper is as follows. Section II
describes the system model. In Section III, robust design
of the transmit covariance matrix is studied for the direct
transmission scheme. The robust cooperative jamming scheme
is then investigated in Section IV. Simulation examples are
given in Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a MISO communication system with a source
node (Alice), a helper (Helper), a destination (Bob), and an
eavesdropper (Eve). The number of antennas possessed by
Alice and the Helper are denoted by Na and Nh, respectively,
while both Bob and Eve are single-antenna nodes. In this
model, Alice sends private messages to Bob in the presence
of Eve, who is able to eavesdrop on the link between Alice
and Bob. The Helper can choose to be silent or to transmit
artificial interference signals to confuse Eve. Both cases will
be considered in the paper, and we refer to the former case as
direct transmission (DT) and the latter as cooperative jamming
(CJ).

A. Direct Transmission

When there is no support from the Helper, the received
signals at Bob and Eve are given by

yb = hbx + nb (1a)

ye = hex + ne (1b)

where x is the signal vector transmitted by Alice, the covari-
ance matrix of x is denoted by Qx = E{xxH}, tr(Qx) ≤ PS

where PS is the transmit power constraint on Alice, and
{hb,he} are the 1 × Na channel vectors for Bob and Eve,
respectively. The terms nb and ne represent naturally occurring
noise at Bob and Eve, and we assume that nb and ne are zero-
mean circular complex Gaussian with variance σ2

b and σ2
e . We

will assume without loss of generality that σ2
b = σ2

e = σ2.
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B. Cooperative Jamming

For the case where the Helper joins the network by trans-
mitting an i.i.d. Gaussian interference signal z, Bob and Eve
then receive

yb = hbx + gbz + nb (2a)

ye = hex + gez + ne (2b)

where we denote Qz = E{zzH} and tr(Qz) ≤ PJ .

C. Channel Mismatch

For the channels between the transmitters and Eve, only
estimates h̃e and g̃e are available at Alice and the Helper,
respectively. We define the channel error vectors as

eh = he − h̃e (3a)

eg = ge − g̃e, (3b)

and we assume that the channel mismatches lie in the bounded
sets Eh = {eh : ||eh||2 ≤ ε2h} and Eg = {eg : ||eg||2 ≤ ε2g},
where εh and εg are known constants.

III. ROBUST DIRECT TRANSMISSION

In this section, we consider the scenario where there is no
jamming support from the Helper. According to the signal
model (1) and (3), the secrecy rate is [4]

Rs = log2

(
1 +

1
σ2

hbQxhH
b

)

− log2

(
1 +

1
σ2

(h̃e + eh)Qx(h̃H
e + eh)

)
. (4)

A power constraint is imposed such that Qx ∈ Qx = {Qx :
Qx � 0, tr(Qx) ≤ PS}. For the case where perfect ECSI
is available, the optimal Qx has been found to be unit-rank
and the corresponding beamformer is the generalized eigen-
vector of the matrix pencil (σ2I + PShH

b hb, σ
2I + PShH

e he)
corresponding to the largest generalized eigenvalue [4], [5].

We consider the case where Alice does not have perfect
knowledge of the channel to Eve, but only has an estimate h̃e.
We focus on optimizing the worst-case performance, where we
maximize the secrecy rate for the worst-case channel mismatch
eh in the bounded set Eh. Therefore, the optimization problem
(4) becomes

max
Qx∈Qx

min
eh∈Eh

σ2 + hbQxhH
b

σ2 + (h̃e + eh)Qx(h̃e + eh)H
. (5)

The difficulty in solving this problem comes from the inner
minimization over eh. As will be discussed later, the mini-
mization is actually a non-convex problem. However, we will
show that through a proper transformation, problem (5) can
be converted to a solvable quasiconvex optimization problem.

Proposition 1: Problem (5) is equivalent to the following
problem

min
Qx,μ,Ψ

σ2 + με2h + tr[(Qx + Ψ)h̃H
e h̃e]

σ2 + tr(QxhH
b hb)

(6a)

s.t.
[

μINa
− Qx Qx

Qx Ψ

]
� 0 (6b)

tr(Qx) ≤ PS (6c)

Qx � 0, μ ≥ 0. (6d)

Proof: The maximin problem (5) can be transformed to

max
Qx∈Qx,v

σ2 + hbQxhH
b

v

s.t. σ2 + (h̃e+eh)Qx(h̃e + eh)H ≤ v, ∀eh : eheH
h ≤ ε2h.

where the constraint can also be expressed as

− ehQxeH
h − 2Re(h̃eQxeH

h ) − h̃eQxh̃H
e − σ2 + v ≥ 0,

∀eh : −eH
h eh + ε2h ≥ 0. (8)

Using the S-Procedure [11], we know that (8) holds if and
only if there exists a μ ≥ 0 such that[

μINa
− Qx −Qxh̃H

e

−h̃eQx −h̃eQxh̃H
e − σ2 − με2h + v

]
� 0. (9)

Then we can use the property of the generalized Schur
complement [12] and rewrite (9) as

σ2 + με2h + h̃eQxh̃H
e + h̃eQx(μINa

− Qx)†Qxh̃H
e ≤ v,

where (·)† represents the pseudo-inverse. Therefore, the max-
imin problem in (5) becomes a maximization problem

max
Qx∈Qx,μ≥0

σ2 + hbQxhH
b

σ2 + με2h + h̃eQxh̃H
e + h̃eQx(μINa

− Qx)†Qxh̃H
e

which is equivalent to

max
Qx∈Qx,μ≥0,Ψ

σ2 + hbQxhH
b

σ2 + με2h + h̃eQxh̃H
e + h̃eΨh̃H

e

(10a)

s.t. Qx(μINa
− Qx)†Qx � Ψ. (10b)

Next, we use the Schur complement to convert (10b) into a
linear matrix inequality (LMI), and the maximization problem
is then given by

min
Qx∈Qx,μ≥0,Ψ

σ2 + με2h + tr[(Qx + Ψ)h̃H
e h̃e]

σ2 + tr(QxhH
b hb)

s.t.
[

μINa
− Qx Qx

Qx Ψ

]
� 0,

which completes the proof.
Problem (6) consists of a linear fractional objective function

(with a positive denominator), which is thus quasiconvex, with
a set of LMI constraints. Therefore, we can solve this problem
efficiently via the bisection method [11].

Note that the optimal covariance Q∗
x obtained from Propo-

sition 1 is based on a hidden worst-case channel mismatch
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e∗h. Next, we will explicitly determine e∗h under the bounded
constraint. The problem is formulated as

max
eh

(h̃e + eh)Q∗
x(h̃e + eh)H (11a)

s.t. ||eh|| ≤ εh. (11b)

This is a non-convex problem since we want to maximize
a convex function. However, we can still obtain the global
optimum by solving its dual problem, as explained in the
following proposition.

Proposition 2: The worst-case channel mismatch for prob-
lem (11) is given by eh = heQ∗

x(λI − Q∗
x)†, where λ is the

solution of the following problem

max
λ≥0,γ

γ (12a)

s.t.
[

λI − Q∗
x Q∗

xh̃
H
e

h̃eQ∗
x −h̃eQ∗

xh̃
H
e − λε2h − γ

]
� 0. (12b)

Proof: Problem (11) can be rewritten as

min
eh

− ehQ∗
xe

H
h − 2Re(h̃eeH

h ) − h̃eQ∗
xh̃

H
e (13a)

s.t. eheH
h ≤ ε2h. (13b)

This is a non-convex problem since its Hessian is negative
semidefinite, i.e. −Q∗

x � 0, and the Lagrangian is

L(eh, λ)

= −ehQ∗
xe

H
h − 2Re(h̃eQ∗

xe
H
h ) − h̃eQ∗

xh̃
H
e + λ(eheH

h − ε2h)

= eh(λI − Q∗
x)eH

h + 2Re(−h̃eQ∗
xe

H
h ) − h̃eQ∗

xh̃
H
e − λε2h

where λ ≥ 0 and the dual function is given by

g(λ) = inf
eh

L(eh, λ)

= −h̃eQ∗
xh̃

H
e − λε2h − h̃eQ∗

x(λI − Q∗
x)†Q∗

xh̃
H
e

where λI − Q∗
x � 0 and Q∗

xh̃
H
e ∈ R(λI − Q∗

x). The
unconstrained minimization of L(eh, λ) w.r.t. eh is achieved
when eh = heQ∗

x(λI − Q∗
x)†. The dual problem is thus

max
λ

− h̃eQ∗
xh̃

H
e − λε2h − h̃eQ∗

x(λI − Q∗
x)†Q∗

xh̃
H
e (14a)

s.t. λI − Q∗
x � 0, Q∗

xh̃
H
e ∈ R(λI − Q∗

x). (14b)

Using a Schur complement, the dual problem becomes the
following SDP

max
λ≥0,γ

γ (15a)

s.t.
[

λI − Q∗
x Q∗

xh̃
H
e

h̃eQ∗
x −h̃eQ∗

xh̃
H
e − λε2h − γ

]
� 0. (15b)

Note that (13) is usually called a trust region subproblem
(TRS), and it has been proven that strong duality holds for
TRS although the objective function is non-convex [13]. Thus
the optimal value of (13) and (15) are the same.

Note that (12) is a semidefinite program (SDP) and hence
can be solved efficiently using, for example, the interior-point
method [11].

IV. ROBUST COOPERATIVE JAMMING

We now consider the case when the Helper provides coop-
erative jamming to improve the secrecy rate. According to the
signal model in (2) and (3), the secrecy rate is

Rs = log2

(
1 +

hbQxhH
b

gbQzgH
b + σ2

)

− log2

(
1 +

(h̃e + eh)Qx(h̃e + eh)H

(g̃e + eg)Qz(g̃e + eg)H + σ2

)
. (16)

We will first consider the optimization problem under indi-
vidual power constraints, i.e. Qx ∈ Qx = {Qx : Qx �
0, tr(Qx) ≤ PS} and Qz ∈ Qz = {Qz : Qz � 0, tr(Qz) ≤
PJ}, and then we investigate a more complicated case where
a global power constraint is imposed. We will use a zero-
forcing (ZF) constraint QzgH

b = 0 on the jamming signal
for the CJ problem, since the ZF jamming offers performance
close to the optimal cooperative jamming solution for MISO
wiretap channels [14]. With this constraint, the maximization
of RS with respect to Qz does not depend on Qx, although the
optimal Qx still depends on Qz . Thus, we will first optimize
Qz and then the optimal Qx can be calculated.

A. Individual Power Constraint

For the case of perfect ECSI, the optimal Qz under the ZF
constraint is given by Qz = PJwwH [14], where w is the
unit-norm one-dimensional beamformer for the Helper, and

w∗ =
(INh

− Pgb)gH
e

||(INh
− Pgb)gH

e ||
where Pgb = gH

b (gbgH
b )−1gb is the orthogonal projection

onto the subspace spanned by gH
b . The optimal informa-

tion covariance matrix Qx, similar to the perfect ECSI case
discussed in Section III, is unit-rank and the corresponding
beamformer is the generalized eigenvector of the matrix pencil
(σ2I+PShH

b hb, σ
2
zI+PShH

e he) with the largest generalized
eigenvalue, where σ2

z = σ2 + geQzgH
e .

For the case of imperfect ECSI, we still solve for the
jamming covariance Qz first, and the optimization problem
becomes

max
Qz∈Qz

min
eg∈Eg

(g̃e + eg)Qz(g̃e + eg)H (17a)

s.t. gbQzgH
b = 0. (17b)

Proposition 3: Problem (17) is equivalent to the following
problem

max
Qz,μ,Ψ

tr[(Qz − Ψ)g̃H
e g̃e] − με2g (18a)

s.t.
[

μINh
+ Qz Qz

Qz Ψ

]
� 0 (18b)

Qz � 0, μ ≥ 0, tr(Qz) ≤ PJ (18c)

gbQzgH
b = 0. (18d)

Proof: The proof is along the same line as that for
Proposition 1 and is omitted.
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Problem (18) is an SDP that consists of a linear objective
function together with a set of LMI constraints. Therefore, we
can solve this problem efficiently. Note that the corresponding
e∗g can also be expressed explicitly via a method similar to that
in (11)-(12). With solutions for Q∗

z and e∗g , we can follow (5)-
(6) and formulate the optimization problem over Qx as

max
Qx∈Qx

min
eh∈Eh

σ2 + (g̃e + e∗g)Q
∗
z(g̃e + e∗g)

H + hbQxhH
b

σ2 + (h̃e + eh)Qx(h̃e + eh)H
,

(19)
which can be solved with the same procedure as in Section
III.

B. Global Power Constraint

As with the previous case, we will assume a zero-forcing
constraint for the helper’s jamming signal at Bob. We in-
vestigate the joint optimization over Qx, Qz and the power
allocation between Alice and the Helper, under the constraint
that tr(Qx)+ tr(Qz) = p1+p2 ≤ P . Unfortunately, a one-step
joint optimization of (16) over the variables Qx, Qz , p1 and p2

is difficult to perform. Thus we use the primal decomposition
method [15] by decomposing the original problem into several
subproblems controlled by a master problem, and using an
iterative method to find the solution. In this case, from the
previous section, we know that the subproblems involving Qz

and Qx in (17) and (19) are both convex for given p1 and p2.
Thus our first step will be to estimate Qx and Qz for some
initial p1 and p2, then we will find the optimal p1 and p2 for
the resulting Qx and Qz , and continue in this iterative manner
to find the beamformers and power allocation.

First, for given Qx and Qz , let Qx = p1Q̄x and Qz =
p2Q̄z where Q̄x and Q̄z are normalized such that tr(Q̄x) = 1
and tr(Q̄z) = 1. Hence the maximization of the secrecy rate
(16) with respect to p1 and p2 is equivalent to

max
p1,p2≥0

p1p2c1c3 + p1c1σ
2 + p2c3σ

2 + σ4

p1c2 + p2c3 + σ2
(20a)

s.t. p1 + p2 ≤ P (20b)

where c1 = hbQ̄xhH
b , c2 = (h̃e + eh)Q̄x(h̃e + eh)H , c3 =

(g̃e + eg)Q̄z(g̃e + eg)H .
Lemma 1: Problem (20) is convex, and the optimum is

achieved when p1 + p2 = P .
Proof: The convexity of (20a) can be validated by ex-

amining its second derivative, and the details are omitted. The
proof of p1+p2 = P is straightforward: assuming that the best
power strategy is obtained as p′1 and p′2 where p′1 + p′2 < P ,
we can always increase p′2 up to P−p′1 in order to improve the
secrecy rate in (16), since the jamming signal z only interferes
with Eve due to the ZF constraint. Therefore, the optimum is
achieved when the entire power budget is used.

According to Lemma 1, we replace p2 with P − p1 and
rewrite (20a) as

f(p1) =

− c1c3p
2
1 − (c1c3P + c1σ

2 − c3σ
2)p1 − (c3σ

2P + σ4)
(c2 − c3)p1 + c3P + σ2

.

(21)

We can then obtain the optimal power allocation by finding
the stationary point of f(p1). Taking the first-order derivative
of f(p1) and equating it to zero, we have{

p1,1 = − c3P+σ2

c2−c3
+

√
Δ

2c1c3(c2−c3)

p1,2 = − c3P+σ2

c2−c3
−

√
Δ

2c1c3(c2−c3)

where

Δ = 4c1c3(c3P + σ2)(c2c3σ
2 + c1c2c3P + c1c2σ

2 − c2
2σ

2).

Since p1 lies in the range [0, P ], it is easy to verify that p1,2

is not a solution since{
− c3P+σ2

c2−c3
−

√
Δ

2c1c3(c2−c3)
≤ 0, for c2 > c3

− c3P+σ2

c2−c3
−

√
Δ

2c1c3(c2−c3)
≥ − c3P

c2−c3
≥ P, for c2 < c3.

For the case of c2 = c3, maximizing f(p1) in (21) amounts
to minimizing

f1(p1) = c1c3p
2
1 − (c1c3P + c1σ

2 − c3σ
2)p1 − (c3σ

2P +σ4),

which is still a convex function with the minimizer

p1 =
c1c3P + c1σ

2 − c3σ
2

2c1c3
. (22)

Therefore, the optimal solutions for (20) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p∗1 =⎧⎪⎪⎨
⎪⎪⎩

min
{[

− c3P+σ2

c2−c3
+

√
Δ

2c1c3(c2−c3)

]+
, P

}
, for c2 �= c3

min
{[

c1c3P+c1σ2−c3σ2

2c1c3

]+
, P

}
, for c2 = c3

p∗2 = P − p∗1.
(23)

Now we can conduct the joint optimization that considers
both the information/jamming covariances and the power allo-
cation between them. The main steps are outlined as follows:
Algorithm Joint optimization for robust CJ
Initialize p

(0)
1 = p

(0)
2 = P

2 .
For iteration k

1) Let PS = p
(k−1)
1 , PJ = p

(k−1)
2 and solve problem

(17) and (19) to obtain Q(k)
z , e(k)

g , Q(k)
x , and e(k)

h

respectively.

2) Let Q̄(k)
x = Q(k)

x

tr(Q(k)
x )

, Q̄(k)
z = Q(k)

z

tr(Q(k)
z )

and solve problem

(20) to obtain p
(k)
1 and p

(k)
2 .

3) Apply the resulting p
(k)
1 and p

(k)
2 to step 1 and loop until

convergence.
Our extensive numerical experiments, some results of which
are shown in Section V, further illustrate that the global
optimum is obtained through this procedure.

V. NUMERICAL RESULTS

In this section, we present some numerical examples of the
proposed robust transmission schemes. For all examples, we
assume Alice and the Helper both have four antennas, i.e.
Na = Nh = 4, while Bob and Eve each has one. The channel
matrices are assumed to be composed of independent, zero-
mean Gaussian random variables with unit variance. All results
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Fig. 1. Worst-case secrecy rate vs. transmit power fraction, P = 10dB.

are calculated based on an average of 1000 independent trials.
The background noise power is assumed to be the same at Bob
and Eve, σ2

b = σ2
e = 1, and the transmit power P is defined

in dB relative to the noise power. In addition to the robust DT
and CJ schemes, we also examine the non-robust generalized
eigenvector scheme discussed in Section III for purposes of
comparison, and we refer to it as GEV DT in the simulation.

In Fig. 1, we compare the performance of the robust CJ
scheme under both global and individual power constraints.
In this case, we assume the global power limit P is 10dB,
PS and PJ are the individual power constraints for Alice and
the Helper respectively, and PS + PJ = P . The benefit of
having the flexibility associated with a global power constraint
over fixed individual power constraints is clearly evident.
Also it can be seen that the proposed joint optimization
procedure achieves the optimal worst-case secrecy rate. When
ε2h increases, a larger fraction of the transmit power must be
devoted to jamming in order to reach the higher secrecy rate.

The impact of ε2h on the secrecy rate of the different schemes
is presented in Fig. 2. The transmit power fraction for the
robust CJ scheme is also plotted, and a global power constraint
is used in this case. We assume P is 3dB, and the channel
mismatch ε2g between the Helper and Eve is fixed at 0.5.
It can be observed that when ε2h = 0, a jamming signal is
not necessary, and all schemes achieve the same secrecy rate.
However, when ε2h increases, the robustness of the CJ scheme
is more obvious, and the jamming fraction of the total transmit
power also increases.

VI. CONCLUSIONS

In this paper, we studied robust transmit design for MISO
wiretap channels with imperfect ECSI. Robust transmit covari-
ance matrices were obtained for both the direct transmission
and cooperative jamming schemes, based on worst-case se-
crecy rate maximization. The benefits of the robust designs
were illustrated through the numerical results. We conclude
that although cooperative jamming is not helpful when perfect
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Fig. 2. Worst-case secrecy rate and transmit power fraction vs. channel
mismatch ε2h, when ε2g = 0.5, P = 3dB.

ECSI is available under a global power constraint, the worst-
case secrecy rate can be increased by using jamming support
from the helper when the ECSI is imperfect, provided that
robust beamforming is employed.
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