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Abstract— Segmenting and tracking of objects in video is

of great importance for video-based encoding, surveillance

and retrieval. However, the inherent difficulty of object seg-

mentation and tracking is to distinguish changes in the dis-

placement of objects from disturbing effects such as noise

and illumination changes.

Therefore, in this paper, we formulate a colour-based

deformable model which is robust against noisy data and

changing illumination. Computational methods are pre-

sented to measure colour constant gradients. Further, a

model is given to estimate the amount of sensor noise

through these color constant gradients. The obtained un-

certainty is subsequently used as a weighting term in the

deformation process.

Experiments are conducted on image sequences recorded

from 3D scenes. From the experimental results it is shown

that the proposed colour constant deformable method suc-

cessfully finds object contours robust against illumination,

and noisy, but homogeneous regions.

Keywords- object segmentation, object tracking, video, de-

formable models, colour, colour constancy, noise models,

multi-valued gradients.

I. Introduction

The segmentation and tracking of real-world 3D objects
in video sequences is of great importance for video encod-
ing, surveillance and retrieval, and significant progress has
been made [1], [2], [5], [6], [12], [16], [21], [23]. The in-
herent difficulty of video-based object tracking is that as a
rigid object moves in a 3D scene then its shape becomes
a perspective projection on the image frames. In general,
to achieve robust object tracking, geometric models are
used for this shape transformation. In the simplest case,
the shape of the object undergoes a translational trans-
formation from one frame to another in which a simple
cross-correlation technique will suffice. The translational
model can be extended to include rotation, scaling, shear-
ing, up to affine transformation [3]. When sufficient feature
points (i.e. edges and corners) are available, objects can
be tracked reliably in this manner. However, for non-rigid
objects, such as humans, object motion is more complex
than affine transformations. Therefore, Kalman filtering
has been proposed for tracking of non-rigid objects. The
performance of Kalman-based tracking systems is severely
hampered in the presence of false observations. To reduce
the effect of noisy data, the search area could be restricted
[6] similar to active contours [10], [11], [13]. Active contours
use edge detection to compute internal/external energies.
Assuming that the object displacement between frames is
small, object tracking by deformable models achieve high
tracking performance. Therefore, in this paper, we focus
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on deformable models for object tracking. However, in all
of the above object tracking approaches it is difficult to dis-
tinguish changes in the displacement of the objects which
are due to real object movement from disturbing displace-
ment effects such as noisy data and illumination changes.
As a consequence, the tracking process can be distracted
from the target object [23] decreasing the accuracy of the
tracking process.

In this paper, we aim at formulating colour-based de-
formable models to segment and track objects in video
robust against noisy data and varying illumination. To
achieve this, computational methods are presented to mea-
sure colour constant gradients. Further, a model is pro-
posed for the estimation of sensor noise through these color
constant gradients. As a result, the associated uncertainty
is known for each color constant gradient value. The asso-
ciated uncertainty is subsequently used to weight the color
constant gradient during the deformation process. As a
result, noisy and unstable gradient information will con-
tribute less to the deformation process than reliable gra-
dient information yielding robust object segmentation and
tracking.

The paper is organized as follows. In Section II, defini-
tions are given on deformable contours. In Section III,
computational methods are presented to integrate color
and noise-robustness into these deformable contours. Fi-
nally, experiments are conducted in Section IV.

II. Definitions

Deformable models are used in the process of object seg-
mentation and tracking by providing high-level information
in the form of continuity constraints and low-level infor-
mation in terms of minimum energy constraints related to
image characteristics [4], [10], [15], [22], for example. In
general, deformable models use low-level image character-
istics based on intensity gradient information. However,
intensity gradients are sensitive to illumination conditions.
Therefore, our attention is focussed on the use of color in-
formation. Sapiro introduces the concept of color snakes
[18], [19] using snakes (via level-sets) with gradients com-
puted from multi-valued images. However, profound illu-
mination effects may still introduce accidental edges such as
shadow and shading edges. Also severe changes in spectral
composition of the illumination may introduce artifacts.
Therefore, we aim at computing colour constant gradients
in a principled way to steer the deformable model to con-
verge to object contours instead of boundaries produced
by illumination changes. Further, the aim is to obtain ro-
bustness against noisy data. To this end, the associated
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uncertainty is computed for the color constant gradients
and integrated in the deformation scheme.

To be precise, consider a deformable contour [10]:

v(t) = [x(t), y(t)], t ∈ [0, 1], (1)

moving through the spatial domain of an image I to min-
imize an cost functional E associated with the curve. In
fact, E is a weighted sum of internal and external energies:

E = αEint + βEext, (2)

where α and β are appropriate weights.
To obtain smooth and physically feasible deformations,

the internal cost is defined by an elasticity constraint as
follows:

Eint = (

∮

t

(||v(t)′||2 + ||v(t)′′||2dt)(

∮

t

||v(t)′||dt), (3)

where v(t)′ and v(t)′′ denote the first and second deriva-
tives of the curve with respect to t measuring respectively
the elasticity of the curve.

The external cost is derived from the image to enable
the curve to attract to salient image features (i.e. edges
and corners). In most deformable contours, the intensity
gradient is used giving the following external term:

Eext =

∮

t

−∇I(x, y)dt, (4)

where the gradient image ∇I(x, y) is usually based on
Gaussian derivatives. However, as stated above, intensity-
based gradient images are dependent on the illumination
conditions. Consequently, intensity gradients do not nec-
essarily correspond to object boundaries.

Let the colour gradient be denoted by ∇C, then the
colour-based external cost term is as follows:

Eext =

∮

t

−∇C(x, y)dt. (5)

Our aim is to measure colour gradient ∇C discounting il-
lumination and which is robust against noisy data.

III. Colour-based Deformable Models

First, in section III-A, computational methods are pre-
sented to measure colour constant gradients. Then, in sec-
tion III-B, a model is proposed for the estimation the un-
certainty of these color constant gradients. The obtained
uncertainty is used as a weighting term in the deformation
process.

A. Illumination Invariant Derivatives

Consider the reflection model with narrow-band filters
[17]:

Ck(~x) = GB(~x, ~n,~s)E(~x, λk)B(~x, λk), (6)

where GB(~x, ~n,~s) is the geometric function dependent on
the surface orientation ~n and illumination direction ~s at
position ~x. Further, E(~x, λk) is the illumination and

B(~x, λk) is the surface albedo at wavelength λk. Various
illumination-independent color ratios have been proposed
[8], [14]. These color ratios are derived from neighboring
points. A drawback, however, is that these color ratios
might be negatively affected by the geometry and pose of
the object.

Therefore, we focus on the following color ratio [9]:

M(C1
~x1

, C1
~x2

, C2
~x1

, C2
~x2

) =
C1

~x1
C2

~x2

C1
~x2

C2
~x1

, C1 6= C2, (7)

expressing the color ratio between two neighboring image
locations, for C1, C2 ∈ {C1, C2, ..., CN} giving the mea-
sured sensor pulse response at different wavelengths, where
~x1 and ~x2 denote the image locations of the two neighbor-
ing pixels.

For a standard RGB color camera, we have:

m1(R~x1
, R~x2

, G~x1
, G~x2

) =
R~x1

G~x2

R~x2
G~x1

, (8)

m2(R~x1
, R~x2

, B~x1
, B~x2

) =
R~x1

B~x2

R~x2
B~x1

, (9)

m3(G~x1
, G~x2

, B~x1
, B~x2

) =
G~x1

B~x2

G~x2
B~x1

. (10)

The color ratio is independent of the illumination, a change
in viewpoint, object geometry as shown by substituting eq.
(6) in eq. (7):

M(C1
~x1

, C1
~x2

, C2
~x1

, C2
~x2

) =
C1

~x1
C2

~x2

C1
~x2

C2
~x1

=
B( ~x1, λC1

)B( ~x2, λC2
)

B( ~x2, λC1
)B( ~x1, λC2

)
.

(11)
For the ease of exposition, we concentrate on m1 based on
the RG-color bands in the following discussion. Without
loss of generality, all results derived for m1 will also hold
for m2 and m3.

Taking the natural logarithm of both sides of eq. ( 8)
results for m1 in:

lnm1(R~x1
, R~x2

, G~x1
, G~x2

) = ln(
R~x1

G~x2

R~x2
G~x1

) =

lnR~x1
+ lnG~x2

− lnR~x2
− lnG~x1

= ln(
R~x1

G~x1

) − ln(
R~x2

G~x2

)

(12)
Hence, the color ratios can be seen as differences at two
neighboring locations ~x1 and ~x2 in the image domain of
the logarithm of R/G:

∇Cm1
(~x1, ~x2) = (ln(

R

G
))~x1

− (ln(
R

G
))~x2

(13)

By taking these differences between neighboring pixels, the
derivative is obtained of the logarithm of image R/G which
is independent of the illumination color, and also a change
in viewpoint, the object geometry, and illumination inten-
sity. We have taken the gradient magnitude by applying
Canny’s edge detector (derivative of the Gaussian) on im-
age ln(R/G) with non-maximum suppression in a standard
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way to obtain gradient magnitudes at local edge maxima
denoted by ∇Cm1

(~x). The results obtained so far for m1

hold also for m2 and m3, yielding (leaving out the spatial
coordinates for illustration simplicity):

∇Cm1m2m3
= (∇Cm1

,∇Cm2
,∇Cm3

) (14)

For pixels on a uniformly colored region (i.e. with fixed
surface albedo), in theory, all three components will be zero
whereas at least one the three components will be non-zero
for pixels on locations where two regions of distinct surface
albedo meet.

B. Noise Robustness of Illumination Invariant Derivatives

The above defined color ratios become unstable when in-
tensity is low. In fact, these color ratios are undefined at
the black point (R = G = B = 0) and they become very un-
stable near this singularity, where a small perturbation in
the RGB-values (e.g. due to noise) will cause a large jump
in the transformed values. For example, consider neigh-
boring pixels having the values R~x1

= 1, R~x2
= 1, G~x1

=
2, G~x2

= 2 (i.e. low intensity) and another neighboring
pixel-combination having R~x1

= 201, R~x2
= 201, G~x1

=
202, G~x2

= 202 (i.e. high intensity) on the range [0, ..., 255].
Then these pixels have the same color ratios, for example
m1(1, 1, 2, 2) = 1 is equal to m1(201, 201, 202, 202) = 1.
However, if we consider a minimal value change in RGB
due to noise, e.g. R~x2

= 2 (instead of R~x2
= 1), then this

value change will causes a large jump in the correspond-
ing color ratios m1(1, 2, 2, 2) = 0.5 which is different from
m1(201, 202, 202, 202) = 0.99.

As a consequence, false color constant gradients derived
from the color ratios, are introduced due to sensor noise.
We aim at providing a framework to determine the un-
certainty for the color constant gradients which is subse-
quently used as a weighting term in the deformation process
as follows.

Additive Gaussian noise is widely used to model thermal
noise and is the limiting behavior of photon counting noise
and film grain noise. Therefore, in this paper, we assume
that sensor noise is normally distributed.

Then, for an indirect measurement, the true value of a
measurand u is related to its N arguments, denoted by uj ,
as follows

u = q(u1, u2, · · · , uN ) (15)

Assume that the estimate û of the measurand u can
be obtained by substitution of ûj for uj . Then, when
û1, · · · , ûN are measured with corresponding standard de-
viations σû1

, · · · , σûN
, we obtain [20]

û = q(û1, · · · , ûN ). (16)

Then, if the uncertainties in û1, · · · , ûN are independent,
random and relatively small, the predicted uncertainty in
q is given by [20]

σq =

√

√

√

√

N
∑

j=1

(
∂q

∂ûi
σûi

)2 (17)

the so-called squares-root sum method. Although (17) is
deduced for random errors, it is used as an universal for-
mula for various kinds of errors.

Focusing on the first derivative, the substitution of (12)
in (17) gives the uncertainty for the illumination invariant
coordinates

σ∇m1
(~x1, ~x2) =

√

√

√

√

σ2
R~x1

R2
~x1

R4
~x2

G4
~x1

+
σ2

G~x1

G2
~x1

R4
~x2

G4
~x1

+
σ2

R~x2

G2
~x2

R4
~x2

G4
~x1

+
σ2

G~x2

G2
~x2

R4
~x2

G4
~x1

(18)
Assuming normally distributed random quantities, the
standard way to calculate the standard deviations σR, σG,
and σB is to compute the mean and variance estimates de-
rived from a homogeneously colored surface patches in an
image under controlled imaging conditions.

From the analytical study of (18), it can be derived that
color ratio becomes unstable around the black point R =
G = B = 0.

Further, to propagate the uncertainties from these color
components through the Gaussian gradient modulus, the
uncertainty in the gradient modulus is determined by con-
volving the confidence map with the Gaussian coefficients.
This results from the uncertainty in sums and differences
as follows [20]. If several quantities

û1, · · · , ûN (19)

are measured with uncertainties

σû1
, · · · , σûN

(20)

to compute

q = û1 + û2 · · · + (ûN−1 + ûN ) (21)

then the uncertainty in the computed value of q is the sum

σq =
√

σ2
û1

+ σ2
û2···

+ σ2
ûN−1

+ σ2
ûN

(22)

As a consequence, we obtain:

σ∇Cm1m2m3
≤

∑

i

[

(∂ci/∂x) · σ∂ci/∂x + (∂ci/∂y) · σ∂ci/∂y

]

√
∑

i [(∂ci/∂x) + (∂ci/∂y)]
,

(23)
where i is the dimensionality of the color space and ci is the
notation for particular color channels. In this way, the ef-
fect of measurement uncertainty due to noise is propagated
through the color constant ratio gradient.

For a Gaussian distribution 99% of the values fall within
a 3σ margin. If a gradient modulus is detected which ex-
ceeds 3σ∇, we assume that there is 1% chance that this
gradient modulus corresponds to no color transition:

∇Cm1m2m3
=

{

1 if ∇Cm1m2m3
> 3σ∇Cm1m2m3

0 otherwise
(24)

deriving a local threshold value (leaving out the spatial
coordinates).



IEEE TRANSACTIONS ON CSVT, VOL. 14, NO. 6, 2004 4

C. Color Invariance

Color ratio gradient ∇Cm1m2m3
requires narrow-band fil-

ters to achieve full color constancy. However, general pur-
pose color CCD cameras do not contain narrow-band fil-
ters. To this end, spectral sharpening could be applied
[7] to achieve this to a large extent. However, an alterna-
tive way is to assume that the illumination has a smooth
or equally distributed spectral power over the wavelengths
(e.g. white light). We propose to parameterize the color in-
variant model by polar coordinates θ1θ2 derived from RGB
given by [9]:

θ1 = arctan(
R

B
), (25)

θ2 = arctan(
G

B
), (26)

which are insensitive to surface orientation, illumination
direction and illumination intensity [9].

Substitution of eqs. ( 25) - ( 26) in eq. (17) gives the
uncertainty for the θ1θ2 coordinates

σθ1
=

√

R2σ2
B + Bσ2

R

(R2 + B2)2
(27)

σθ2
=

√

G2σ2
B + Bσ2

G

(G2 + B2)2
(28)

where σ2
R, σ2

G and σ2
B denote the sensor noise variance, and

σθ1
and σθ2

represent the uncertainty (standard deviation)
in the normalized red and green color components, respec-
tively. From the analytical study of eqs. (27) and (28),
it can be derived that normalized color becomes unstable
around the black point R = G = B = 0.

As θ1θ2 is computed from the same position they do
not contain any local (spatial) information. Therefore, the
gradients are computed in the θ1θ2 domain by applying
the Canny’s edge detector. To propagate the uncertain-
ties from the color components through the Gaussian gra-
dient modulus, the method proposed in Section III-B is
used. Then, the uncertainty in the gradient modulus is de-
termined using (23) yielding for the θ1θ2 color model the
following color invariant gradient

∇Cθ1θ2
=

{

∇Cθ1θ2
if ∇Cθ1θ2

> 3σ∇Cθ1θ2

0 otherwise
(29)

and for the standard RGB color space we obtain

∇CRGB =

{

∇CRGB if ∇CRGB > 3σ∇CRGB

0 otherwise
(30)

IV. Experiments

Experiments are conducted on images from video se-
quences recorded from 3D scenes. To this end, in Section
IV-A, we focus on the segmentation of colored objects. In
Section IV-B, experiments on object tracking in video is
considered.

A. Object Segmentation

In this section, the deformable model for object segmen-
tation is experimentally verified with respect to varying
imaging conditions and noise. The objects considered dur-
ing the experiments were recorded in 3 RGB-colour with
the aid of the SONY XC-003P CCD colour camera (3 chips)
and the Matrox Magic Colour frame grabber. The digiti-
zation was done in 8 bits per colour. Two light sources of
average day-light colour were used to illuminate the objects
in the scene. The size of the images are 128x128. The soft-
ware has been implemented in C under UNIX operating
system running on a SPARC-station (300 Mhz). In the ex-
periments, the same weights of eq. ( 2) have been used for
the shape and image feature constraints. Further, the par-
tial derivatives are computed through Gaussian smoothed
derivatives with σ = 1.0 which is arrived at through ex-
perimentation. It has proved to be effective on our test
images.

Figure 1.a shows the image of a matte cube against a
homogeneous background. The initial contour is shown as
specified by the user (the white contour) on input. The
image is clearly contaminated by illumination effects and
noise. Note that the cube is painted homogeneously. As
one can see, the segmentation results based on ∇I and
∇CRGB are negatively affected by shadows and shading.
In fact, for these gradient fields it is not clear to which
boundaries the deformable contour should be pulled to.
As a consequence, the final contour is biased and poorly
defined. In contrast, the final contours obtained by the
deformable method based on ∇Cθ1θ2

gradient information
is nicely pulled towards the true boundary and hence cor-
respond properly to the material transition. Note that in
Figure 1.d the initial contour has been missed partially.
This an inherent problem of snakes in general where there
is always a tradeoff between shape (elasticity) and image
feature constraints.

So far, the quality of segmentation results for the various
colour models is judged qualitatively by visual inspection.
First, the ground-truth has been obtained by a human op-
erator by carefully selecting the outline of the objects, see
Figure 2.

Fig. 2. The ground-truth has been obtained by a human
operator by carefully selecting the outline of the objects.

To evaluate and compare the quality of object segmen-
tation results more objectively, the mean error distance
between the segmentation results and the ground-truth is
taken. To be precise, let X be the image raster and a a
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Fig. 1. From left to right a. Colour image with the initial contour as specified by the user (the white contour). b. Segmentation result
based on intensity gradient field ∇I. c. Segmentation result based on RGB gradient field ∇CRGB . d. Segmentation result based on θ1θ2

gradient field ∇Cθ1θ2
.

Color Gradient E of Fig. 1 E of Fig. 3
∇I 14.4 12.1

∇CRGB 10.4 9.3
∇Cθ1θ2

2.5 2.4

TABLE I

Comparison of performance of snake-based segmentation

differentiated for the various color models. The mean error distance

between the segmentation results and the ground-truth is taken as a

measure of correspondence.

binary image containing the ”true” contour A defined by
A = {~x ∈ X : a(~x) = 1}. Further, let b be a binary image,
called the segmented image, containing the segmentation
result B = {~x ∈ X : b(~x) = 1}. Let d(~x,A) denote the
shortest distance from pixel ~x ∈ X to A, then the mean
error distance is given by:

E(A,B) =
1

η(B)

√

∑

~x∈B

d(~x,A)2 (31)

The mean error distance between the segmentation re-
sults and the ground-truth yields a total average error of
14.4 pixels for ∇I, 10.4 pixels for ∇CRGB , and 2.5 pixels
for ∇Cθ1θ2

yielding promising results for ∇Cθ1θ2
, see Table

I. The time to compute the segmentation result was on
average 49 seconds on a Ultra 10 Sparc station.

In Figure 3, an image is shown containing two plastic
donuts on top of each other. Again the images are affected
by shadows, shading, and inter-reflections. The segmenta-
tion results based on intensity I and colour RGB gradient
are poorly defined due to the disturbing influences of the
imaging conditions (mostly due to the shadows around the
objects). The final contours obtained by the deformable
method based on the ∇Cθ1θ2

gradient information is again
nicely pulled towards the true edge. The mean error be-
tween the segmentation results of figure 3 and the ground-
truth yielded a total average error of 12.1 pixels for ∇I,
9.3 pixels for ∇CRGB , and 2.4 pixels for ∇Cθ1θ2

, see Table
I. The time to compute the segmentation result was on
average 52 seconds on a Ultra 10 Sparc station.

B. Object Tracking

In this section, the tracking system is experimentally
verified on a standard video, see figure 4. Note that, in
this section, it is assumed that the object displacement
between frames is small. Further, object occlusion is not
tolerated. The initial location of the object contour in the
first frame (in which the object appears) has been inter-
actively selected by a human operator. In figures 4 and
5, six frames are shown of a person in front of a textured
background playing ping-pong. The size of the image is
260x135. The frames are clearly contaminated by shad-
ows, shading and inter-reflections. Note again that each
individual object-part (i.e. T-shirt, short, wall and table)
is painted homogeneously with a distinct colour. Further,
the wall contains texture. The results of the tracking sys-
tem are shown in figure 4 tracking the T-shirt, and in fig-
ure 5 tracking the body of a person. The tracking system
is based on ∇Cm1m2m3

. As one can see, all objects are
well tracked ignoring radiometrical effects. From the ob-
served results, the tracking technique successfully segment
and track the objects.

V. Conclusion

We have formulated a colour-based deformable model.
Computational methods have been presented to measure
colour constant gradients. Further, a model has been given
to estimate the amount of sensor noise through these color
constant gradients. The obtained uncertainty is subse-
quently used as a weighting term in the deformation pro-
cess.

From the theoretical and experimental results, we con-
clude that the proposed tracking system successfully find
material contours discounting illumination. Furthermore,
the method is robust against noisy, but homogeneous re-
gions.
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