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Abstract. 3D ultrasound segmentation is a challenging task due to im-
age artefacts, low signal-to-noise ratio and lack of contrast at anatomical
boundaries. Current solutions usually rely on complex, anatomy-specific
regularization methods to improve segmentation accuracy. In this work,
we propose a highly adaptive learning-based method for fully automatic
segmentation of ultrasound volumes. During training, anatomy-specific
features are obtained through a sparse auto-encoder. The extracted fea-
tures are employed in a Hough Forest based framework to retrieve the
position of the target anatomy and its segmentation contour. The result-
ing method is fully automatic, i.e. it does not require any human inter-
action, and can robustly and automatically adapt to different anatomies
yet enforcing appearance and shape constraints. We demonstrate the per-
formance of the method for three different applications: segmentation of
midbrain, left ventricle of the heart and prostate.

1 Introduction and Related Work

Manual segmentation of ultrasound volumes is tedious, time consuming and sub-
jective. In the attempt to produce results that are invariant to the presence of
noise, drop-out regions and poorly distinguishable boundaries, current computer-
aided approaches either use complex cost functions, often regularized by statisti-
cal prior models, or require extensive user interaction. Many optimization-based
methods utilize cost functions based on local gradients, texture, region intensities
or speckle statistics [10]. Methods employing shape and appearance models often
require a difficult and time-consuming training stage where the annotated data
must be carefully aligned to establish correspondence across shapes in order to
ensure the correctness of the extracted statistics. Learning approaches have been
successfully proposed to solve localization and segmentation tasks both in com-
puter vision [7,12] and medical image analysis [6]. Handcrafted features which
exhibit robustness towards the presence of noise and artefacts have been often
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employed to deliver automatic segmentations [8]. Recent work [3] in the machine
learning community focused on approaches leveraging single [5] or multi-layer
[9] auto-encoders to discover features from large amount of data. In particular,
sparse auto-encoders with a single-layer have been proven to learn more discrimi-
native features compared to multi-layer ones [5] when a sufficiently large number
of hidden units is chosen. In the medical community, recent approaches [4] have
employed deep neural networks to solve segmentation tasks, despite their com-
putational burden due to the presence of cascaded 3D convolutions when dealing
with volumes.

The segmentation method proposed in this paper is (i) fully automatic,
(ii) highly adaptive to different kinds of anatomies, and (iii) capable of enforcing
shape and appearance constraints to ensure sufficient robustness. A sparse auto-
encoder is trained from a set of ultrasound volumes in order to create a bank
of 3D features, which are specific and discriminative to the anatomy at hand.
Through a voting strategy, the position of the region to be segmented is assessed
and a contour is obtained by patch-wise projection of appropriate portions of a
multi-atlas. Differently from [12], each contribution to the contour is weighted by
a factor dependent on the appearance pattern of the region that it was collected
from. In this way, we effectively enforce shape and appearance constraints.

We demonstrate the performance of our method by segmenting three different
and challenging anatomies: left ventricle of the heart, prostate and midbrain.
The experiments show that our approach is competitive compared to state-of-
the-art anatomy specific methods and that, in most cases, the quality of our
segmentations lies within the expected inter-expert variability for the particular
dataset.

2 Method

Our approach comprises a training and a test phase. During training, we discover
anatomy-specific features that are employed to learn a Hough Forest. During
testing, we perform simultaneous object localization and segmentation.

2.1 Feature Learning

Sparse Auto-Encoders are feed-forward neural networks designed to produce
close approximations of the input signals as output (Fig. 1 - a). By employing a
limited number of neurons in the hidden layer and imposing a sparsity constraint
through the Kullback-Leibler (KL) divergence, the network is forced to learn a
sparse lower-dimensional representation of the training signals [5,9].

The network has N inputs, K neurons in the hidden layer and N outputs.

The biases b
(1,2)
i are integrated in the network through the presence of two

additional neurons in the input and hidden layer having a constant value of 1.
The weights of the connections between the j-th neuron in one layer and the

i-th neuron in the next are represented by w
(1,2)
ij ∈ R, that are grouped in

the matrices W1 ∈ R
K×(N+1) and W⊤

2 ∈ R
N×(K+1). Network outputs can



Hough Forests for Ultrasound Segmentation 113

Fig. 1. a) Schematic Illustration of a Sparse Auto-Encoder (SAE); b) Bank of filter
obtained from 2D ultrasound images of the midbrain; c) One filter obtained from 3D
echocardiographical data through the SAE.

be written as hW(1,2)(X) = f
(

W⊤
2 f (W1X)

)

, where f(z) = 1
1+exp(−z) is the

sigmoid activation function.
The matrix X is filled with M unlabeled ultrasound training patches arranged

column-wise. After a normalization step to compensate for illumination varia-
tions through the dataset, the network is trained via back-propagation. The
network weights are initialized with random values. The objective function to be
minimized comprises of three terms, enforcing the fidelity of the reconstructions,
small weights magnitude and sparsity respectively:

C(X,W1,2) =
1

2
‖h

W(1,2) (X)−X‖2 +
λ

2

2
∑

l=1

K
∑

k=1

N
∑

n=1

(

w
(l)
nk

)2

+ β

K
∑

j=1

KL(ρ‖ρj). (1)

In the third term, we indicate as ρj = 1
M

(

1⊤f (W1X)
)

the average firing rate
of the j-th hidden neuron, and we define the KL divergence, which enforces the
sparsity constraint by penalizing deviations of ρj from ρ, as:

KL(ρ‖ρj) = ρ log

(

ρ

ρj

)

+ (1− ρ)log

(

1− ρ

1− ρj

)

. (2)

The parameter ρ represents the desired firing rate of the neurons of the hidden
layer, and must be set prior to training together with λ, β and K, which control
the weight of the two regularization terms and the number of neurons of the
hidden layer respectively.

After optimization, the rows of the weight matrix W1 can be re-arranged to
form a set of 3D filters Ξ = {ξ1...ξK} having the same size as the ultrasound
patches collected during training (Fig. 1 - b,c).

2.2 Training the Hough Forest

Our implementation of Hough Forests (HF) combines the classification per-
formance of Random Forests (RF) with the capability of carrying out organ
localization and segmentation. Differently from the classical Hough Forest frame-
work [7], our method retrieves segmentations enforcing shape and appearance
constraints.
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We consider a training set composed of N data samples, d1...N , where each
sample di = [dx, dy, dz]

⊤ corresponds to a voxel element of an annotated volume
Vt belonging to the training set T . Each data point is described by K features
F1...K , which are computed by applying one of the filters ξ from the set Ξ

obtained via Sparse Auto-Encoders as described in the previous step. Specifically,
we write

Fk(d) =

rx
∑

i=−rx

ry
∑

j=−ry

rz
∑

k=−rz

Vt(dx + i, dy + j, dz + k) ∗ ξ(i, j, k). (3)

The annotation Gt, obtained in the form of a 3D binary mask associated with
the volume Vt, determines the binary labels li = {f, b} that characterize each
data-point as belonging to the foreground or to the background. Foreground
data-points are associated with a vote vi = ct − di, which is expressed as a
displacement vector connecting di to the centroid of the annotated anatomy
ct = [cx, cy, cz]

⊤, obtained from Gt.
During training, the best binary decision is selected in each node of the

Hough Forest, either maximizing the Information Gain (IG) or maximizing the
Vote Uniformity (VU). In each node, we compute M random features and we
determine S candidate splits through the thresholds τ1...S . Each split deter-
mines a partitioning of the data Dp reaching the parent node in two subsets
Dl = {di ∈ Dp : Fk(di) ≤ τs} and Dr = {di ∈ Dp : Fk(di) > τs} reaching the
left and right child nodes, respectively. The Information Gain is obtained as:

IG(Dp, Dl, Dr) = H(Dp)−
∑

i∈{l,r}

|Di|
∣

∣D̄
∣

∣

H(Di), (4)

where the Shannon entropy H(D) =
∑

c∈{f,b} −pclog (pc) is obtained through

the empirical probability pc =
|Dc|
|D| using Dc = {di ∈ D : li = c}.

The Vote Uniformity criterion requires the votes v
{l,r}
j contained in Dl and

Dr to be optimally clustered around their respective means v̄{l,r}:

V U(Dl, Dr) =
∑

i∈{l,r}

∑

vj

∥

∥vi
j − v̄i

∥

∥ . (5)

Once (i) the maximum tree depth has been reached or (ii) the number of data
points reaching the node is below a certain threshold or (iii) the Information
Gain is zero, the recursion terminates and a leaf is instantiated. The proportion
of foreground versus background points p{f,b} is stored together with the votes
vi and the associated original positions di. The coordinates di, in particular,
refer to training volumes which will be used as atlases during segmentation.

2.3 Segmentation via Hough Forests

Given an ultrasound volume I of the test set, we first classify it into foreground
and background, then we allow foreground data-points to cast votes in order to
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Fig. 2. Schematic representation of our segmentation approach shown in 2D.

localize the target anatomy, and finally, we obtain the contour by projecting 3D
segmentation patches from the atlases associated with each vote that correctly
contributed to localization (Fig. 2).

The data-points processed in the Hough Forest are obtained through a regular
grid of sampling coordinates S = {s1...sNd

}. In this way, we can reduce the
computational load during testing without significantly deteriorating the results.
Each data-point si classified as foreground in a specific leaf l of the Hough trees
is allowed to cast the nl

v votes v1...nl
v
stored in that leaf during training.

Each vote determines a contribution, weighted by the classification confidence,
at the location si+vj of a volume C having the same size as I and whose content
is initially set to zero.

The target anatomy is localized retrieving the position of the highest peak
in the vote map. All the votes v̂j falling within a radius r around the peak are
traced back to the coordinates ŝi of the data-points that cast them. Each vote
v̂j is associated with the coordinates d̂j of a specific annotated training volume.

We retrieve the 3D appearance patch Aj and the segmentation patch Pj as-

sociated to each vote by using the coordinates d̂j to sample the appropriate
training volume and its annotation. The segmentation patches are projected at
the positions ŝi after being weighted by the Normalized Cross Correlation (NCC)
between the patch Aj and the corresponding intensity patterns around ŝi in the
test volume. The fusion of all the reprojected segmentation patches forms the
final contour, which implicitly enforces shape and appearance constraints.

3 Results

We demonstrate the segmentation accuracy and the flexibility of our algorithm
using three datasets of different anatomies comprising in total 87 ultrasound
volumes. A brief description of each dataset and the relative state-of-the-art
segmentation approach being used for comparison is provided below.

1. The left ventricle of the heart is segmented and traced in [2] using an el-
liptical shape constraint and a B-Spline Explicit Active Surface model. The
dataset employed for our tests, comprising 60 cases, was published during
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the MICCAI 2014 “CETUS” challenge. Evaluations were performed using
the MIDAS platform1.

2. The prostate segmentation method proposed in [11] requires manual ini-
tialization. Its contour is retrieved using a min-cut formulation on intensity
profiles regularized with a volumetric size-preserving prior. We test on a self-
acquired trans-rectal ultrasound (TRUS) dataset comprising 15 subjects. All
the volumes were manually segmented by one expert clinician via ‘TurtleSeg’.
Our results are obtained via cross-validation.

3. Segmentation of the midbrain in transcranial ultrasound (TCUS) is valuable
for Parkinson’s Disease diagnosis. In [1], the authors employed a discrete
active surface method enforcing shape and local appearance constraints. We
test the methods on 12 ultrasound volumes annotated by one expert using
‘ITK snap’ and acquired through one of the skull bones of the patients. Our
results are obtained via cross-validation.

Fig. 3. Exemplary segmentation results (green curves) Vs. ground-truth (red curves).
Mesh color encodes distances from ground truth in the range −3mm (red) to +3mm
(blue), with green indicating perfect overlap.

Table 1 shows the performance of our method in comparison to the other state-of-
the-art approaches on the three datasets. Results are expressed in terms of Dice
coefficients and mean absolute distance (MAD) from ground truth annotation.
Typical inter-expert annotation variability is also shown for each anatomy.

3.1 Parameters of the Model

The Sparse Auto-Encoder was trained to obtain K = 300 3D filters having size
15×15×15 pixels, with parameters λ = 10−4, β = 10 and ρ = 10−3. The Hough
Forest includes 12 trees with at most 35 decision levels and leafs that contain at
least 25 data-points. During testing, the images were uniformly sampled every 3
voxels. All the votes accumulating in a radius of 3 voxels from the object centroid
were reprojected. The size of the segmentation and intensity patches employed
for reprojection during segmentation was different for the three datasets due to

1 Documentation under: http://www.creatis.insa-lyon.fr/Challenge/CETUS

http://www.creatis.insa-lyon.fr/Challenge/CETUS
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Table 1. Overview of Dice coefficients and mean absolute distance (MAD) achieved
during testing. Inter-expert-variabilities (IEV) are also reported. MAD was not pro-
vided by the authors of the algorithms used for comparison.

Dataset Avg. our approach MAD Avg.state-of-the-art IEV(Dice)

Left Ventricle 0.87 ± 0.08 Dice 2.90± 1.87 mm 0.89 ± 0.03 Dice 86.1%[2]
Prostate 0.83 ± 0.06 Dice 2.37± 0.95 mm 0.89 ± 0.02 Dice 83.8%[11]
Midbrain 0.85 ± 0.03 Dice 1.18± 0.24 mm 0.83 ± 0.06 Dice 85.0%[1]

the variable size the object of interest. Values for left ventricle, prostate and
midbrain were 35× 35× 35, 30× 30× 30 and 15× 15× 15 pixels respectively.

Training time for the Auto-Encoder was approximately 24 hours per dataset,
with 500,000 patches. The training time for the forest ranged from 20 minutes to
5 hours. The processing time during testing was always below 40sec. per volume.

3.2 Experimental Evaluation

In Fig. 4 we show the histogram of Dice scores observed during our tests. Its
resolution is 0.05 Dice. Additional results can be found in Table 1 and Fig. 3.
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Fig. 4. Percentage of test volumes vs. Dice coefficient. This histogram shows the per-
centage of test volumes falling in each Dice bin on the horizontal axis.

3.3 Discussion

Localization of the target anatomy through a voting strategy, removes the need
for user interaction while being very efficient in rejecting false positive data-
points, whose votes could not accumulate in the vicinity of the true anatomy
centroid. During our tests, only one out of 87 localizations failed, resulting in
a wrong contour. A trade-off between appearance and shape constraints can be
set choosing the size of the segmentation patches. Bigger patches force smoother
contours, while smaller ones lead to more adaptation to local volume contents.
The method is not suited for segmentation of elongated structures (eg. vessels).
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4 Conclusion and Acknowledgement

In this work, we presented a learning-based method for fully automatic localiza-
tion and segmentation of various anatomies in 3D ultrasound. The method learns
an optimal representation of the data and implicitly encodes a prior on shape
and appearance. We apply the method on three clinical 3D ultrasound datasets
of challenging anatomies, with results comparable to the state-of-the-art. This
work was founded by DFG BO 1895/4-1 and ICT FP7 270460 (ACTIVE).
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