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ABSTRACT

Classical ranking-and-selection (R&S) procedures cannot be applied directly to select the best decision in
the presence of distributional ambiguity. In this paper we propose a robust selection-of-the-best (RSB)
formulation which compares decisions based on their worst-case performances over a finite set of possible
distributions and selects the decision with the best worst-case performance. To solve the RSB problems,
we design two-layer R&S procedures, either two-stage or fully sequential, under the indifference-zone
formulation. The procedure identifies the worst-case distribution in the first stage and the best decision in
the second. We prove the statistical validity of these procedures and test their performances numerically.

1 INTRODUCTION

Decision-making processes typically involve selecting the best decision among a set of competing alternatives
and the best is often defined as the one with the largest or smallest mean performance. For instance, in risk
management, investors call for the best portfolio of financial instruments (e.g., stocks, bonds, derivatives)
to maximize the expected return. In inventory management, managers resort to the best decision rule for
inventory control (e.g., the amounts to produce, pricing, etc.) to maximize the expected net profit of a
firm. Where there is a finite (often small) number of alternatives, ranking and selection (R&S) serves as
an important vehicle to select the best decision.

Most of the R&S procedures in the literature assume that a simulation model is provided and the input
distributions of the simulation model can be specified accurately beforehand. However, when constructing
a distributional model for a stochastic system in practice, the decision maker often faces an undesirable
uncertainty in the specification of the distribution family and/or estimation of the pertinent parameters.
This uncertainty arises due to either intrinsic randomness or incomplete information. For instance, in
risk management, the historical data of financial instruments are often limited; and likewise, in inventory
management, the demand distribution may be difficult to be characterized by often-used distribution
families. In our paper, we use the term “ambiguity” to describe the above uncertainty issue, namely, the
input distribution of a simulation model cannot be specified precisely. It is conceivable that ignoring the
ambiguity may result in a misleading or false decision, especially when the ambiguity is deep and profound.
This paper, therefore, is devoted to addressing the problem of how to select the best decision in the presence
of ambiguity.

The ambiguity is introduced into our framework by assuming that the input distribution of the simulation
model belongs to a so-called “ambiguity set”. Nevertheless, to specify an ambiguity set is by no means
a trivial task. Morgan, Henrion, and Small (1990) construct the ambiguity set by beginning with a single
“best-guess” distribution of the relevant system and then including all the distributions within a certain
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“distance” in the ambiguity set. The ambiguity sets in Ben-Tal and Nemirovski (2000) and Bertsimas and
Sim (2004) have the form of a bounded and symmetric interval and ellipsoidal set, respectively. Another
possible approach is based on the moments of the target distribution; see, e.g., Delage and Ye (2010). The
ambiguity sets constructed from these approaches either are not flexible enough or often involve an infinite
number of scenarios, which are not suitable for the classical R&S framework.

Hence, we use a different type of ambiguity set in this paper. In particular, we assume that the ambiguity
set contains a finite number of scenarios for the underlying input distribution. Such a type of ambiguity
set is very common in practice. In security pricing, risk managers may choose a finite set of generalized
scenarios and use the real financial data to fit each of the scenarios, see for instance, Lesnevski, Nelson, and
Staum (2007). In inventory management, the demand distribution is often modeled by a normal distribution;
and then, one may consider an ambiguity set of different combinations of means and variances of a normal
distribution. In a more general case, one could discretize the possible ranges (such as confidence intervals)
of the pertinent parameters of the input distribution to form the ambiguity set.

It then becomes essential to determine how to measure the performance of an alternative decision with
various possible scenarios (i.e., ambiguity set). We address this issue by a robust approach in the sense
that the performance of an alternative decision is measured by its worst-case performance among all the
possible scenarios in the ambiguity set. This robust approach is especially appealing for a conservative
person in that it yields a solution which may be suboptimal and yet still performs well even in the worst-case
scenario. For instance, an important goal of risk management is to quantify the chance of large losses and
thus portfolio managers may prefer the worst-case (maximal) risk measures. Indeed, the worst-case risk
measures stand in line with coherent risk measures (Artzner et al. 1999), which have been shown to have
many advantages over a widely adopted risk measure called value-at-risk, such as realization of the benefits
from diversification, see Lesnevski, Nelson, and Staum (2007) for detailed discussions on the problem. In
this paper, we establish a robust framework for R&S and call it robust selection of the best (RSB).

We use the indifference-zone formulation proposed by Bechhofer (1954) to design the procedure for
the RSB problem. In our robust framework, the RSB problem is reformulated as a minimax optimization
problem and thus an natural solution is a two-layer R&S procedure. More specifically, one selects the
worse-case scenario for each alternative decision in the first layer R&S, and selects the best decision by
comparing the worst performances of all the systems in the second layer R&S. The merit of our two-layer
procedure is two-fold. First, its implementation in practice does not require any additional knowledge
beyond the classical R&S procedures. Second, the statistical validity of the classical R&S can be easily
carried on to our two-layer R&S procedure.

A central problem in our two-layer R&S procedure is to determine the rule of error allocations in order
to achieve a prescribed probability of correct selection (PCS), say 1−α . Suppose there are k alternative
decisions in the RSB problem. Without loss of generality, we assume there are m scenarios for each
decision. (The decisions may have different numbers of scenarios, but the analysis can be extended easily.)
Note that one could view the RSB problem as to select the best from k×m “systems”, where an “system”
is a pair of a decision and a scenario. Consequently, one could intuitively allocate 1/(km−1) fraction of
the total allowable error level α to each pairwise comparison between the best and the others. We call this
way of error allocation the multiplicative rule.

However, the multiplicative rule is rather conservative in the sense that each comparison is allowed
for a very small error level. Hence, it’s computationally expensive even for moderate k and m. (Note
that the smaller error level is allowed, the more simulation runs have to be computed.) To enhance the
efficiency of our two-layer R&S procedure, we fine-tune our analysis and develop a so-called additive rule
of error allocation, which allocates 1/(m+ k− 1) fraction of the total allowable error to each necessary
pairwise comparison. Obviously, the advantage of the additive rule over the multiplicative rule becomes
more significant as k or m increases.

Our research is related to two streams of literatures: selection of the best and robust optimization. In the
select-of-the-best literature, R&S procedures are widely used to select the best decision among a fixed and
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finite set of alternatives, which seek a guaranteed lower bound on the PCS; see Rinott (1978), Branke, Chick,
and Schmidt (2007), Kim and Nelson (2007). This literature rarely takes into account the distributional
ambiguity of the simulation models. The robust optimization literature focuses on optimization problems in
which the uncertainty appears in the objective function. See Ben-Tal, El Ghaoui, and Nemirovski (2009) for
an extensive treatment on the subject. However, in the robust optimization literature, it typically assumes
the objective function is available explicitly in closed-form, which does not hold in the context of simulation
optimization.

The rest of paper is organized as follows. In Section 2, we introduce our framework for the robust
selection of the best. Based on this framework, a two-layer R&S procedure is developed in Section 3.
Section 4 discusses the associated error allocation rule and Section 5 presents numerical results. Section
6 concludes this paper.

2 A ROBUST FRAMEWORK

Define S as a group of decisions, where S = {s1,s2, . . . ,sk}. Let g(s,ξ ) denote the performance value of
the decision s, where ξ is the uncertainty parameter in the performance function and follows an unknown
distribution P0. Indeed, stochastic systems in reality are usually too complex to derive the closed-form
expression of g(s,ξ ) and it can only be accessible by direct observations or simulation experiments given s
and the distribution of ξ . In the simulation study, the performances are evaluated by EP0 [g(s,ξ )] for every
s ∈S .

Suppose that we are interested in selecting the best decision in S , where the best decision is defined
as the one with the smallest performance value. In particular, the selection of the best is formulated as

min
s∈S

EP0 [g(s,ξ )].

In the presence of ambiguity in specifying P0, it is difficult to accurately estimate the mean performance
EP0 [g(s,ξ )] of each decision s. To model the ambiguity, we assume that the possible probability distributions
that ξ may follow are included in a pre-specified ambiguity set, defined as P = {P1,P2, . . . ,Pm}. Notice
that ambiguity sets can be different for different systems. For simplicity, we assume that the ambiguity
sets P are identical for all the systems. It is worth emphasizing that our ambiguity set incorporates the
parameter ambiguity as well as distributional ambiguity. Particularly, it can contain a single family of
probability distributions with various parameters, or various families of probability distributions.

Further, we employ a robust approach to evaluate the performance of a given decision s, which varies
over the ambiguity set P . More specifically, the performance of a given decision is measured by its worst-
case performance, namely maxP∈P EP[g(s,ξ )]. It follows that the selection of the best in the presence of
ambiguity can be formulated as

min
s∈S

max
P∈P

EP[g(s,ξ )], (1)

which we call the robust selection of the best (RSB). This robust framework is appealing in that the decision
it selects, though may not be optimal, performs well even in the worst-case scenario. The robust framework
is able to prevent potential high risk.

In light of the minimax optimization formulation (1), we propose a two-layer R&S procedure. In the
first stage, we solve the inner maximization problem. Particularly, for each fixed s ∈S , a R&S procedure
is committed to select the worst scenario P ∈P with an appropriate PCS, which poses the maximum
EP[g(s,ξ )] over P∈P . In the second stage, we solve the outer minimization problem based on the selected
worst scenario P(s) for each s. Another R&S procedure is then conducted to select the best decision s
with the minimal worst-case performance an appropriate PCS. After this two-layer R&S procedure, the
best decision is selected with a PCS that is no less than the prescribed level.

We adopt the indifference-zone (IZ) formulation proposed by Bechhofer (1954), which guarantees to
select the best decision with a pre-specified PCS whenever the mean performance of the best decision is
smaller than that of the second-best one with a deviation at least δ , where δ is the smallest difference worth
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detecting; see, e.g., Rinott (1978) for more details. Recall that, in our two-layer procedure, two selections
are made sequentially. Hence, we define δ1,δ2 as two corresponding IZ parameters, which refer to the
smallest differences worth detecting while selecting the worst-case performance and the best alternative,
respectively.

To facilitate our presentation, we refer “system (i, j)” as the pair of decision si and probability distribution
scenario Pj. For each system (i, j), let µ i

j = EPj [g(si,ξ )] denote its mean performance value and let (σ i
j)

2 its
unknown variance. For i = 1,2, . . . ,k, without loss of generality, we assume µ i

1 ≥ µ i
2 ≥ . . .≥ µ i

m. Namely,
(i,1) is the worst system among all (i, j) for j = 1, . . . ,m. Furthermore, we assume µ1

1 ≤ µ2
1 ≤ . . .≤ µk

1 .
Hence, the correct selection (i.e. the best system based on the performance in the worst-case scenario) is
to select system (1,1).

3 A TWO-LAYER R&S PROCEDURE

In this section, we develop a two-layer R&S procedure for the RSB problem. In the first layer, for each
fixed i = 1,2, . . . ,k one selects the worst system among systems (i, j) for j = 1,2, . . . ,m; in the second
layer, one selects the best system among the selected worst systems for i = 1,2, . . . ,k. Note that variances
of the alternative systems are unknown, so when conducting the R&S in each layer one needs to first do
an initial sampling in order to estimate the variances of the systems and then do additional sampling if
necessary in order to eliminate any system.

Let β1 and β2 be the error level allocated to each necessary pairwise comparison in the first and the
second layer of R&S. We will discuss how to appropriately determine β1 and β2 in order to achieve a
prescribed PCS in Section 4. Supposing for now that β1 and β2 are given, our two-layer R&S procedure
is described as follows.

Procedure 1 (Two-layer R&S Procedure for RSB)
(1) Setup:

Determine the target overall PCS (1−α), where 0 < α < 1−1/(km−1) and β1,β2. For each
fixed i, choose IZ parameter δ1 across systems (i, j) for j = 1,2, . . . ,m, and IZ parameter δ2
across systems (i,1) for i = 1,2, . . . ,k.

(2) Select the worst scenario:
For each fixed i = 1,2, . . . ,k, conduct a R&S procedure to select a system which deviates at
most δ1 from the worst one among systems (i, j) for j = 1, . . . ,m with probability at least
1− (m−1)β1.

(3) Select the best decision:
Conduct a R&S procedure to select a system which deviates at most δ2 from the best one among
the systems selected in Step (2) for each i = 1, . . . ,k with probability at least 1− (k−1)β2.

Remark 1 In the step (2) and (3), any existing procedure (such as Rinott and KN procedures) can be
plugged in to satisfy the IZ criteria.

Note that an incorrect selection (ICS) event happens when the best system is eliminated at some point
during the procedure. Let ε((i, j),(p,q)) denote the event that system (i, j) eliminates system (p,q). Then,
the target probabilities in Step (2) of the above procedure can be achieved if

P(ε((i, j),(i,1)))≤ β1, for j = 2,3, . . . ,m, i = 1,2, . . . ,k. (2)

Likewise, the target probability in Step (3) can be achieved if

P(ε((i,1),(1,1)))≤ β2, for i = 2,3, . . . ,k. (3)
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Remark: In fact, we can streamline the above procedure by utilizing “batch elimination”. In particular,
for any i, one can eliminate all the systems (i, j) still in contention if there exists some l such that system
(i, j0) has a larger performance value than all system (l, j1) in contention for some j0. In this case, decision
i is inferior than decision l in terms of worst-case performances. We refer the readers to the Appendix for
details.

4 ERROR ALLOCATIONS

In our two-layer procedure, two separate ranking-and-selection’s are conducted sequentially in order to
select the best system among k×m systems. Intuitively, its efficiency is at least the same as the problem
(M), where

(M): Selecting the best one from k×m systems using R&S.

In particular, an ICS event happens if system (1,1) is eliminated by any one of the other (km−1) systems.
Therefore, it is natural to allocate 1/(km−1) fraction of the total allowable error α to each one of (km−1)
ICS events, namely {ε((i, j),(i,1)), i = 1, . . . ,k, j = 2, . . . ,m)} and {ε((i,1)(1,1)), i = 2, . . . ,k}. We call
this way of error allocations the multiplicative rule. Based on the multiplicative rule of error allocations,
we will justify the statistical validity of our two-layer procedure in the following theorem.
Theorem 1 For the two-layer procedure in Section 3,

P(CS)≥ 1−α, if k(m−1)β1 +(k−1)β2 ≤ α

Specially, we can take β1 = β2 = α/(km−1).

Proof. Notice that,

CS⊃

{ ⋂
i=1,2,...,k

⋂
j 6=1

{system (i,1) eliminates (i, j)}

}⋂{ ⋂
i=2,3,...,k

{system (1,1) eliminates (i,1)}

}
.

Therefore,

P(CS) ≥ 1−
k

∑
i=1

m

∑
j=2

P({(i, j) eliminates (i,1)})−
k

∑
i=2

P({(i,1) eliminates (1,1)})

≥ 1− k(m−1)β1− (k−1)β2

≥ 1−α.

The first inequality follows from the Bonferroni inequality and the second from (2) and (3). Moreover, it
is straightforward to verify that k(m−1)β1 +(k−1)β2 ≤ α if β1 = β2 = α/(km−1).

However, the multiplicative rule is rather conservative, because it treats all the (km− 1) ICS events
equally important. Note that our goal is to select the best system (1,1), which does not necessarily require
that each (i,1) for i = 1,2, . . . ,k is selected in the first layer R&S. Instead, we only need to guarantee that
any system selected in the first layer R&S can be eventually eliminated by system (1,1) except itself. In
other words, some (in fact, a large fraction) of the (km−1) ICS events are not critical. By virtue of this
insight, we claim that our two-layer R&S procedure indeed performs as efficiently as problem (A), where

(A): Selecting the best one from k+m−1 systems using R&S.

Particularly, one can allocate 1/(k+m−2) fraction of the total allowable error α to each of the “critical”
ICS events, ε((i, j),(i,1))( j 6= 1) and ε((i,1)(1,1))(i 6= 1). We call it the additive rule of error allocations.
The following theorem will certify our claim and show that the additive rule is enough to ensure statistical
validity, indicating multiplicative rule is too conservative.
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Theorem 2 For the two-layer basic procedures stated in Section 3,

P(CS)≥ 1−α, if (m−1)β1 +(k−1)β2 ≤ α.

Specially, we can take β1 = β2 = α/(k+m−2).

Proof. Notice that the correct selection corresponds to the fact that s1 is selected. Therefore, with a
similar argument as in Theorem 1,

P(CS) = P(∩k
i=2{ decision s1 eliminates decision si})

≥ P(∩k
i=2{ decision s1 eliminates decision si}∩∩m

j=2{(1,1) eliminates (1, j)})
≥ P(∩k

i=2{(1,1) eliminates (i,1)}∩∩m
j=2{(1,1) eliminates (1, j)})

≥ 1−
k

∑
i=2

P({(i,1) eliminates (1,1)})−
m

∑
j=2

P({(1, j) eliminates (1,1)})

≥ 1− (k−1)β2− (m−1)β1

≥ 1−α.

The first inequality holds because we add another constraint, i.e., that system (1,1) is the best among
systems (1, j)( j = 1,2, . . . ,m). Recall the best system is defined as the system with the smallest average
performance value while considering xi and x j. Thus it’s easier to stand out for system (1,1) compared
with system (i,1) than with all system (i, j)( j = 1,2, . . . ,m), meaning that the second inequality holds.
The third inequality follows from Bonferroni inequality. Moreover, it is straightforward to verify that
(m−1)β1 +(k−1)β2 ≤ α if β1 = β2 = α/(k+m−2).

Clearly, the advantage of the additive rule becomes more significant as k or m increases. It is conceivable
that the ambiguity set in practice could contain a large number of candidate probability distributions. In
order to achieve a given PCS, the computational cost would be prohibitively high for the multiplicative
rule of error allocation and yet may be acceptable if the additive rule is applied.

5 NUMERICAL EXPERIMENTS

Suppose that Xi j ∼ N(µi j,σ
2
i j) for i = 1,2, . . . ,k and j = 1,2, . . . ,m. We consider the slippage configuration

of means,

µi j =


δ , i 6= 1, j = 1,

−δ , i = 1, j 6= 1,

0, otherwise .

(4)

The best system is defined with the system having min
1≤i≤k

max
1≤ j≤m

E[Xi j]. Hence, our target is to select the best

system (1,1), which corresponds to X11. With the above configuration for the means, we will consider three
variance configurations: (1) equal-variance configuration with σ2

i j = 1; (2) increasing-variance configuration
with σ2

i j = 1+( j−1)δ for all i; (3) decreasing-variance configuration with σ 2
i j = 1/[1+( j−1)δ ] for all i.

Let the target PCS be 1−α = 0.95. Suppose that β1 and β2 are chosen based on the additive rule in
Theorem 2, i.e., β1 = β2 = α/(k+m−2). In addition, we set the IZ parameters as δ1 = δ2 = 0.2.

The implementation of our two-layer R&S procedure follows that in Procedure 1. Under each variance
configuration as well as combination of k and m, we replicate our procedure 1000 times in order to estimate
the realized probability of correct selection (PCS), the sample size used to select the worst scenario (SS)
for each decision si, and the average total sample size (TS).
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Table 1: Summary of PCS, average sample sizes when m varies and k = 5 under three variance configurations

Equal Decreasing Increasing
m k PCS SS TS PCS SS TS PCS SS TS

5 0.994 9.22E+02 5.03E+03 0.989 7.50E+02 4.13E+03 0.990 1.07E+03 5.83E+03
10 0.997 1.05E+03 1.17E+04 0.990 8.55E+02 9.66E+03 0.996 1.20E+03 1.35E+04

5 15 0.993 1.13E+03 1.92E+04 0.983 9.35E+02 1.60E+04 0.993 1.29E+03 2.22E+04
20 0.989 1.20E+03 2.74E+04 0.978 9.87E+02 2.26E+04 0.992 1.36E+03 3.14E+04
25 0.994 1.25E+03 3.59E+04 0.992 1.03E+03 2.98E+04 0.994 1.42E+03 4.10E+04

Table 2: Summary of PCS, average sample sizes when k varies and m= 5 under three variance configurations

Equal Decreasing Increasing
k m PCS SS TS PCS SS TS PCS SS TS

5 0.993 9.23E+02 5.03E+03 0.989 750.2218 4.13E+03 0.990 1.07E+03 5.83E+03
10 0.997 2.03E+03 1.06E+04 0.993 1.39E+03 7.32E+03 0.997 2.77E+03 1.45E+04

5 15 0.998 3.26E+03 1.68E+04 0.994 1.90E+03 9.93E+03 0.999 5.09E+03 4.20E+03
20 0.997 4.56E+03 2.33E+04 0.990 2.32E+03 1.20E+04 1.000 8.00E+03 4.12E+04
25 0.998 5.97E+03 3.03E+04 0.998 2.67E+03 1.38E+04 0.998 1.16E+04 5.93E+04

The results listed in Table 1 and Table 2 show that the realized PCS values are all above the desired
PCS value, which confirms the statistical validity of the procedure. Moreover, we find that it takes fewer
samples to select the best for decreasing-variance configuration than for the equal-variance configuration,
while the contrary happens to increasing-variance configuration. It is reasonable because it is often more
difficult to eliminate inferior systems while their variances are large.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we consider the selection of the best in the presence ambiguity of the input distributions. To
address this problem, we have proposed a robust framework for the selection of the best and developed
a two-layer R&S procedure. In particular, this procedure selects the worst scenario for each alternative
decision first, and the best system based on their performances in the worse-case scenario. Though intuitive,
the multiplicative rule of error allocation is rather conservative. We have proposed that the additive rule
of error allocation to enhance the efficiency of the two-layer R&S procedure.

Note that the numerical results show that the two-layer R&S procedure works well for moderate k and
m. However, it may cost a large amount of computational budget when k or m is large. Hence, it would
be interesting to make this procedure adapted to large-scale problems.
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A Fully Sequential Procedure with Batch Eliminations for RSB problem

Setup: Select the total desired PCS 1−α . For each fixed i, choose IZ parameter δ1 across systems
(i, j)( j = 1,2, . . . ,m) and the error tolerance β1 to each pair comparison between them, IZ parameter δ2
across systems (i,1)(i = 1,2, . . . ,k), error tolerance β2 to each pair comparison between them. Determine
common first-stage sample size n0 ≥ 2. Calculate η1,η2,c1 and c2 as described below.

Initialization: Let I = {(i, j) : i= 1,2, . . . ,k, j = 1,2, . . . ,m} be the set of system still in contention. Obtain
n0 observations Xi j(r),r = 1,2, . . . ,m, from each system (i, j). Let h2

1 = 2c1η1 and h2
2 = 2c2η2. Set n = n0.
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Update: Let Xi j(r) = n−1
∑

n
r=1 Xi j(r) denote the sample mean, for all (i, j) ∈ I. Calculate

S2
(i, j)(s,l)(n) =

1
n−1

n

∑
r=1

(Xi j(r)−Xsl(r)− [X̄i j(n)− X̄sl(n)])2,

the sample variance between system (i, j) and (s, l).

Screening: Set Iold = I.

1. Screening among systems (i, j)( j = 1,2, . . . ,m) for each fixed i. Let

I = Iold \{(i, j) : (i, j) ∈ Iold and X̄i j(n)≤ X̄il(n)−W(i, j)(i,l)(n), for some (i, l) ∈ Iold, l 6= j},

where

W(i, j)(i,l)(n) = max

{
0,

δ1

2c1n

(
h2

1S2
(i, j)(i,l)(n)

δ 2
1

−n

)}
.

2. Screening among systems (i, j) for different i. Let

I = I \{(i, j) ∈ I : ∃(s, l) ∈ I,∀(i, t) ∈ I,s.t.,s 6= i and X̄it(n)≥ X̄sl(n)+W(i,t)(s,l)(n)},

where

W(i,t)(s,l)(n) = max

{
0,

δ2

2c2n

(
h2

2S2
(i, j)(s,l)(n)

δ 2
2

−n

)}
.

Stopping Rule: If |I| = 1, then stop and select the system whose index is in I as the best. Otherwise
take one additional output from each system in I and set n = n+1 and go to Update.

Constants: The constants c1,c2 may be any non-negative integers. Respectively, the constants η1,η2 are
the solutions to the following two equations,

g(η1) =
c1

∑
l=1

(−1)l+1(1− I(l = c1)/2)exp
(
−η1

c1
(2c1− l)l

)
= β1,

g(η2) =
c2

∑
l=1

(−1)l+1(1− I(l = c2)/2)exp
(
−η2

c2
(2c2− l)l

)
= β2.

Remarks:

• In our fully sequential procedure, W(i j)(sl)(n) defines a continuous triangular region for partial sum,
i.e., ∑

n
r=1(Xi j(r)−Xsl(r)). As long as the partial sum stays in this triangular region, sampling

continuous and no elimination is made. Otherwise, sampling stops and a system is eliminated.
• In the Screening step, we conduct a two-step elimination. In the first step, pair comparisons only

involves systems (i, j)( j = 1,2, . . . ,m) for each i. Unlike classical fully sequential procedure, we
add a second stage into our procedure, which enables our procedure to be more efficient. In this
step, all systems (i, j) in I involving a fixed i will be deleted if they are found to be inferior than
some system (s, l) in I for s 6= i. In other words, the second step may bring batch eliminations,
which boosts searching for the best system.

• An initial sample of size n0 is taken to estimate weights and variances. n0 is usually selected to
be guarantees that enough data are available to estimate the variance, but that much to distinguish
one system from another.

• After applying this procedure stated above, the best system is selected out with a guaranteed at
least 1−α probability, when errors terms β1,β2 in the Initialization Step are appropriately chosen
beforehand.
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