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SUMMARY

Visual simultaneous localization and mapping (visual SLAM) has been well developed in recent

decades. To facilitate tasks such as path planning and exploration, traditional visual SLAM systems

usually provide mobile robots with the geometric map, which overlooks the semantic information. To

address this problem, inspired by the recent success of the deep neural network, we combine it with

the visual SLAM system to conduct semantic mapping. Both the geometric and semantic information

will be projected into the 3D space for generating a 3D semantic map. We also use an optical-flow-

based method to deal with the moving objects such that our method is capable of working robustly

in dynamic environments. We have performed our experiments in the public TUM dataset and our

recorded office dataset. Experimental results demonstrate the feasibility and impressive performance

of the proposed method.
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1. Introduction

Visual simultaneous localization and mapping (visual SLAM) has been well applied in many robotic

tasks in recent decades, and many state-of-the-art algorithms1–5 have been proposed with rather

satisfactory performance. One major capability of the visual SLAM system is to generate a map

representing the surrounding environments. With the knowledge of the environments, the robots

can implement some other tasks such as path planning6 and exploration.7 While the existing visual

SLAM systems are able to generate a geometric map accurately, the semantic information8 is usually

overlooked. The lack of semantic information poses great challenges to some robotic applications

such as exploration9 and autonomous navigation.10

To address this problem, we propose a semantic mapping method to help the mobile robot gener-

ate a semantic map which contains both geometric and semantic information. Specifically, we start

semantic mapping from a localization module. With accurate localization, the map can be recon-

structed accurately based on the camera poses. To achieve good localization result, one big challenge

is to deal with the moving objects in the dynamic environment. Although some algorithms like

RANdom SAmple Consensus (RANSAC)11 can filter out some dynamic factors, they cannot perform

very well when the moving parts are nontrivial. In our method, we propose to use an optical-flow-

based model to address the dynamic factors. In particular, inspired by the success of deep neural

network recently,12, 13 we make use of it for the semantic generation. Finally, the semantic map is

generated with the accurate camera pose estimation and semantics.

Our method enjoys several desirable properties which make it suitable for the robotic application.

First, we take into account the importance of semantic information. With semantics, the robot is
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Fig. 1. An illustrative result of our proposed method. Intuitively, the regions of chairs, the persons and the
monitors in the image are highlighted in red, pink and blue, respectively.

able to get a better knowledge of the surrounding environment which benefits implementing the

task. For example, in ref.,9 the robot needs to find a cup in an unknown environment. The cup is

more likely to be located in a living room than a washroom. Based on this prior knowledge, the

robot intends to find the cup in a living room, which improves the searching efficiency. Secondly,

we consider the effect of moving objects. Although most of the visual SLAM systems assume that

the environment is static, moving objects always exist in real-world scenes. Thirdly, the deep neural

network ensures the robustness of semantic generation. The good generalization performance is able

to deal with the deviation between different environments. Figure 1 shows an illustrative experimental

result of our system. We adopt ORB-SLAM14 as the basic mapping scheme. We integrate our optical-

flow-based model to deal with dynamic factors, while we use CRF-RNN15 to generate a pixel-wise

labeled image. This paper is an extension of the method introduced in ref.16 Different from ref.,16 we

incorporate the uncertainty of the localization due to the motion of the objects.

The contributions of our work are summarized as follows:

1. We have proposed a novel approach to combine the visual SLAM with the semantic segmentation

to generate a semantic 3D map.

2. We have proposed an optical-flow-based method to deal with the dynamic factors, which ensures

the localization accuracy.

3. We have tested the proposed method in the public TUM dataset and our recorded office dataset.

Experimental results have demonstrated the feasibility of our method.

The rest of this paper is structured as follows. Section 2 describes the related work. Section 3

presents the details of the proposed approach. Section 4 analyzes some experimental results. In

Section 5, the final conclusions are drawn while the future work is outlined.

2. Related Work

In this section, we will briefly review the works of addressing dynamic factors in visual SLAM and

semantic mapping.

2.1. Addressing dynamic factors

To address the dynamic factors in visual SLAM, the existing algorithms can be divided into three

categories.

Information fusion-based. Bloesch et al.17 combined complementary information from vision and

inertial sensors to enable robust performance for high-dynamic scenarios. Usenko et al.18 used the

inertial measurement unit (IMU) as an additional sensor. They used an energy function to combine

photometric and inertial information. By minimizing the energy function, camera pose, velocity and

IMU bias are jointly estimated. Kim et al.19 used a Kinect-style RGB-D sensor20 and IMU to accu-

rately estimate camera trajectory in highly dynamic environments. The information fusion-based

method usually relies on additional sensors like the IMU. The information from these sensors can

compensate for the error caused by a single sensor and improve the localization accuracy. However,

the fusion of multisource information is time-consuming. What’s more, how to efficiently combine

different kinds of information is still a challenge.
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Depth information-based. Kim et al.21 proposed a robust background model-based dense-visual

odometry algorithm that can deal with dynamic factors. Sun et al.22 used a differencing frame to

denote the moving regions based on two consecutive frames. Vector quantization-based segmentation

is adopted to segment dynamic objects out. Li et al.23 used weighted edge points to conduct visual

odometry based on frame-to-keyframe registration. The point with a high static weight is adopted

for further visual odometry. In this way, dynamic factors are eliminated effectively and the method

can work in real time. Sun et al.24 extended ref.22 with an incremental learning capability, allowing

updating the foreground model incrementally. The depth information can be used to segment the

moving objects or detect the edge points. Researchers usually use it to choose the reliable region of

the image for further visual localization. However, one limitation for these kinds of methods locates

in that the depth sensors cannot be used in an outdoor or a large-scale environment. What’s more,

there are nonnegligible errors for these kinds of sensors.

Purely vision-based. Zou et al.25 proposed a multi-camera scheme. The cameras work cooper-

atively to sense the dynamic factors and conduct accurate localization. Wang et al.26 grouped the

neighboring feature points sharing the same scene flow. The feature points from the largest group

are adopted as the static feature points and used for visual odometry. Terashima et al.27 used the

CG model to obtain the difference between two consecutive frames and distinguish the dynamic fea-

ture points. Cheng et al.28 use the compensation to make two frames that share the same view. The

dynamic parts are indicated by the difference between the two frames. Purely vision-based methods

are applicable on most of the platforms and for most of the scenarios. They are cheap and easily cali-

brated. However, compared with the first two strategies, it provides less information which sometimes

leads to ambiguities of the detection of dynamic factors.

There are some other methods such as the control strategy, shown in ref.29 Applying the traditional

visual SLAM in an active way can help the mobile robot to avoid entering the dynamic regions.

To make our system suitable for large-scale environments and general platforms, we choose the

third kind of methods. Different from the existing works, we propose to directly compute the trans-

formation between two consecutive frames. Based on the transformation, we convert the two frames

to share with the same coordinates and detect the dynamic feature points based on the optical flow

values of the corresponding feature points, which efficiently reduces the ambiguities.

2.2. Semantic Mapping

Semantic mapping has been developed in recent years and many the-state-of-the-art algorithms are

proposed with very satisfactory results. Hermans et al.30 used 2D semantic segmentations to generate

3D semantic representations of the environments. They also showed that not all the frames are needed

for semantic segmentation. The work by Salas-Moreno31 known as SLAM++ introduced an “object-

oriented” visual SLAM framework. The object information helps to predict camera poses generated

from accurate IGP. The proposed framework can generate an object-level representation of the envi-

ronment. Sunderhauf et al.32 built a map of the environment containing both semantically meaningful

object-level entities and point- or mesh-based geometrical representations. The object models are

built on the fly and do not require prior known 3D models. Bowman et al.33 connected the data asso-

ciation and recognition to formulate an optimization problem that integrates the metric information,

the semantic information and the data association. Gan et al.34 proposed a dense 3D semantic map-

ping algorithm using a sparse Bayesian model, the relevance vector machine. They formulate the

problem as a high-dimensional multi-class classification. They solve the problem sequentially in a

fully probabilistic framework. Different from the above-mentioned methods, the main idea of our

method is to first ensure the localization accuracy of the camera that is capable of dealing with the

dynamic factors. With the accurate localization, we reconstruct the environment using a point cloud

map. Then the semantic information is registered into the 3D map. Finally, we can obtain a dense

semantic map of the environment.

3. Method

An overview of our proposed approach is shown in Fig. 2. There are three modules in our approach.

The first module called ORB-SLAM-based mapping is to generate a 3D point cloud map of the envi-

ronment based on the localization result of the ORB-SLAM system. The second module called

CRF-RNN-based semantic segmentation is to generate the pixel-wise labels for the corresponding
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(a)

(b)

Fig. 2. The overview of our approach.

2D image. The third module called Semantic Association is to intelligently combine the results of the

first two modules to generate a 3D semantic point cloud map. Finally, the 3D semantic point cloud

map consists of both the geometric and the semantic information of the environments.

3.1. Robust Camera Localization

In our method, the accuracy of the camera pose estimation is closely correlated with the performance

of the 3D mapping. In ORB-SLAM, the localization of the camera relies on a feature map. Camera

poses are initialized first and then optimized by bundle adjustment (BA).35 The optimization problem

to be solved in BA can be formulated as follows:

arg min
a j , bi

n
∑

i=1

m
∑

j=1

wi j d(X i j − Q(a j , bi ))
2, (1)

where we assume that n 3D points can be observed in m views and X i j is projection of point i in

image j . If point i is visible in image i , wi j is 1 otherwise wi j is 0. Q(ai , b j ) is predicted projection

of point i in image j . d(x, y) denotes the Euclidean distance between the image points represented

by vectors x and y.

The existing visual SLAM systems assume that the environment is static. However, in many cases,

the real-world environments usually contain dynamic objects, particularly humans. Dynamic objects

will corrupt the localization accuracy and thus degrade the performance of visual SLAM. To solve
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Fig. 3. The pipeline of the dynamic feature points elimination method.

this problem, we propose a novel method to eliminate the effects of dynamic objects. As shown in

Fig. 3, we firstly use Five-Point Algorithm36 to estimate the camera motion between two consecutive

frames by computing the essential matrix T . Then we project the last frame onto the current frame

to obtain the warped frame. The current frame and the warped frame are both delivered into the

ORB-SLAM system. Once the current frame is derived, the system extracts the feature points that

may include dynamic and static feature points. We use Lucas–Kanade37 algorithm to calculate the

optical flow of the matched feature points between the warped image and the current image while

detecting the moving feature points for the current frame based on the optical flow values. A prede-

fined tolerance τ is used to determine whether each point is dynamic or static using the following

inequalities:

{

d > τ, if fi ∈ Fdynamic,

d < τ, if fi ∈ Fstatic,
(2)

where d =
√

d2
x + d2

y is the unit length of the flow vector for feature point fi , while Fdynamic and Fstatic

are dynamic and static feature points sets, respectively.

After producing the detection of the dynamic feature points, we eliminate them and maintain the

static feature points as the feature points for the current frame. Subsequently, the static feature points

will be used for camera pose estimation in the ORB-SLAM tracking thread. Finally, we collect the

optimized keyframes as one part of the input of the 3D semantic mapping.

3.2. CRF-RNN based Semantic Segmentation

In the fully connected pairwise CRF model, the energy of a label assignment x is given by

E(x) =
∑

i

ψu(xi ) +
∑

i �= j

ψp(xi , x j ), (3)

ψp(xi , x j ) = µ(xi , x j )

M
∑

m=1

ω(m)k
(m)

G ( fi , f j ), (4)

where the unary energy component ψu(xi ) measures the inverse likelihood of the pixel i taking

the label xi , and the pairwise energy component ψp(xi , x j ) measures the cost of assigning labels

xi , x j according to pixels i , j . Each k
(m)

G for m = 1, ..., M is a Gaussian kernel applied to feature

vectors. Feature vector fi of pixel i is derived from image features. The function µ(., .) captures the

compatibility between different pairs of labels as the name implies.

By minimizing the energy E(x), we obtain the most probable label assignment x for the given

image. The resulting images of semantic segmentation will be one part of the inputs for the semantic

mapping system. Note that we only conduct the semantic segmentation for keyframes of the ORB-

SLAM system.
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3.3. Semantic Mapping

From the above two modules, we generate the optimized keyframes and 2D labeled images for the

corresponding keyframes. In this section, we will show how to produce a 3D semantic map from

these two parts.

Once a keyframe is determined, the semantic segmentation module gives each pixel a label and

the pixel-wise labeled image is used for generating a 3D semantic map. In this process, due to the

existence of the moving objects, we will remove the dynamic objects when building the 3D semantic

map. Here we take two steps in practice. At the first step, we will check the number of the dynamic

feature points on the segmented objects. If the number is bigger than Num, we regard the object as a

dynamic one and we will not incorporate it into the semantic map. At the second step, we deal with

the rest of the dynamic feature points. We first compute the depth difference between the pixel and

the dynamic feature points. If the difference is under a threshold, we then compute the image distance

between them. Only if the distance is small enough, we regard the point as a dynamic one and will

not include it into our semantic map. For each pixel in a keyframe, it contains semantic and geometric

information, and whether it can be used to generate a 3D point is determined based on Algorithm 1.

Algorithm 1: Generation of dynamic and static regions of the image

Input: RGB image I of size 640 ∗ 480, depth image D of size 640 ∗ 480, dynamic feature points set

S for I , threshold σ1, threshold σ2, threshold Num

Output: Dynamic points set M and static points set N

1 Input an RGB image I ;

2 Use CRF-RNN to generate the pixel-wise labeled image;

3 Check the number of the dynamic feature points on the segmented objects;

4 for each segmented object do

5 if num>Num then

6 Add all the points of the object into M

7 for Each point p of the rest of the points in S do

8 if depth distance between point P in the image and p is less than σ1 then

9 if image distance between P and p is less than σ2 then

10 Add P into M

11 Add the rest of the points in the image into N ;

12 final ;

13 return P;

Finally, we obtain the dynamic and static regions of the keyframe. We generate a 3D map by

reprojection of the static regions of the keyframe. The problem can be formulated as follows:

Zc

⎡

⎣

u

v

1

⎤

⎦ =

⎡

⎣

fx 0 u0 0

0 fy v0 0

0 0 1 0

⎤

⎦

[

R t

0T 1

]

⎡

⎢

⎣

X

Y

Z

1

⎤

⎥

⎦
, (5)

where fx , fy , u0 and v0 are camera intrinsics. R and t are camera extrinsics. (u, v) represents pixel

coordinates, and (X, Y, Z) represents world coordinates. Zc is the scale factor.

Thus, the resulting 3D map will contain both geometric and semantic information.

3.4. Model Comparison

To address the dynamic factors for visual SLAM, different strategies are proposed based on the

intrinsic characteristics of the visual SLAM system. For direct visual SLAM systems, motion seg-

mentation24 is always utilized to eliminate the negative information. Since the depth information is

needed in this process, a depth sensor like Kinect needs to be mounted on the mobile platform. For

semi-direct visual SLAM systems, robust batches or edges are extracted23 and used for visual odom-

etry. The extraction process is always based on the depth information. As a result, a depth sensor is

also needed. For indirect visual SLAM systems, like our method, the feature points are extracted and
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Table I. Descriptions of the selected sequences used for our experiments.

Sequence Duration Frames Description

fr3/w/half 35.81 s 1067 Two persons walk through an office scene. The camera has been moved

on a small half sphere of approximately one meter diameter.
fr3/w/rpy 30.61 s 910 Two persons walk through an office scene. The camera has been rotated

along the principal axes (roll-pitch-yaw) at the same position.
fr3/w/xyz 28.83 s 862 Two persons walk through an office scene. The camera has manually been

moved along three directions (xyz) while keeping the same orientation.
cuhk_office 32.15 s 985 Four persons sit at a desk, talk and gesticulate a little bit. The camera has

randomly been moved while finishing a loop.

divided into dynamic and static feature points. The former ones are eliminated, while the latter ones

are used for further visual odometry. By comparing the aforementioned strategies, the incorporation

of the depth information can improve the localization accuracy significantly. One limitation for them

is that the depth sensors generally do not perform well in the outdoor environments. Different from

the above-mentioned strategies, our scheme can still work well when the depth information is not

available. However, our approach suffers the degraded localization accuracy due to the limited avail-

ability of the surrounding information. What’s more, we do not compare with the state-of-the-art

algorithms, since the datasets or codes are not publicly available. As a result, it is not involved in our

comparative study, which is a major limitation of our work. In our future work, we will design a more

accurate model to achieve the performance comparable to those methods incorporating depth infor-

mation. Furthermore, in terms of the semantic mapping task, with the available depth information,

we will take the depth information into account to improve the performance of our system.

4. Experiments

4.1. Dataset

We use the public TUM dataset38 and an office dataset to evaluate the proposed method. For the TUM

dataset, each sequence comprises both RGB and depth images of 640 × 480 size. The dataset pro-

vides the information including the camera pose ground truth and the frequency. Once an estimated

camera trajectory is generated, evaluations can be conducted based on the ground truth. For brevity,

we use the words fr, half, w, s, d, v to denote freiburg, halfsphere, walking, sitting, desk, validation

corresponding to different sequences. We list the details of some representative sequences in Table I.

4.2. Experiment setup

In our experiments, we use a computer with an i7 CPU, 32 GB memories, a GTX 1070 GPU. For

each sequence used in our experiments, we preprocess it using CRF-RNN and obtain the pixel-wise

labeled images. We empirically set the tolerance τ as 7 pixels, which implies that the corresponding

feature point is regarded as a dynamic feature point if the norm of the optical flow vector is larger

than 7 pixels. We empirically set the parameters in Algorithm1 Num as 20, σ1 as 0.1m and σ2 as 5

pixels.

4.3. Results of dynamic elimination

Figure 4 shows an illustrative experimental result of dynamic feature points detection. Figure 4(a)

represents the current RGB image. Figure 4(b) is the result of dynamic feature points detection. Red

dots represent the static feature points, while green “+” symbols represent the dynamic feature points.

It can be shown that the proposed method can effectively distinguish the dynamic feature points,

whereas several misclassification results are also produced resulting from the optical flow calculated

based on two matched feature points. In addition, the blur in the image generated from the camera

motion and moving objects tends to result in incorrect matches, and thus causes misclassifications

in our method. Without loss of generality, the misclassifications can be divided into two cases. On

one hand, some static feature points are misclassified as dynamic ones. In our scenario, the dynamic

feature points will be removed and we only adopt the static feature points in our system. As a result,

this kind of misclassification only slightly reduces the number of the feature points we use for the
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Fig. 4. An experimental result of dynamic feature points detection: (a) the current RGB image and (b) the
result of dynamic feature points detection. Red dots represent the static feature points, while green “+” symbols
represent the dynamic feature points. The figure is best viewed in color.

Fig. 5. Plots of ATE for the sequences fr3/w/half, fr3/w/xyz/ and fr3/s/half. The words with and without repre-
sent the experiments performed with and without our method. The ground-truth, the estimated trajectory and
the differences for each subfigure are, respectively, represented as the green, blue and red lines.

camera localization producing little effect on the localization accuracy. On the other hand, some

dynamic feature points are misclassified as static ones. Since these points only account for a small

portion, they will be recognized as outliers by the RANSAC algorithm in the visual SLAM system

and filtered out. Thus, the localization accuracy is guaranteed.

Figure 5 shows the qualitative results of ORB-SLAM which is combined with our approach. We

use absolute trajectory error (ATE) to evaluate the localization accuracy. The ATE directly measures

the difference between points of the true and the estimated trajectory. In each subfigure, the ground

truth, the estimated trajectory and the differences are, respectively, represented as the green, blue and

red lines. Longer red lines indicate larger estimation errors and worse localization accuracy. We use

-with and -without to represent that the experiments are performed with and without our method. It is

shown that the localization is significantly improved after integrating our method into ORB-SLAM

framework.

Table II shows the global consistency performance. We observe that our method shows significant

improvements for all the sequences in terms of RMSE and S.D. In high-dynamic scenarios, further

performance gains can be observed, by reporting the highest 95.86%. These experimental results

demonstrate that our method can perform well in high-dynamic scenarios. As for the low-dynamic
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Table II. ATE in meters for the experiments without and with our proposed method.

Without our approach With our approach Improvements

Sequences RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/half 0.4579 0.3987 0.3774 0.2252 0.1612 0.1091 0.0637 0.1187 64.80% 72.64% 83.12% 52.71%

fr3/w/rpy 0.9046 0.7685 0.7092 0.4772 0.1533 0.1048 0.0635 0.1119 83.05% 86.36% 91.05% 76.55%

fr3/w/xyz 0.4808 0.4367 0.4276 0.2011 0.1899 0.1537 0.1148 0.1115 60.50% 64.80% 73.15% 44.55%

fr3/w/half/v 0.5591 0.4567 0.2934 0.3226 0.0671 0.0435 0.0283 0.0506 88.00% 90.48% 90.35% 84.31%

fr3/w/rpy/v 0.5799 0.3534 0.0556 0.4599 0.0299 0.0240 0.0186 0.0178 95.86% 93.21% 66.55% 96.13%

fr3/w/xyz/v 1.4212 1.2811 1.1664 0.6153 0.1415 0.0561 0.0305 0.1299 90.04% 95.62% 97.39% 78.89%

fr3/s/half∗ 0.0198 0.0158 0.0135 0.0120 0.0179 0.0147 0.0131 0.0102 9.60% 6.96% 2.96% 15.00%

fr3/s/xyz∗ 0.0097 0.0088 0.0083 0.0042 0.0092 0.0081 0.0075 0.0043 5.15% 7.95% 9.64% −2.38%

fr2/d/person∗ 0.0090 0.0083 0.0082 0.0036 0.0067 0.0061 0.0057 0.0029 25.56% 26.51% 30.49% 19.44%

Notes: Low-dynamic sequences are denoted with a superscript star. Others are high-dynamic sequences. Our method effectively improves the ORB-SLAM

performance in all scenarios in terms of ATE.
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Fig. 6. Some illustrative results of our method using the TUM dataset. With the input RGB images displayed
in the top row, the results of semantic segmentation and mapping are shown in the middle and bottom rows,
respectively. Intuitively, the regions of chairs, the persons and the monitors in the images are highlighted in red,
pink and blue, respectively.

scenarios, our method provides less improvements ranging from 5.15% to 25.56%, which implies

that relatively less dynamic feature points can be easily distinguished; thus, the original ORB-SLAM

can perform quite well in such a situation.

4.4. Results of semantic mapping

Figures 6 and 7 qualitatively demonstrate the results of our method. With the input RGB images

displayed in the top row, the results of semantic segmentation and mapping are shown in the mid-

dle and bottom rows, respectively. Intuitively, the regions of chairs, the persons and the monitors

in the images are highlighted in red, pink and blue, respectively. As can be shown in the figures,

our approach shows highly accurate semantic mapping results, which sufficiently suggests that the

point-wise labeled point cloud allows well reconstructing the environment. However, the semantic

segmentation process often misclassified some objects due to the insufficient and ambiguous infor-

mation. On one hand, insufficient information cannot provide enough data to recognize an object.

For example, in Fig. 6, the sizes of the monitors are too small to provide enough information.

Consequently, inaccurate semantic segmentation results are produced leading to the failure case

when some objects are not correctly recognized. On the other hand, ambiguity may lead to the biased

information. For example, in Fig. 7, most of the chair region is occluded by a person leading to the

ambiguity that the scene contains only one person or one person and one chair. Thus, the chair is

incorrectly recognized as one part of a person leading to the degraded segmentation performance.

In terms of the mapping result, our approach is capable of recovering the environments accurately

as shown in Figs. 6 and 7. However, there are some drifts in each sequence. For example, in Fig. 7(a),

there are two monitors in the semantic mapping result. The sequence finishes a loop here, and the

accumulative error is detrimental to the camera pose estimation.

Table III qualitatively illustrates the experimental results on the TUM dataset and the office

dataset. In particular, we use monitors, chairs and persons as our segmentation samples. Firstly, the

following statistics are calculated. Let’s take the chair for example.

• TP (true positive): The number of frames where there is a chair in the frame and the chair has been

correctly segmented.
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Fig. 7. Some illustrative results of our method using our office dataset. With the input RGB images displayed
in the top row, the results of semantic segmentation and mapping are shown in the middle and bottom rows,
respectively. Intuitively, the regions of chairs, the persons and the monitors in the images are highlighted in red,
pink and blue, respectively.

• FP (false positive): The number of frames where there is no chair in the frame but some object has

been incorrectly segmented as a chair.

• TN (true negative): The number of frames where there is no chair in the frame and no object has

been segmented as a chair.

• FN (false negative): The number of frames where there is a chair in the frame but no object has

been correctly segmented as chair.

We use the following metrics for the quantitative evaluations: False Positive Rate (FPR), False

Negative Rate (FNR), Recall (Re), Precision (Pr) and Percentage of Wrong Classifications (PWC).

These are calculated as follows:

F P R =
F P

F P + T N
(6)

F N R =
F N

T P + F N
(7)

Re =
T P

T P + F N
(8)

Pr =
T P

T P + F P
(9)

PWC =
F N + F P

T P + F N + F P + T N
(10)

For Re and Pr, high values indicate high precision of the semantic segmentation. For FPR, FNR and

PWC, high values indicate low precision of the semantic segmentation.

It is shown that FPR is reported at less than 0.1, which demonstrates that our method enables

segmenting out the specific objects in the sequence accurately. In the case when the chairs appear in

the sequence, higher FPR scores regarding the chairs can be achieved compared with the counterparts

of the other two objects, due to the observation that the features of a chair are not distinctive or some
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Table III. The quantitative evaluation results of our method using the TUM and our sequences.

fr1_room fr1_360 fr1_xyz cuhk_office

Monitor Chair Person Monitor Chair Person Monitor Chair Person Monitor Chair Person

FPR 1.31% 5.24 % 0.50 % 4.83 % 7.41 % 1.12 % 0.00 % 10.34 % 0.50 % 0.00 % 10.29 % 0.00 %

FNR 6.31 % 10.22 % 1.72 % 8.18 % 14.53 % 3.21 % 10.20 % 30.50% 44.32 % 14.22 % 30.53 % 5.51 %

Re 85.11% 70.00 % 91.17 % 76.69 % 67.84 % 81.27 % 89.68 % 76.59% 68.50 % 88.44% 71.98 % 94.32%

Pr 97.15 % 88.00 % 98.40 % 93.35 % 84.67 % 95.59 % 95.20 % 82.44% 60.73 % 94.58 % 78.90 % 98.26%

PWC 12.45% 20.40 % 5.53 % 15.41% 25.19 % 10.00 % 8.87 % 31.54 % 23.56 % 11.62 % 33.37% 3.19 %
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parts of the chair are occluded by the other object like a sitting person. In addition, observed from

different viewpoints, the shape of a chair changes more significantly than other objects. By contrast,

higher FNR scores are reported than those of the FPR, which implies that insufficient and ambiguous

information imposes a disturbance on our method. In addition, the system performs better in the cases

when monitors are included. The scores of the Re and the Pr are impressively high, while those of

PWC are low. This demonstrates that our model has high precision on the test dataset. Note that our

approach shows good performance for persons, due to the availability of a large amount of training

data.

4.5. Discussion

While it is efficient to leverage the CRF-RNN for semantic mapping, it still suffers from the following

limitations. Firstly, in real-world scenarios, the motion of the camera can be drastically varying and

objects are sometimes occluded deteriorating the performance of CRF-RNN. Secondly, the depth

information is not used in the model. With the RGB-D dataset,39–43 the model should be trained

using both the RGB and the depth information. With the depth information incorporated into our

system, further performance improvements can be well expected. Finally, there are close correlations

between the consecutive frames that the CRF-RNN does not take into consideration. For example,

one person may change his location in the sequence. Once the person is recognized, we should track

him until he leaves out of the view. In this way, even if some parts of the person are occluded, accu-

rate recognition can be still achieved via robust human tracking. As a result, semantic segmentation

should be beneficial for visual SLAM, whilst visual SLAM should provide rewarding feedback to

semantic segmentation.

In the implementation, we empirically set the tolerance τ as 7 pixels. The predefined parameter

is suitable for most of the cases. However, in some cases when drastic camera motion or objects

motion is present, the fixed parameter cannot generalize very well resulting from the noise generated

from the motion. In our future work, we will attempt to find an adaptive way to adjust the value of

the parameter based on the property for the certain sequence. Also, we will eliminate the noise in an

efficient way.

5. Conclusions

This paper has proposed a novel approach to conduct semantic mapping using the convolutional

neural network (CNN). The approach enables a robot to utilize both the geometric and semantic

information in challenging environments. A dynamic elimination method is proposed and applied

to ensure the accuracy of the camera pose estimation in dynamic environments. The advantage of

this approach manifests itself to the ability to combine the semantic information with the traditional

output of the visual SLAM system. With the dynamic elimination method, the proposed approach

can be applied in dynamic scenarios. We conduct both qualitative and quantitative evaluations that

demonstrate the feasibility of our proposed method.

In our future work, we will extend this work in several directions. We have successfully registered

the semantic information into a 3D geometric map. Then we will use our approach in an exploration

application and test it in a real-world scenario. While the proposed system works well for indoor

scenes, it does not suit for outdoor environments like those described in KITTI.44 In our future work,

we will further develop the current system to generalize well for both indoor and outdoor scenarios.

In addition, we will make full use of the relation between the consecutive frames to robustly and

precisely segment objects out while comparing the performance with the one that deals with the

individual frame. To further improve the performance of our system, we will take into account the

depth information to achieve much better performance. Thus, further extension of our system can be

achieved for handling different dynamic scenarios.
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