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Abstract Semantic textual similarity is a measure of the degree of semantic equiv-
alence between two pieces of text. We describe the SemSim system and its perfor-
mance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity.
At the core of our system lies a robust distributional word similarity compo-
nent that combines Latent Semantic Analysis and machine learning augmented
with data from several linguistic resources. We used a simple term alignment algo-
rithm to handle longer pieces of text. Additional wrappers and resources were used
to handle task specific challenges that include processing Spanish text, compar-
ing text sequences of different lengths, handling informal words and phrases, and
matching words with sense definitions. In the *SEM 2013 task on Semantic Tex-
tual Similarity, our best performing system ranked first among the 89 submitted
runs. In the SemEval-2014 task on Multilingual Semantic Textual Similarity, we
ranked a close second in both the English and Spanish subtasks. In the SemEval-
2014 task on Cross–Level Semantic Similarity, we ranked first in Sentence–Phrase,
Phrase–Word, and Word–Sense subtasks and second in the Paragraph–Sentence
subtask.

Keywords Latent Semantic Analysis · WordNet · term alignment · semantic
similarity

1 Introduction

Semantic Textual Similarity (STS) is a measure of how close the meanings of
two text sequences are [4]. Computing STS has been a research subject in natu-
ral language processing, information retrieval, and artificial intelligence for many
years. Previous efforts have focused on comparing two long texts (e.g., for doc-
ument classification) or a short text with a long one (e.g., a search query and
a document), but there are a growing number of tasks that require computing
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the semantic similarity between two sentences or other short text sequences. For
example, paraphrase recognition [15], tweets search [49], image retrieval by cap-
tions [11], query reformulation [38], automatic machine translation evaluation [30],
and schema matching [21,19,22], can benefit from STS techniques.

There are three predominant approaches to computing short text similarity.
The first uses information retrieval’s vector space model [36] in which each piece
of text is modeled as a “bag of words” and represented as a sparse vector of word
counts. The similarity between two texts is then computed as the cosine similarity
of their vectors. A variation on this approach leverages web search results (e.g.,
snippets) to provide context for the short texts and enrich their vectors using the
words in the snippets [47]. The second approach is based on the assumption that if
two sentences or other short text sequences are semantically equivalent, we should
be able to align their words or expressions by meaning. The alignment quality
can serve as a similarity measure. This technique typically pairs words from the
two texts by maximizing the summation of the semantic similarity of the resulting
pairs [40]. The third approach combines different measures and features using
machine learning models. Lexical, semantic, and syntactic features are computed
for the texts using a variety of resources and supplied to a classifier, which assigns
weights to the features by fitting the model to training data [48].

In this paper we describe SemSim, our semantic textual similarity system. Our
approach uses a powerful semantic word similarity model based on a combination
of latent semantic analysis (LSA) [14,31] and knowledge from WordNet [42]. For a
given pair of text sequences, we align terms based on our word similarity model to
compute its overall similarity score. Besides this completely unsupervised model, it
also includes supervised models from the given SemEval training data that combine
this score with additional features using support vector regression. To handle text
in other languages, e.g., Spanish sentence pairs, we use Google Translate API1 to
translate the sentences into English as a preprocessing step. When dealing with
uncommon words and informal words and phrases, we use the Wordnik API2 and
the Urban Dictionary to retrieve their definitions as additional context.

The SemEval tasks for Semantic Textual Similarity measure how well auto-
matic systems compute sentence similarity for a set of text sequences according to
a scale definition ranging from 0 to 5, with 0 meaning unrelated and 5 meaning
semantically equivalent [4,3]. For the SemEval-2014 workshop, the basic task was
expanded to include multilingual text in the form of Spanish sentence pairs [2] and
additional tasks were added to compare text snippets of dissimilar lengths ranging
from paragraphs to word senses [28]. We used SemSim in both *SEM 2013 and
SemEval-2014 competitions. In the *SEM 2013 Semantic Textual Similarity task
, our best performing system ranked first among the 89 submitted runs. In the
SemEval-2014 task on Multilingual Semantic Textual Similarity, we ranked a close
second in both the English and Spanish subtasks. In the SemEval-2014 task on
Cross–Level Semantic Similarity, we ranked first in Sentence–Phrase, Phrase–
Word and Word–Sense subtasks and second in the Paragraph–Sentence subtask.

The remainder of the paper proceeds as follows. Section 2 gives a brief overview
of SemSim explaining the SemEval tasks and the system architecture. Section 3
presents our hybrid word similarity model. Section 4 describes the systems we used

1 http://translate.google.com
2 http://developer.wordnik.com
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Table 1 Example sentence pairs for some English STS datasets.

Dataset Sentence 1 Sentence 2

MSRVid A man with a hard hat is dancing.
A man wearing a hard hat is danc-
ing.

SMTnews
It is a matter of the utmost im-
portance and yet has curiously at-
tracted very little public attention.

The task, which is nevertheless
capital, has not yet aroused great
interest on the part of the public.

OnWN
determine a standard; estimate a
capacity or measurement

estimate the value of.

FnWN

a prisoner is punished for commit-
ting a crime by being confined to
a prison for a specified period of
time.

spend time in prison or in a labor
camp;

deft-forum
We in Britain think differently to
Americans.

Originally Posted by zaf We in
Britain think differently to Ameri-
cans.

deft-news
no other drug has become as inte-
gral in decades.

the drug has been around in other
forms for years.

tweet-news
#NRA releases target shooting
app, hmm wait a sec..

NRA draws heat for shooting game

for the SemEval tasks. Section 5 discusses the task results and is followed by some
conclusions and future work in Section 6.

2 Overview of the System

In this section we present the tasks in the *SEM and SemEval workshops that
motivated the development of several modules of the SemSim system. Also, we
present the high-level architecture of the system introducing the modules devel-
oped to compute the similarity between texts, in different languages and with
different lengths, which will be explained in the following sections.

2.1 SemEval Tasks Description

Our participation in SemEval workshops included the *SEM 2013 shared task on
Semantic Textual Similarity and the SemEval-2014 tasks on Multilingual Semantic
Textual Similarity and Cross-Level Semantic Similarity. This section provides a
brief description of the tasks and associated datasets.

Semantic Textual Similarity. The Semantic Textual Similarity task was intro-
duced in the SemEval-2012 Workshop [4]. Its goal was to evaluate how well au-
tomated systems could compute the degree of semantic similarity between a pair
of sentences. The similarity score ranges over a continuous scale [0, 5], where 5
represents semantically equivalent sentences and 0 represents unrelated sentences.
For example, the sentence pair “The bird is bathing in the sink.” and “Birdie is
washing itself in the water basin.” is given a score of 5 since they are semantically
equivalent even though they exhibit both lexical and syntactic differences. How-
ever the sentence pair “John went horseback riding at dawn with a whole group
of friends.” and “Sunrise at dawn is a magnificent view to take in if you wake up
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Table 2 Example sentence pairs for the Spanish STS datasets.

Dataset Sentence 1 Sentence 2

Wikipedia

“Neptuno” es el octavo planeta en
distancia respecto al Sol y el más
lejano del Sistema Solar. (“Nep-
tune” is the eighth planet in dis-
tance from the Sun and the far-
thest of the solar system.)

Es el satélite más grande de Nep-
tuno, y el más fŕıo del sistema so-
lar que haya sido observado por
una Sonda (-235�). (It is the
largest satellite of Neptune, and
the coldest in the solar system that
has been observed by a probe (-
235�).)

News

Once personas murieron, más de
1.000 resultaron heridas y dece-
nas de miles quedaron sin elect-
ricidad cuando la peor tormenta
de nieve en décadas afectó Tokio
y sus alrededores antes de diri-
girse hacia al norte, a la costa del
Paćıfico afectada por el tsunami en
2011. (Eleven people died, more
than 1,000 were injured and tens
of thousands lost power when the
worst snowstorm in decades hit
Tokyo and its surrounding area be-
fore heading north to the Pacific
coast affected by the tsunami in
2011.)

Tokio, vivió la mayor nevada en
20 años con 27 cent́ımetros de
nieve acumulada. (Tokyo, experi-
enced the heaviest snowfall in 20
years with 27 centimeters of accu-
mulated snow.)

early enough.” is scored as 0 since their meanings are completely unrelated. Note
a 0 score implies only semantic unrelatedness and not opposition of meaning, so
“John loves beer” and “John hates beer” should receive a higher similarity score,
probably a score of 2.

The task dataset comprises human annotated sentence pairs from a wide range
of domains (Table 1 shows example sentence pairs). Annotated sentence pairs
are used as training data for subsequent years. The system-generated scores on
the test datasets were evaluated based on their Pearson’s correlation with the
human-annotated gold standard scores. The overall performance is measured as
the weighted mean of correlation scores across all datasets.

Multilingual Textual Similarity. The SemEval-2014 workshop introduced a sub-
task that includes Spanish sentences to address the challenges associated with
multilingual text [2]. The task was similar to the English task but the scale was
modified to the range [0, 4].3 The dataset comprises 324 sentence pairs from Span-
ish Wikipedia selected from a December 2013 dump of Spanish Wikipedia. In
addition, 480 sentence pairs were extracted from 2014 newspaper articles from
Spanish publications around the world, including both Peninsular and American
Spanish dialects. Table 2 shows some examples of sentence pairs in the datasets
(we included a possible translation to English in brackets). No training data was
provided.

Cross-Level Semantic Similarity. The Cross-Level Sentence Similarity task was
introduced in the SemEval-2014 workshop to address text of dissimilar length,

3 The task designers chose this range without explaining why the range was changed.
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Table 3 Example text pairs for Cross Level STS task.

Dataset Sentence 1 Sentence 2

Paragraph-
Sentence

A dog was walking home with his
dinner, a large slab of meat, in
his mouth. On his way home, he
walked by a river. Looking in the
river, he saw another dog with a
handsome chunk of meat in his
mouth. ”I want that meat, too,”
thought the dog, and he snapped
at the dog to grab his meat which
caused him to drop his dinner in
the river.

Those who pretend to be what they
are not, sooner or later, find them-
selves in deep water.

Sentence-
Phrase

Her latest novel was very steamy,
but still managed to top the charts.

steamingly hot off the presses

Phrase-
Word

sausage fest male-dominated

Word-
Sense

cycle#n washing machine#n#1

namely paragraphs, sentences, words and word senses [28]. The task had four
subtasks: Paragraph–Sentence (compare a paragraph with a sentence), Sentence–
Phrase (compare a sentence with a phrase), Phrase–Word (compare a phrase with
a word) and Word–Sense (compare a word with a WordNet sense). The dataset
for the task was derived from a wide variety of genres, including newswire, travel,
scientific, review, idiomatic, slang, and search. Table 3 shows a few example pairs
for the task. Each subtask used a training and testing dataset of 500 text pairs
each.

2.2 Architecture of SemSim

The SemSim system is composed of several modules designed to handle the com-
putation of a similarity score among pieces of text in different languages and of
different lengths. Figure 1 shows its high-level architecture, which has two main
modules, one for computing the similarity of two words and another for two text
sequences. The latter includes submodules for English, Spanish, and text sequences
of differing length.

At the core of our system is the Semantic Word Similarity Model, which is
based on a combination of latent semantic analysis and knowledge from WordNet
(see Section 3). The model was created using a very large and balanced text corpus
augmented with external dictionaries such as Wordnik and Urban Dictionary to
improve handling of out-of-vocabulary tokens.

The Semantic Text Similarity module manages the different inputs of the sys-
tem, texts in English and Spanish and with varying length, and uses the semantic
word similarity model to compute the similarity between the given pieces of text
(see Section 4). It is supported by subsystems to handle the different STS tasks:

– The English STS module is in charge of computing the similarity between
English sentences (see Section 4.1). It preprocesses the text to adapt it to the
word similarity model and align the terms extracted from the text to create



6 Abhay Kashyap et al.

Fig. 1 High-level architecture of the SemSim system with the main modules.

a term alignment score. Then, it uses different supervised and unsupervised
models to compute the similarity score.

– The Spanish STS module computes the similarity between Spanish sentences
(see Section 4.2). It makes use of an external statistical machine translation [7]
software (Google Translate) to translate the sentences to English. Then, it
enriches the translations by considering the possible multiple translations of
each word. Finally, it uses the English STS module to compute the similarity
between the translated sentences and combine the results obtained.

– The Cross-Level STS module is used to produce the similarity between text se-
quences of varying lengths, such as words, senses, and phrases (see Section 4.3).
It combines the features obtained by the English STS module with features ex-
tracted from external dictionaries and Web search engines.

In the following sections we detail the previous modules and in Section 5 we
show the results obtained by SemSim at the different SemEval competitions.

3 Semantic Word Similarity Model

Our word similarity model was originally developed for the Graph of Relations
project [52] which maps informal queries with English words and phrases for an
RDF linked data collection into a SPARQL query. For this, we wanted a similarity
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metric in which only the semantics of a word is considered and not its lexical
category. For example, the verb “marry” should be semantically similar to the
noun “wife”. Another desiderata was that the metric should give highest scores
and lowest scores in its range to similar and non-similar words, respectively. In this
section, we describe how we constructed the model by combining latent semantic
analysis (LSA) and WordNet knowledge and how we handled out-of-vocabulary
words.

3.1 LSA Word Similarity

LSA word similarity relies on the distributional hypothesis that the words occur-
ring in similar contexts tend to have similar meanings [25]. Thus, evidence for
word similarity can be computed from a statistical analysis of a large text corpus.
A good overview of the techniques for building distributional semantic models is
given in [32], which also discusses their parameters and evaluation.

Corpus Selection and Processing. A very large and balanced text corpus is required
to produce reliable word co-occurrence statistics. After experimenting with several
corpus choices including Wikipedia, Project Gutenberg e-Books [26], ukWaC [5],
Reuters News stories [46], and LDC Gigawords, we selected the Web corpus from
the Stanford WebBase project [50]. We used the February 2007 crawl, which is
one of the largest collections and contains 100 million web pages from more than
50,000 websites. The WebBase project did an excellent job in extracting textual
content from HTML tags but still offers abundant text duplications, truncated
text, non-English text and strange characters. We processed the collection to re-
move undesired sections and produce high quality English paragraphs. Paragraph
boundaries were detected using heuristic rules and only paragraphs with at least
two hundred characters were retained. We eliminated non-English text by checking
the first twenty words of a paragraph to see if they were valid English words. We
used the percentage of punctuation characters in a paragraph as a simple check for
typical text. Duplicate paragraphs were recognized using a hash table and elimi-
nated. This process produced a three billion word corpus of good quality English,
which is available at [20].

Word Co-Occurrence Generation. We performed part of speech (POS) tagging
and lemmatization on the WebBase corpus using the Stanford POS tagger [51].
Word/term co-occurrences were counted in a moving window of a fixed size that
scanned the entire corpus4. We generated two co-occurrence models using window
sizes ±1 and ±45 because we observed different natures of the models. ±1 window
produces a context similar to the dependency context used in [34]. It provides a
more precise context, but only works for comparing words within the same POS
category. In contrast, a context window of ±4 words allows us to compute semantic
similarity between words with different POS tags.

4 We used a stop-word list consisting of only the articles “a”, “an” and “the” to exclude
words from the window. All remaining words were replaced by their POS-tagged lemmas.

5 Notice that ±4 includes all words up to ±4 and so it includes words at distances ±1, ±2,
±3, and ±4.
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A DT passenger NN plane NN has VBZ crashed VBN shortly RB after IN taking VBG
off RP from IN Kyrgyzstan NNP ’s POS capital NN , , Bishkek NNP , , killing VBG a DT
large JJ number NN of IN those DT on IN board NN . .

Fig. 2 An example of a POS-tagged sentence.

Our experience has led us to conclusion that the ±1 window does an effective
job of capturing relations, given a good-sized corpus. A ±1 window in our con-
text often represents a syntax relation between open-class words. Although long
distance relations can not be captured by this small window, this same relation
can also appear as ±1 relation. For example, consider the sentence “Who did
the daughter of President Clinton marry?”. The long distance relation “daughter
marry” can appear in another sentence “The married daughter has never been
able to see her parent again”. Therefore, statistically, a ±1 window can capture
many of the relations the longer window can capture. While the relations captured
by ±1 window can be wrong, the state-of-the-art statistical dependency parsers
can produce errors, too.

Our word co-occurrence models were based on a predefined vocabulary of about
22,000 common English words and noun phrases. The 22,000 common English
words and noun phrases are based on the online English Dictionary 3ESL, which
is part of the Project 12 Dicts6. We manullay exclude proper nouns from the 3ESL
because there are not many of them and they are all ranked at the top places since
proper nouns start with an uppercase letter. WordNet is used to assign part of
speech tags to the words in the vocabulary because statistical POS parsers can
generate incorrect POS tags to words. We also added more than 2,000 verb phrases
extracted from WordNet. The final dimensions of our word co-occurrence matrices
are 29,000 ⇥ 29,000 when words are POS tagged. Our vocabulary includes only
open-class words (i.e., nouns, verbs, adjectives and adverbs). There are no proper
nouns (as identified by [51]) in the vocabulary with the only exception of an exploit
list of country names.

We use a small example sentence, “A passenger plane has crashed shortly after
taking off from Kyrgyzstan’s capital, Bishkek, killing a large number of those on
board.”, to illustrate how we generate the word co-occurrence models.

The corresponding POS tagging result from the Stanford POS tagger is shown
in Figure 2. Since we only consider open-class words, our vocabulary for this small
example will only contains 10 POS-tagged words in alphabetical order: board NN,
capital NN, crash VB, kill VB, large JJ, number NN, passenger NN, plane NN,
shortly RB and take VB. The resulting co-occurrence counts for the context win-
dows of size ±1 and ±4 are shown in Table 4 and Table 5, respectively.

Stop words are ignored and do not occupy a place in the context window.
For example, in Table 4 there is one co-occurrence count between “kill VB” and
“large JJ” in the ±1 context window although there is an article “a DT” between
them. Other close-class words still occupy places in the context window although
we do not need to count co-occurrences when they are involved since they are
not in our vocabulary. For example, the co-occurrences count is zero between
“shortly RB” and “take VB” in Table 4 since they are separated by “after IN”
that is not a stop word. The reasons we only choose three articles as stop words
are (1) they have high frequency in text; (2) they have few meanings; (3) we want

6 http://wordlist.aspell.net/12dicts-readme
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Table 4 The word co-occurrence counts using ±1 context window for the sentence in Figure 2.

word POS # 1 2 3 4 5 6 7 8 9 10
board NN 1 0 0 0 0 0 0 0 0 0 0
capital NN 2 0 0 0 0 0 0 0 0 0 0
crash VB 3 0 0 0 0 0 0 0 0 1 0
kill VB 4 0 0 0 0 1 0 0 0 0 0
large JJ 5 0 0 0 1 0 1 0 0 0 0
number NN 6 0 0 0 0 1 0 0 0 0 0
passenger NN 7 0 0 0 0 0 0 0 1 0 0
plane NN 8 0 0 0 0 0 0 1 0 0 0
shortly RB 9 0 0 1 0 0 0 0 0 0 0
take VB 10 0 0 0 0 0 0 0 0 0 0

Table 5 The word co-occurrence counts using ±4 context window for the sentence in Figure 2.

word POS # 1 2 3 4 5 6 7 8 9 10
board NN 1 0 0 0 0 0 1 0 0 0 0
capital NN 2 0 0 0 1 0 0 0 0 0 0
crash VB 3 0 0 0 0 0 0 1 1 1 1
kill VB 4 0 1 0 0 1 1 0 0 0 0
large JJ 5 0 0 0 1 0 1 0 0 0 0
number NN 6 1 0 0 1 1 0 0 0 0 0
passenger NN 7 0 0 1 0 0 0 0 1 1 0
plane NN 8 0 0 1 0 0 0 1 0 1 0
shortly RB 9 0 0 1 0 0 0 1 1 0 1
take VB 10 0 0 1 0 0 0 0 0 1 0

to keep a small number of stop words for ±1 window since close-class words can
often isolate unrelated open-class words; and (4) we want to capture the relation
in the pattern “verb + the (a, an) + noun” that frequently appear in text for ±1
window, e.g., “know the person”.

SVD Transformation. Singular value decomposition (SVD) has been found to be
effective in improving word similarity measures [31]. SVD is typically applied to
a word by document matrix, yielding the familiar LSA technique. In our case we
apply it to our word by context word matrix. In literature, this variation of LSA
is sometimes called HAL (Hyperspace Analog to Language) [9].

Before performing SVD, we transform the raw word co-occurrence count fij to
its log frequency log(fij +1). We select the 300 largest singular values and reduce
the 29K word vectors to 300 dimensions. The LSA similarity between two words is
defined as the cosine similarity of their corresponding word vectors after the SVD
transformation.

LSA Similarity Examples. Table 6 shows ten examples obtained using LSA simi-
larity. Examples 1 to 6 show that the metric is good at differentiating similar from
non-similar word pairs. Examples 7 and 8 show that the ±4 model can detect se-
mantically similar words even with different POS while the ±1 model yields much
worse performance. Examples 9 and 10 show that highly related but not substi-
tutable words can also have a strong similarity, but the ±1 model has a better
performance in discriminating them. We call the ±1 model concept similarity and
the ±4 model relation similarity, respectively, since the ±1 model performs best
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Table 6 Ten examples from the LSA similarity model.

# Word Pair ±4 model ±1 model

1 doctor NN, physician NN 0.775 0.726

2 car NN, vehicle NN 0.748 0.802

3 person NN, car NN 0.038 0.024

4 car NN, country NN 0.000 0.016

5 person NN, country NN 0.031 0.069

6 child NN, marry VB 0.098 0.000

7 wife NN, marry VB 0.548 0.274

8 author NN, write VB 0.364 0.128

9 doctor NN, hospital NN 0.473 0.347

10 car NN, driver NN 0.497 0.281

on nouns and the ±4 model on relational phrases, regardless of their structure
(e.g., “married to” and “is the wife of”).

3.2 Evaluation

TOEFL Synonym Evaluation. We evaluated the ±1 and ±4 models on the well-
known 80 TOEFL synonym test questions. The ±1 and ±4 models correctly an-
swered 73 and 76 questions, respectively. One question was not answerable because
the question word, “halfheartedly”, is not in our vocabulary. If we exclude this
question, ±1 achieves an accuracy of 92.4% and ±4 achieves 96.2%. It is worth
mentioning that this outstanding performance is obtained without testing on the
TOEFL synonym questions beforehand.

According to ACL web page on state-of-the-art performance to TOEFL Syn-
onym Questions,7 our result is second-to-best among all corpus-based approaches.
The best performance was achieved by Bullinaria and Levy with a perfect accu-
racy but it was the result of directly tuning their model on the 80 questions. It
is interesting that our models can perform so well, especially when our approach
is much simpler than Bullinaria and Levy’s approach [8] or Rapp’s approach [44].
There are several differrences between our system and exiting approaches. First,
we used a three-billion word corpus with high quality, which is larger than cor-
pora used by Bullinaria and Levy (two-billion) or Rapp (100 million). Second, we
performed POS tagging and lemmatization on the corpus. Third, our vocabulary
includes only open-class or content words.

WordSimilarity-353 Evaluation. WordSim353 is another dataset that is often used
to evaluate word similarity measures [17]. It contains 353 word pairs, each of which
is scored by 13 to 16 human subjects on a scale from 0 to 10. However, due to
the limited size of the vocabulary that we used, some words in the WordSim353
dataset (e.g., “Arafat”) are outside of our vocabulary. Therefore, we chose to use
a subset of WordSimilarity353 that had been used to evaluate a state-of-the-art
word similarity measure PMImax [23] because both share the same 22,000 common
English words as their vocabulary. This subset contains 289 word pairs. The evalu-
ation result, including both the Pearson correlation and Spearman rank correlation

7 http://goo.gl/VtiObt
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Table 7 Evaluating our LSA ±4 model on 289 pairs in WordSim353 dataset and comparing
the results with the state-of-the-art word similarity measure PMImax [23].

Pearson Spearman
PMImax 0.625 0.666
LSA ±4 model 0.642 0.727

Table 8 Comparison of our LSA models to the Word2Vec model [41] on the 80 TOEFL
synonym questions.

±1 model ±4 model Word2Vec
Correctly Answered 73 76 67
Accuracy 92.4% 96.2% 84.8%
Out-Of-Vocabulary Words halfheartedly halfheartedly tranquillity

coefficients, is shown in Table 7. Since WordSim353 is a dataset more suitable for
evaluating semantic relatedness than semantic similarity, we only evaluate the ±4
model on it. The LSA ±4 model performed better than PMImax in both Pearson
and Spearman correlation.

If the 289 pairs could be thought as a representative sample of the 353 pairs
and if we could thereby compare our result with the state-of-the-art evaluations on
WordSimilarity-353 [1], the Pearson correlation of 0.642 produced by our model is
ranked as the second to best among all state-of-the-art approaches.

Comparison with Word2Vec. For the final evaluation, we also compared our LSA
models to the Word2Vec [41] word embedding model on the TOEFL synonym
questions. We used the pre-trained model also published by Mikolov et al. [41],
which was trained on a collection of more than 100 billion words from Google
News. The model contains 300-dimensional vectors, which has the same dimension
as our models. One question word “tranquillity” is not in the pre-trained model’s
vocabulary8. Therefore, both sides have one question not answerable. The results
of both systems are shown in Table 8. Our LSA models’ performance is significantly
better than the Word2Vec model, at a 95% confidence level using the Binomial
Exact Test.

3.3 Combining with WordNet Knowledge

Statistical word similarity measures have limitations. Related words can have sim-
ilarity scores only as high as their context overlap, as illustrated by “doctor” and
“hospital” in Table 6. Also, word similarity is typically low for synonyms having
many word senses since information about different senses are mixed together [23].
We can reduce the above issues by using additional information from WordNet.

Boosting LSA similarity using WordNet. We increase the similarity between two
words if any relation in the following eight categories hold:

1. They are in the same WordNet synset.
2. One word is the direct hypernym of the other.
3. One word is the two-link indirect hypernym of the other.

8 The spelling tranquillity dominated tranquility prior to 1980, but is now much less common.
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4. One adjective has a direct similar to relation with the other.
5. One adjective has a two-link indirect similar to relation with the other.
6. One word is a derivationally related form of the other.
7. One word is the head of the gloss of the other or its direct hypernym or one of

its direct hyponyms.
8. One word appears frequently in the glosses of the other and its direct hypernym.

Notice that categories 1-6 are based on linguistic properties whereas categories
7-8 are more heuristic. We use the algorithm described in [12] to find a word gloss
header.9

We define a word’s “significant senses” to deal with the problem of WordNet
trivial senses. The word “year”, for example, has a sense “a body of students who
graduate together” which makes it a synonym of the word “class”. This causes
problems because this is not the most significant sense of the word “year”. A sense
is significant if any of the following conditions are met: (i) it is the first sense; (ii)
its WordNet frequency count is at least five; or (iii) its word form appears first in
its synset’s word form list and it has a WordNet sense number less than eight.

We require a minimum LSA similarity of 0.1 between the two words to filter
out noisy data when extracting relations in the eight WordNet categories because
some relations in the categories are not semantically similar. One is because our
heuristic definition of ”significant sense” sometimes can include trivial sense of a
word, therefore, noise. The second reason is that the derivational form of a word
is not necessarily semantically similar to the word. The third reason is that the
category 7 and 8 can produce incorrect results sometimes.

We adopt the concept of path distance from [33] and assign path distance of
zero to the category 1, path distance of one to the categories 2, 4, and 6, and path
distance of two to categories 3, 5, 7, and 8. Categories 1-6 follow the definition
in Li et al. but 7 and 8 are actually not related to path distance. However, in
order to have a uniform equation to compute the score, we assume that these
two categories can be boosted by a score equivalent to path length of 2, which is
longest path distance in our eight categories. The new similarity between words
x and y is computed by combining the LSA similarity and WordNet relations as
shown in the following equation,

sim�(x, y) = min(1, simLSA(x, y) + 0.5e�↵D(x,y)) (1)

where D(x, y) is the minimal path distance between x and y. Using e�↵D(x,y) to
transform simple shortest path length has been demonstrated to be very effective
by [33]. The parameter α is set to 0.25, following their experimental results.

Dealing with words of many senses. For a word w with many WordNet senses
(currently ten or more), we use its synonyms with fewer senses (at most one third
of that of w) as its substitutions in computing similarity with another word. Let
Sx and Sy be the set of all such substitutions of the words x and y respectively.
The new similarity is obtained using Equation 2.

sim(x, y) = max( max
sx2Sx[{x}

sim�(sx, y),

max
sy2Sy[{y}

sim�(x, sy)) (2)

9 For example, the gloss of the first sense of “doctor” in WordNet is “a licensed medical
practitioner”. The gloss head of “doctor” is therefore “practitioner”.
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Table 9 Fraction of OOV words generated by Stanford POS tagger for a sample of 500
sentences per dataset.

dataset Noun Adjective Verb Adverb

MSRvid 0.09 0.27 0.04 0.00

MSRpar 0.39 0.37 0.01 0.03

SMT 0.18 0.19 0.03 0.05

headlines 0.40 0.44 0.02 0.00

OnWn 0.08 0.10 0.01 0.1

Finally, notice that some of the design choices in this section were made by
intuition, observations, and a small number of sampled and manually checked
experiments. Therefore some of the choices/parameters have a heuristic nature
and may be suboptimal. The reason why we do so is because many parameters
or choices in defining eight categories, “significant senses”, and similarity func-
tions are intertwined. Due to the number of them, justifying every design choice
requires many detailed experiments, which we cannot offer in this paper. The
LSA+WordNet model was originally developed for Graph of Relation project or a
schema-agnostic graph query system, as we pointed earlier in the paper. The ad-
vantage of LSA+WordNet model with these intuitive and pragmatic design choices
over the pure LSA model has been demonstrated in the experiments on the graph
query system [19]. An online demonstration of a similar model developed for the
GOR project is available [53].

3.4 Out-of-Vocabulary Words

Our word similarity model is restricted by the size of its predefined vocabulary (set
of (token, part�of�speech) tuples). Any word absent from this set is called an out-
of-vocabulary (OOV) word. For these, we can only rely on their lexical features like
character unigrams, bigrams, etc. While the vocabulary is large enough to handle
most of the commonly used words, for some domains OOV words can become a
significant set. Table 9 shows the fraction of OOV words in a random sample of
500 sentences from the STS datasets when Stanford POS tagger was used. Table
10 gives some example OOV words.

The most common type of OOV words are names (proper nouns) and their
adjective forms. For example, the noun “Palestine” and its adjective form “Pales-
tinian”. This is apparent from Table 9 where some datasets have high OOV nouns
and adjectives due to the nature of their domain. For instance, MSRpar and
headlines are derived from newswire and hence contain a large number of names
of people, places, and organizations. Other OOV words include lexical variants
(“summarise” vs “summarize”), incorrectly spelled words (“nterprise”), hyphen-
ated words (multi-words), rare morphological forms, numbers, and time expres-
sions. Since our vocabulary is actually a set of (token, part� of � speech) tuples,
incorrect POS tagging also contributes to OOV words.

Since OOV words do not have a representation in our word similarity model,
we cannot compare them with any other word. One approach to alleviate this
is to include popular classes of OOV words like names into our vocabulary. For
highly focused domains like newswire or cybersecurity, this would be a reasonable



14 Abhay Kashyap et al.

Table 10 Examples of OOV words.

POS example OOV words

Noun gadhafi, spain, jihad, nterprise, jerry, biotechnology, health-care

Adjective six-day, 20-member, palestinian, islamic, coptic, yemeni

Verb self-immolate, unseal, apologise, pontificate, summarise, plough

Adverb faster, domestically, minutely, shrilly, thirdly, amorously

and useful approach. For instance, it would be useful to know that “Mozilla Fire-
fox” is more similar to “Google Chrome” than “Adobe Photoshop”. However, for
generic models, this would vastly increase the vocabulary size and would require
large amounts of high quality training data. Also, in many cases, disambiguating
named entities would be better than computing distributional similarity scores.
For instance, while “Barack Obama” is somewhat similar to “Joe Biden” in that
they both are politicians and democrats, in many cases it would be unacceptable
to have them as substitutable words. Another approach is to handle these OOV
terms separately by using a different representation and similarity function.

Lexical OOV Word Similarity. We built a simple wrapper to handle OOV words
like proper nouns, numbers and pronouns. We handle pronouns heuristically and
check for string equivalence for numbers. For any other open class OOV word,
we use simple character bigram representations. For example, the name “Barack”
would be represented by the set of bigrams {‘ba’,‘ar’,‘ra’,‘ac’,‘ck’}. To compare
a pair of words, we compute the Jaccard coefficient of their bigrams and then
threshold the value to disambiguate the word pair.10

Semantic OOV Word Similarity. Lexical features work only for word disambigua-
tion and make little sense when computing semantic similarity. While many OOV
words come from proper nouns, for which disambiguation works well, languages
continue to grow and add new words into their vocabulary. To simply use lexical
features for OOV words would restrict the model’s ability to adapt to a growing
language. For example, the word “google” has become synonymous with “search”
and is often used as a verb. Also, as usage of social media and micro-blogging
grows, new slang, informal words, abbreviations come into existence and become
a part of common discourse.

As these words are relatively new, including them in our distributional word
similarity model might yield poor results, since they lack sufficient training data.
To address this, we instead represent them by their dictionary features like defi-
nitions, usage examples, or synonyms retrieved from external dictionaries. Given
this representation, we can then compute the similarity as the sentence similarity
of their definitions [24,29]. To retrieve reliable definitions, we need good sources
of dictionaries with vast vocabulary and accurate definitions. We describe two
dictionary resources that we used for our system.

Wordnik [13] is an online dictionary and thesaurus resource that includes several
dictionaries like the American Heritage dictionary, WordNet, and Wikitionary. It
exposes a REST API to query their dictionary, although the daily usage limits

10 Our current system uses a threshold value of 0.8, which we observed to produce good
results.
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for the API adds a bottleneck to our system. Wordnik has a large set of unique
words and their corresponding definitions for different senses, examples, synonyms,
and related words. For our system, we use the top definition retrieved from the
American Heritage dictionary and Wikitionary as context for an OOV word. We
take the average of the sentence similarity scores between these two dictionaries
and use it as our OOV word similarity score. Usually the most popular sense for
a word is Wordnik’s first definition. In some cases, the popular sense was different
between the American Heritage Dictionary and Wikitionary which added noise.
Even with its vast vocabulary, several slang words and phrases were found to be
absent in Wordnik. For this, we used content from the Urban Dictionary.

Urban Dictionary [54] is a crowd-sourced dictionary source that has a large
collection of words and definitions added by users. This makes it a very valuable
resource for contemporary slang words and phrases. Existing definitions are also
subject to voting by the users. While this helps accurate definitions achieve a
higher rank, popularity does not necessarily imply accuracy. We experimented
with Urban Dictionary to retrieve word definitions for the Word2Sense subtask as
described in Section 4.3.2. Due to the crowd-sourced nature of the resource, it is
inherently noisy with sometimes verbose or inaccurate definitions. For instance, the
top definition of the word “Programmer” is “An organism capable of converting
caffeine into code” whereas the more useful definition “An individual skilled at
writing software code” is ranked fourth.

4 Semantic Textual Similarity

In this section, we describe the various algorithms developed for the *SEM 2013
and SemEval-2014 tasks on Semantic Textual Similarity.

4.1 English STS

We developed two systems for the English STS task, which are based on the
word similarity model explained in Section 3. The first system, PairingWords,
uses a simple term alignment algorithm. The second system combines these scores
with additional features for the given training data to train supervised models.
We apply two different approaches to these supervised systems: an approach that
uses generic models trained on all features and data (Galactus/Hulk) and an ap-
proach that uses specialized models trained on domain specific features and data
(Saiyan/SuperSaiyan).

Preprocessing. We initially process the text by performing tokenization, lemmati-
zation and part of speech tagging, as required by our word similarity model. We
use open-source tools from Stanford coreNLP [16] and NLTK [6] for these tasks.
Abbreviations are expanded by using a complied list of commonly used abbrevia-
tions for countries, North American states, measurement units, etc.
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Term Alignment. Given two text sequences, we first represent them as two sets of
relevant keywords, S1 and S2. Then, for a given term t 2 S1, we find its counterpart
in the set S2 using the function g1 as defined by

g1(t) = argmax
t02S2

sim(t, t0) t 2 S1 (3)

where sim(t, t0) is the semantic word similarity between terms t and t0.

Similarly, we define the alignment function g2 for the other direction as:

g2(t) = argmax
t02S1

sim(t, t0) t 2 S2 (4)

g1(t) and g2(t) are not injective functions so their mappings can be many-to-
one. This property is useful in measuring STS similarity because two sentences
are often not exact paraphrases of one another. Moreover, it is often necessary to
align multiple terms in one sentence to a single term in the other sentence, such
as when dealing with repetitions and anaphora, for example, mapping “people
writing books” to “writers”.

Term Weights. Words are not created equal and vary in terms of the information
they convey. For example, the term “cardiologist” carries more information than
the term “doctor”, even though they are similar. We can model the information
content of a word as a function of how often it is used. For example, the word
“doctor” is likely to have a larger frequency of usage when compared to “cardiol-
ogist” owing to its generic nature. The information content of a word w is defined
as

ic(w) = ln

 

P

w
0
✏C freq(w

0

)

freq(w)

!

(5)

where C is the set of words in the corpus and freq(w) is the frequency of the word
w in the corpus. For words absent in the corpus, we use average weight instead of
maximum weight. It is a safer choice given that OOV words also include misspelled
words or lexical variants.

Term Alignment Score. We compute a term alignment score between any two text
sequences as

T = mean

 

P

t2S1
ic(t) ⇤ sim(t, g1(t))
P

t2S1
|ic(t)|

,

P

t2S2
ic(t) ⇤ sim(t, g2(t))
P

t2S2
|ic(t)|

!

(6)

where S1 and S2 are the sets of relevant key words extracted from their corre-
sponding text, t represents a term, ic(t) represents its information content and
g1(t) or g2(t) represents its aligned counterpart. The mean function can be the
arithmetic or the harmonic mean.
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4.1.1 PairingWords: Align and Penalize

We hypothesize that STS similarity between two text sequences can be computed
using

STS = T � P
0 � P

00 (7)

where T is the term alignment score, P 0 is the penalty for bad alignments, and
P 00 is the penalty for syntactic contradictions led by the alignments. However P 00

had not been fully implemented and is not used in our STS systems. We show it
here just for completeness.

We compute T from Equation 6 where the mean function represents the arith-
metic mean. The similarity function sim0(t, t0) is a simple lexical OOV word simi-
larity back-off (see Section 3.4) over sim(x, y) in Equation 2 that uses the relation
similarity.

We currently treat two kinds of alignments as “bad”, as described in Equa-
tion 8. The similarity threshold θ in defining Ai should be set to a low score, such
as 0.05. For the set Bi, we have an additional restriction that neither of the sen-
tences has the form of a negation. In defining Bi, we used a collection of antonyms
extracted from WordNet [43]. Antonym pairs are a special case of disjoint sets.
The terms “piano” and “violin” are also disjoint but they are not antonyms. In
order to broaden the set Bi we will need to develop a model that can determine
when two terms belong to disjoint sets.

Ai =
�

ht, gi(t)i |t 2 Si ^ sim
0(t, gi(t)) < θ

 

Bi = {ht, gi(t)i |t 2 Si ^ t is an antonymof gi(t)}

i 2 {1, 2} (8)

We show how we compute P 0 in the following:

P
A
i =

P

ht,gi(t)i2Ai
(sim0(t, gi(t)) + wf (t) · wp(t))

2 · |Si|

P
B
i =

P

ht,gi(t)i2Bi
(sim0(t, gi(t)) + 0.5)

2 · |Si|

P
0 = P

A
1 + P

B
1 + P

A
2 + P

B
2 (9)

wf (t) and wp(t) terms are two weighting functions on the term t. wf (t) inversely
weights the log frequency of term t and wp(t) weights t by its part of speech tag,
assigning 1.0 to verbs, nouns, pronouns and numbers, and 0.5 to terms with other
POS tags.

4.1.2 Galactus/Hulk and Saiyan/Supersaiyan: Supervised systems

The PairingWords system is completely unsupervised. To leverage the availabil-
ity of training data, we combine the scores from PairingWords with additional
features and learn supervised models using support vector regression (SVR). We
used LIBSVM [10] to learn an epsilon SVR with a radial basis kernel and ran a
grid search provided by [48] to find the optimal values for the parameters cost,
gamma and epsilon. We developed two systems for the *SEM 2013 STS task,
Galactus and Saiyan, which we used as a basis for the two systems developed for
the SemEval-2014 STS task, Hulk and SuperSaiyan.
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Galactus and Saiyan: 2013 STS task. We used NLTK’s [6] default Penn Treebank
based tagger to tokenize and POS tag the given text. We also used regular ex-
pressions to detect, extract, and normalize numbers, date, and time, and removed
about 80 stopwords. Instead of representing the given text as a set of relevant
keywords, we expanded this representation to include bigrams, trigrams, and skip-
bigrams, a special form of bigrams which allow for arbitrary distance between two
tokens. Similarities between bigrams and trigrams were computed as the average
of the similarities of its constituent terms. For example, for the bigrams “mouse
ate” and “rat gobbled”, the similarity score is the average of the similarity scores
between the words “mouse” and “rat” and the words “ate” and “gobbled”. Term
weights for bigrams and trigrams were computed similarly.

The aligning function is similar to Equation 3 but is an exclusive alignment
that implies a term can only be paired with one term in the other sentence. This
makes the alignment direction independent and a one-one mapping. We use refined
versions of Google ngram frequencies [39], from [37] and [48], to get the information
content of the words. The similarity score is computed by Equation 6 where the
mean function represents the Harmonic mean. We used several word similarity
functions in addition to our word similarity model. Our baseline similarity function
was an exact string match which assigned a score of 1 if two tokens contained the
same sequence of characters and 0 otherwise. We also used NLTK’s library to
compute WordNet based similarity measures such as Path Distance Similarity,
Wu-Palmer similarity [55], and Lin similarity [35]. For Lin similarity, the Semcor
corpus was used for the information content of words. Our word similarity was
used in concept, relation, and mixed mode (concept for nouns, relation otherwise).
To handle OOV words, we used the lexical OOV word similarity as described in
Section 3.4.

We computed contrast features using three different lists of antonym pairs [43].
We used a large list containing 3.5 million antonym pairs, a list of about 22,000
antonym pairs from WordNet and a list of 50,000 pairs of words with their degree
of contrast. The contrast score is computed using Equation 6 but the sim(t, t0)
contains negative values to indicate contrast scores.

We constructed 52 features from different combinations of similarity metrics,
their parameters, ngram types (unigram, bigram, trigram and skip-bigram), and
ngram weights (equal weight vs. information content) for all sentence pairs in the
training data:

– We used scores from the align-and-penalize approach directly as a feature.
– Using exact string match over different ngram types and weights, we extracted

eight features (4 ⇤ 2). We also developed four additional features (2 ⇤ 2) by in-
cluding stopwords in bigrams and trigrams, motivated by the nature of MSRvid
dataset.

– We used the LSA-boosted similarity metric in three modes: concept similarity
(for nouns), relation similarity (for verbs, adjectives and adverbs), and mixed
mode. A total of 24 features were extracted (4 ⇤ 2 ⇤ 3).

– For WordNet-based similarity measures, we used uniform weights for Path and
Wu-Palmer similarity and used the information content of words (derived from
the Semcor corpus) for Lin similarity. Skip bigrams were ignored and a total
of nine features were produced (3 ⇤ 3).
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Table 11 Fraction of OOV words generated by NLTK’s Penn Treebank POS tagger.

dataset (#sentences) Noun Adjective Verb Adverb

MSRpar (1500) 0.47 0.25 0.10 0.13

SMT (1592) 0.26 0.12 0.09 0.10

headlines (750) 0.43 0.41 0.13 0.27

OnWN (1311) 0.24 0.24 0.10 0.23

– Contrast scores used three different lists of antonym pairs. A total of six fea-
tures were extracted using different weight values (3 ⇤ 2).

The Galactus system was trained on all of the STS 2012 data and used the full
set of 52 features. The Saiyan system employed data-specific training and features.
More specifically, the model for headlines was trained on 3000 sentence pairs from
MSRvid and MSRpar, SMT used 1500 sentence pairs from SMT europarl and SMT
news, while OnWN used only the 750 OnWN sentence pairs from last year. The
FnWN scores were directly used from the Align-and-Penalize approach. None of
the models for Saiyan used contrast features and the model for SMT also ignored
similarity scores from exact string match metric.

Hulk and SuperSaiyan: 2014 STS task. We made a number of changes for the 2014
tasks in an effort to improve performance, including the following:

– We looked at the percentage of OOV words generated by NLTK (Table 11) and
Stanford coreNLP [16] (Table 9). Given the tagging inaccuracies by NLTK, we
switched to Stanford coreNLP for the 2014 tasks. Considering the sensitivity
of some domains to names, we extracted named entities from the text along
with normalized numbers, date and time expressions.

– While one-one alignment can reduce the number of bad alignments, it is not
suitable when comparing texts of different lengths. This was true in the case
of datasets like FrameNet-WordNet, which mapped small phrases with longer
sentences. We thus decided to revert to the direction-dependent, many-one
mapping used by the PairingWords system.

– To address the high fraction of OOV words, the semantic OOV word similarity
function as described in Section 3.4 was used.

– The large number of features used in 2013 gave marginally better results in
some isolated cases but also introduced noise and increased training time. The
features were largely correlated since they were derivatives of the basic term
alignment with minor changes. Consequently, we decided to use only the score
from PairingWords and score computed using the semantic OOV word simi-
larity.

In addition to these changes Galactus was renamed Hulk and trained on a
total of 3750 sentence pairs (1500 from MSRvid, 1500 from MSRpar and 750 from
headlines). Datasets like SMT were excluded due to poor quality. Also, Saiyan
was renamed SuperSaiyan. For OnWN, we used 1361 sentence pairs from previous
OnWN dataset. For Images, we used 1500 sentence pairs from MSRvid dataset.
The others lacked any domain specific training data so we used a generic training
dataset comprising 5111 sentence pairs from MSRvid, MSRpar, headlines and
OnWN datasets.
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Fig. 3 Our approach to compute the similarity between two Spanish sentences.

4.2 Spanish STS

Adapting our English STS system to handle Spanish similarity would require to
select a large and balanced Spanish text corpus and the use of a Spanish dic-
tionary (such as the Multilingual Central Repository [18]). As a baseline for the
SemEval-2014 Spanish subtask, we first considered translating the Spanish sen-
tences to English and running the same systems explained for the English subtask
(i.e., PairingWords and Hulk). The results obtained applying this approach to the
provided training data were promising (with a correlation of 0.777). So, instead
of adapting the systems to Spanish, we performed a preprocessing phase based
on the translation of the Spanish sentences (with some improvements) for the
competition (see Figure 3).

Translating the sentences. To automatically translate sentences from Spanish to
English we used the Google Translate API,11 a free, multilingual machine trans-
lation product by Google. It produces very accurate translations for European
languages by using statistical machine translation [7], where the translations are
generated on the basis of statistical models derived from bilingual text corpora.
Google used as part of this corpora 200 billion words from United Nations doc-
uments that are typically published in all six official UN languages, including
English and Spanish.

In the experiments performed with the trial data, we manually evaluated the
quality of the translations (one of the authors is a native Spanish speaker) and
found the overall translations to be very accurate. Some statistical anomalies were
noted that were due to incorrect translations because of the abundance of a specific

11 http://translate.google.com
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word sense in the training set. On one hand, some homonym and polysemous
words are wrongly translated which is a common problem of machine translation
systems. For example, the Spanish sentence “Las costas o costa de un mar [...]”
was translated to “Costs or the cost of a sea [...]”. The Spanish word costa
has two different senses: “coast” (the shore of a sea or ocean) and “‘cost” (the
property of having material worth). On the other hand, some words are translated
preserving their semantics but with a slightly different meaning. For example, the
Spanish sentence “Un coj́ın es una funda de tela [...]” was correctly translated to
“A cushion is a fabric cover [...]”. However, the Spanish sentence “Una almohada
es un coj́ın en forma rectangular [...]” was translated to “A pillow is a rectangular
pad [...]”.12

Dealing with Statistical Anomalies. The aforementioned problem of statistical ma-
chine translation caused a slightly adverse effect when computing the similarity
of two English (translated from Spanish) sentences with the systems explained in
Section 4.1. Therefore, we improved the direct translation approach by taking into
account the different possible translations for each word in a Spanish sentence. For
that, we used Google Translate API to access all possible translations for every
word of the sentence along with a popularity value. For each Spanish sentence the
system generates all its possible translations by combining the different possible
translations of each word (in Figure 3 TS11, TS12...TS1n are the possible trans-
lations for sentence SPASent1). For example, Figure 4 shows three of the English
sentences generated for a given Spanish sentence from the trial data.

SPASent1: Las costas o costa de un mar, lago o extenso ŕıo es la
tierra a lo largo del borde de estos.

TS11: Costs or the cost of a sea, lake or wide river is the
land along the edge of these.

TS12: Coasts or the coast of a sea, lake or wide river is the
land along the edge of these.

TS13: Coasts or the coast of a sea, lake or wide river is the
land along the border of these.

...

Fig. 4 Three of the English translations for the Spanish sentence SPASent1.

To control the combinatorial explosion of this step, we limited the maximum
number of generated sentences for each Spanish sentence to 20 and only selected
words with a popularity greater than 65. We arrived at the popularity threshold
through experimentation on every sentence in the trial data set. After this filtering,
our input for the “news” and “Wikipedia” tests (see Section 2.1) went from 480
and 324 pairs of sentences to 5756 and 1776 pairs, respectively.

Computing the Similarity Score. The next step was to apply the English STS sys-
tem to the set of alternative translation sentence pairs to obtain similarity scores
(see TS11vsTS21...TS1nvsTS2m in Figure 3). These were then combined to pro-
duce the final similarity score for the original Spanish sentences. An intuitive way

12 Notice that both Spanish sentences used the term coj́ın that should be translated as
cushion (the Spanish word for pad is almohadilla).
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Table 12 Fraction of OOV words in Phrase–Word and Word-Sense subtasks.

dataset (1000 words) OOV examples

Phrase–Word 0.16 jingoistic, braless, bougie, skimp, neophyte, raptor

Word–Sense 0.25 swag, lol, cheapo, assload, cockblock, froofy

to combine the similarity scores would be to select the highest, as it would repre-
sent the possible translations with maximal similarity. However, it could happen
that the pair with highest score have one or even two bad translations. We used
this approach in our experiments with the trial data and increased the already
high correlation from 0.777 to 0.785. We also tried another approach, comput-
ing the average score. Thus, given a pair of Spanish sentences, SPASent1 and
SPASent2, and the set of possible translations generated by our system for each
sentence, TrSent1 = {TS11, . . . , TS1n} and TrSent2 = {TS21, . . . , TS2m}, we
compute the similarity between them by using the following formula:

SimSPA(SPASent1, SPASent2) =

nP

i=1

mP

j=1
SimENG(TS1i, TS2j)

n ∗m

where SimENG(x, y) computes the similarity of two English sentences using our
English STS systems. Using this approach and the trial data we increased the
correlation up to 0.8. Thus, computing the average instead of selecting the best
similarity score obtained a higher correlation for the trial data. Using a set of
possible translations and averaging the similarity scores can help to reduce the
effect of wrong translations. We also speculate that the average behaved slightly
better because it emulates the process followed to generate the gold standard,
which was created by averaging the similarity score assigned to each pair of Spanish
sentences by human assessors.

4.3 Cross-Level STS

The SemEval-2014 task on Cross–Level Semantic Similarity presented a new set
of challenges. For the Paragraph–Sentence and Sentence–Phrase subtask, we used
the systems developed for the English STS with no modifications. However, the
Phrase–Word and Word–Sense subtasks are specific to very short text sequences. If
the constituent words are relatively rare in our model, there may not be sufficient
discriminating features for accurate similarity computation. In the extreme case, if
these words are not present at all in our vocabulary, the system would not be able
to compute similarity scores. Table 12 shows the OOV fraction of the 1000 words
from training and test datasets. While rare and OOV words can be tolerated in
longer text sequences where the surrounding context would capture the relevant
semantics, in tasks like these, performance is severely affected by lack of context.

4.3.1 Phrase to Word

As a baseline, we used the PairingWords system on the training set which yielded
a very low correlation of 0.239. To improve performance, we used external re-
sources to retrieve more contextual features for these words. Overall, there are
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seven features: the baseline score from the PairingWords system, three dictionary
based features, and three web search based features.

Dictionary Features. In Section 3.4 we described the use of dictionary features
as representation for OOV words. For this task, we extend it to all the words.
To compare word and phrase, we retrieve a word’s definitions and examples from
Wordnik and compare these with the phrase using our PairingWords system. The
maximum score when definitions and examples are compared with the phrase con-
stitutes two features in the algorithm. The intuition behind taking the maximum
is that the word sense which is most similar to the phrase is selected.

Following the 2014 task results, it was found that representing each phrase
as a bag of words fared poorly for certain datasets, for example slang words and
idioms. To address this, we added a third dictionary based feature based on the
similarity of all Wordnik definitions of the phrase with all of the word’s definitions
using our PairingWords system. This yielded a significant improvement over our
results submitted in SemEval task as shown in Section 5.

Web Search Features. Dictionary features come with their own set of issues, as
described in Section 3.4. To overcome these shortcomings, we supplemented the
system with Web search features. Since search engines provide a list of documents
ranked by relevancy, an overlap between searches for the word, the phrase and a
combination of the word and phrase, is evidence of similarity. This approach sup-
plements our dictionary features by providing another way to recognize polysemous
words and phrases, e.g., that ’java’ can refer to coffee, an island, a programming
language, a Twitter handle, and many other things. It also addresses words and
phrases that are at different levels of specificity. For example, ’object oriented pro-
gramming language’ is a general concept and ’java object oriented programming
language’ is more specific. A word or phrase alone lacks any context that could
discriminate between meanings [42,45]. Including additional words or phrases in
a search query provides context that supports comparing words and phrases with
different levels of specificity.

Given the set A and a word or phrase pA where pA 2 A, a search on A will
result in a set of relevant documents DA. Given the set B and a word or phrase pB
where pB 2 B, if we search on B, we will receive a set of relevant documents for
B given by DB . Both searches will return what the engine calculates as relevant
given A or B. So if we search on a new set C which includes A and B, such that
pA 2 C and pB 2 C then our new search result will be what the engine deems
relevant, DC . If pA is similar to pB and neither are polysemous, then DA, DB and
DC will overlap, shown in Figure 5(a). If either pA or pB is polysemous but not
both, then there may only be overlap between either A and C or B and C, shown
in Figure 5(b). If both pA and pB are polysemous, then the three document sets
may not overlap, shown in Figure 5(c). In the case of a polysemous word or phrase,
the overlapping likelihood is based on which meaning is considered most relevant
by the search engine. For example, if pA is ’object oriented programming’ and pB is
’java’, there is a higher likelihood that ’object oriented programming’ + ’java’, pC ,
will overlap with either pA or pB if ’java’ as it relates to ’the programming language’
is most relevant. However, if ’java’ as it relates to ’coffee’ is most relevant then
the likelihood of overlap is low.

Specificity also affects the likelihood of overlap. For example, even if the search
engine returns a document set that is relevant to the intended meaning of ’java’
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or pB , the term is more specific than ’object oriented programming’ or pA and
therefore less likely to overlap. However since the combination of ’object oriented
programming’ + ’java’ or pC acts as a link between pA and pB , the overlap between
A , C and B , C could allow us to infer similarity between A and B or similarity
specifically between ’object oriented programming’ and ’java’.

(a) (b) (c)

(d)

Fig. 5 (a) Overlap between A, B, and C; (b) overlap between ’A and C’ or ’B and C’; (c) no
overlap between A, B and C; (d) overlap between ’A and C’ and ’B and C’.

We implemented this idea by comparing results of three search queries: the
word, phrase, and the word and phrase together. We retrieved the top five results
for each search using the Bing Search API13 and indexed the resulting document
sets in Lucene [27] to obtain term frequencies for each search. For example, we
created an index for the phrase ’spill the beans’, an index for the word ’confess’,
and an index for ’spill the beans confess’. Using term frequency vectors for each
we calculated the cosine similarity of the document sets. In addition, we also
calculated the mean and minimum similarity among document sets. The similarity
scores, the mean similarity, and minimum similarity were used as features, in
addition to the dictionary features, for the SVM regression model. We evaluated
how our performance improved given our different sets of features. Table 19 shows
the cumulative effect of adding these features.

4.3.2 Word to Sense

For the Word to Sense evaluation, our approach is similar to that described in the
previous section. However, we restrict ourselves to only dictionary features since
using Web search as a feature is not easily applicable when dealing with word
senses. We will use an example word author#n and a WordNet sense Dante#n#1
to explain the features extracted. We start by getting the word’s synonym set, Wi,
from WordNet. For the word author#n, Wi comprises writer.n.01, generator.n.03
and author.v.01. We then retrieve their corresponding set of definitions, Di. The
WordNet definition of writer.n.01, “writes (books or stories or articles or the like)

13 http://bing.com/developers/s/APIBasics.html
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Table 13 Pearson’s correlation between the features and the annotated training data.

feature correlation

F1 0.391

F2 0.375

F3 0.339

F4 0.363

F5 0.436

F6 0.410

F7 0.436

F8 0.413

professionally (for pay)” 2 Di. Finally, we access the WordNet definition of the
sense, SD. In our example, for Dante#n#1, SD is “an Italian poet famous for
writing the Divine Comedy that describes a journey through Hell and purgatory
and paradise guided by Virgil and his idealized Beatrice (1265-1321)”.

We use the PairingWords system to compute similarities and generate the
following four features, where n is the number of word’s synonym set.

– F1 = max0i<n sim(Di, SD)
– F2 = max0i<n sim(Wi, S)
– F3 = max0i<n sim(Wi, SD)
– F4 = max0i<n sim(Di, S)

Since approximately 10% of the input words fall out of WordNet’s vocabulary, we
supplement this by using Wordnik and reduce the OOV words to about 2%. In
the process, we create two additional features:

F5 =

(

F1 if word in WordNet

max0i<n sim(DKi, SD) if word not in WordNet

F6 = max
0i<n

sim(DKi, SD)

where DK = Dn+ its top five Wordnik definitions.
Following the SemEval-2014 task results, we experimented with additional def-

initions and dictionary resources like Urban Dictionary, generating two more fea-
tures:

F7 =

(

F5 if word in WordNet or Wordnik

max0i<n sim(DUi, SD) if word in neither WordNet nor Wordnik

F8 = max
0i<n

sim(DWi, S)

where the DUi and DWi are the word’s definitions from Urban Dictionary and
Wordnik, respectively.

Table 13 shows the Pearson’s correlation between the individual features and
the corresponding gold standard scores for the given training set of 500 word-sense
pairs. We used features F1-F6 to train SVM regressions models to compute the
similarity scores for the evaluation dataset.
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Table 14 Performance of our systems in the *SEM 2013 English STS task.

Dataset Pairing Galactus Saiyan

Headlines (750 pairs) 0.7642 (3) 0.7428 (7) 0.7838 (1)

OnWN (561 pairs) 0.7529 (5) 0.7053 (12) 0.5593 (36)

FNWN (189 pairs) 0.5818 (1) 0.5444 (3) 0.5815 (2)

SMT (750 pairs) 0.3804 (8) 0.3705 (11) 0.3563 (16)

Weighted mean 0.6181 (1) 0.5927 (2) 0.5683 (4)

5 Results

In the following we present the results of our system in the *SEM 2013 and
SemEval-2014 competitions. First, we show the results for the English STS task
in *SEM 2013 and SemEval-2014. Then, we show the results for the Spanish STS
task in SemEval-2014. Finally, we explain the results for the 2014 Cross-Level STS
task.

English STS. The *SEM 2013 task attracted a total of 89 runs from 35 differ-
ent teams. We submitted results from three systems to the competition: Pairing-
Words, Galactus, and Saiyan. Our best performing system, PairingWords, ranked
first overall (see Table 14) while the supervised systems, Galactus and Saiyan,
ranked second and fourth, respectively. On the one hand, the unsupervised sys-
tem, PairingWords, is robust and performs well on all domains. On the other hand,
the supervised and domain specific system, Saiyan, gives mixed results. While it
ranks first on the headlines dataset, it drops to 36 on OnWN (model trained on
2012 OnWN data, see Table 14) where it achieved a correlation of 0.56. Galactus’
model for headlines (trained on MSRpar, MSRvid) was used on OnWN and the
correlation improved significantly from 0.56 to 0.71. This shows the fragile nature
of these trained models and the difficulty in feature engineering and training se-
lection since in some cases they improved performance and added noise in other
cases.

The English STS task at SemEval-2014 included 38 runs from 15 teams. We
presented three systems to the competition: PairingWords, Hulk, and SuperSaiyan.
Our best performing system ranked a close second overall,14 behind first place
by only 0.0005. Table 15 shows the official results for the task. The supervised
systems, Hulk and SuperSaiyan, fared slightly better in some domains. This can be
attributed to the introduction of named entity recognition and semantic OOV word
similarity. deft-news and headlines are primarily newswire content and contain a
significant number of names. Also, deft-news lacked proper casing. An interesting
dataset was tweet-news which had meta information in hashtags. These hashtags
often contain multiple words that are in camel case. As a preprocessing step, we
only stripped out the ‘#’ symbol and did not tokenize camel cased hashtags.

While there are slight improvements from supervised models on some specific
domains, the gains are small when compared to the increase in complexity. In
contrast, the simple unsupervised PairingWords system is robust and consistently
performs well across all the domains.

14 An incorrect file for ‘deft-forum’ dataset was submitted. The correct version had a corre-
lation of 0.4896 instead of 0.4710. This would have placed it at rank 1 overall.



A Robust Semantic Text Similarity System 27

Table 15 Performance of our systems in the SemEval-2014 English Subtask.

Dataset Pairing Hulk SuperSaiyan

deft-forum 0.4711 (9) 0.4495 (15) 0.4918 (4)

deft-news 0.7628 (8) 0.7850 (1) 0.7712 (3)

headlines 0.7597 (8) 0.7571 (9) 0.7666 (2)

images 0.8013 (7) 0.7896 (10) 0.7676 (18)

OnWN 0.8745 (1) 0.7872 (18) 0.8022 (12)

tweet-news 0.7793 (2) 0.7571 (7) 0.7651 (4)

Weighted Mean 0.7605 (2) 0.7349 (6) 0.7410 (5)

Table 16 Performance of our systems in the SemEval-2014 Spanish Subtask.

Dataset Pairing PairingAvg Hulk

Wikipedia 0.6682 (12) 0.7431 (6) 0.7382 (8)

News 0.7852 (12) 0.8454 (1) 0.8225 (6)

Weighted Mean 0.7380 (13) 0.8042 (2) 0.7885 (5)

Spanish STS. The SemEval-2014 Spanish STS task included 22 runs from nine
teams. The results from our three submitted runs are summarized in Table 16.
The first used the PairingWords system with the direct translation of the Spanish
sentences to English. The second used the extraction of the multiple translations
of each Spanish sentence and the PairingWords system. The third used the Hulk
system with the direct translation. Our best run achieved a weighted correlation
of 0.804, behind first place by only 0.003. Notice that the approach selected based
on the automatic translation of the Spanish sentences obtained good results for
both datasets.

The “News” dataset contained sentences in both Peninsular and American
Spanish dialects (the American Spanish dialect contains more than 20 subdialects).
These dialects are similar but some of the words included in each are only used in
some regions and the meaning of other words differ. The use of Google Translate,
which handles Spanish dialects, and the computing of the average of the similarity
of the possible translations helped us to increase the correlation in both datasets.

The results for the “Wikipedia” dataset are slightly worse due to the large
number of named entities in the sentences, which PairingWords cannot handle.
However, we note that the correlation obtained by the two Spanish native speakers
used to validate the dataset was 0.824 and 0.742, respectively [2]. Our best run
obtained a correlation of 0.743 for this dataset which means that our system
behaved as well as a native speaker for this test. Finally, the Hulk system, which
was similar to the Pairing run and used only the direct translation per sentence,
achieved better results as it is able to handle the named entities in both datasets.
After the competition, we applied the Hulk system with the multiple translations
of each sentence generated by our approach, obtaining a correlation score of 0.8136,
which would make the system first in the real competition.

Cross-Level STS. The 2014 Cross-Level STS task included 38 runs from 19 teams.
The results from our submitted runs are summarized in Table 17. For the Paragraph–
Sentence and Sentence–Phrase tasks we submitted three runs each which uti-
lized the PairingWords, Hulk, and SuperSaiyan systems. For the Phrase–Word
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Table 17 Performance of our systems on the four Cross-Level Subtasks.

Dataset Pairing Hulk SuperSaiyan WordExpand

Para.–Sent. 0.794 (10) 0.826 (4) 0.834 (2)

Sent.–Phrase 0.704 (14) 0.705 (13) 0.777 (1)

Phrase–Word 0.457 (1)

Word–Sense 0.389 (1)

Table 18 Examples where our algorithm performed poorly and the scores for individual
features.

Wordnik BingSim Score

S1 S2 Baseline Definition Example Sim Avg Min SVM GS Error

spill the beans confess 0 0 0 0.0282 0.1516 0.1266 0.5998 4.0 3.4002

screw the pooch mess up 0 0.04553 0.0176 0.0873 0.4238 0.0687 0.7185 4.0 3.2815

on a shoogly peg insecure 0 0.0793 0 0.0846 0.3115 0.1412 0.8830 4.0 3.1170

wacky tabaccy cannabis 0 0 0 0.0639 0.4960 0.1201 0.5490 4.0 3.4510

rock and roll commence 0 0.2068 0.0720 0.0467 0.5106 0.0560 0.8820 4.0 3.1180

Fig. 6 Correlation with gold standard with respect to category.

and Word–Sense tasks we submitted a single run each based on the features ex-
plained in Section 4.3.1 and Section 4.3.2, respectively. It is interesting to note the
drop in correlation scores with the size of the text sequences. The domain-specific
system SuperSaiyan ranked first in the Sentence-Phrase task and second in the
Paragraph-Sentence task. This could be attributed to its specially trained model
on the given 500 training pairs and the presence of a significant number of names.

The Phrase–Word run achieved a correlation of 0.457, the highest for the sub-
task. Table 18 shows some examples where our system performed poorly. Our
performance was slightly worse for slang and idiomatic categories when compared
to others because the semantics of idioms is not compositional, reducing the effec-
tiveness of a distributional similarity measure. After the competition we explored
the inclusion of a third dictionary based feature to solve this problem (as ex-
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Table 19 Cumulative effect of features.

Features Used Correlation with GS

baselineSTS, Wordnik, Phrase Definitions, Search Features 0.581

baselineSTS, Wordnik, Phrase Definitions 0.519

baselineSTS, Wordnik, Search Features 0.456

baselineSTS, Search Features 0.452

baselineSTS 0.239

Fig. 7 Correlation with gold standard by category.

plained in Section 4.3.1). The overall correlation for the subtask increased from
0.457 to 0.581 with the addition of this feature. This increase in performance can
be attributed to the increase in correlation for idiom and slang categories as seen
in Figure 6. We also conducted ablation experiments to identify critical features
and understand the relationship between dictionary and search features. Table 19
shows the improvement in correlation scores with the addition of features. Figure 7
compares the correlation with gold standard across different categories between
search and dictionary features.

We limited the documents we processed to the top five search results while
computing web search features. As a separate task, we conducted another experi-
ment which focused on comparing search result sizes. We trained a model for each
search result size (1, 3, 5, 7, 10, 12) using the given training dataset. We then
tested and measured our performance using the test data set as conveyed in Ta-
ble 20. Future experiments will extend this test further to determine the number
of documents at which performance is negatively affected. As can be seen in Fig-
ure 8, the general trend indicates performance gain with increase in the number
of search results.

The Word–Sense run ranked first in the subtask with a correlation score of
0.389. Table 21 gives some examples where the system performed poorly. We no-
ticed that the top definition of Wordnik is not always reliable. For example, the
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Fig. 8 Number of search documents vs. correlation.

Table 20 Effects of the number of search documents processed.

Number Correlation

1 0.5396

3 0.5715

5 0.5757

7 0.5802

10 0.5783

12 0.5932

Table 21 Examples where our system performed poorly.

ID word sense key sense number predicted gold

80 cheese#n moolah%1:21:00:: moolah#n#1 0.78 4

377 bone#n chalk%1:07:00:: chalk#n#2 1.52 4

441 wasteoid#n drug user%1:18:00:: drug user#n#1 0.78 3

Table 22 Correlation scores of different feature combinations for train and test datasets.

Method Features Corr. Train Corr. Test

SVR F1 − F6 0.529 0.389

SVR F1 − F8 0.543 0.393

Average F1 − F8 0.528 0.375

Average F2, F6, F7, F8 0.534 0.415

Average F2, F5, F6, F7, F8 0.536 0.406

first definition of cheese#n is “a solid food prepared from the pressed curd of milk”
but there is a latter, less prominent one, which is “money”. Another issue is the
absence of some words like wasteoid#n in Wordnik.

Following the task results, we included Urban Dictionary as a dictionary source
and included additional features (as explained in Section 4.3.2). Instead of using
trained models, we also experimented with simple average of highly correlated
features. Table 22 shows the correlation scores of different combinations of features.
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We noticed a slight increase in our score after including Urban Dictionary. Also
we observed better scores when we used a simple average of highly correlated
features.

6 Conclusion

We described the resources and algorithms that we developed for our SemSim sys-
tem and its performance in the *SEM 2013 and SemEval-2014 evaluation tasks for
Semantic Textual Similarity. In the 2013 task, we ranked first out of 89 submit-
ted runs. In the 2014 task on Multilingual Semantic Similarity, we ranked second
in both English and Spanish subtasks. In the 2014 task on Cross–Level Seman-
tic Similarity, we ranked first in Sentence–Phrase, Phrase–Word and Word–Sense
subtasks while ranking second in the Paragraph-Sentence subtask. Our strong
performances can be attributed to a powerful distributional word similarity model
based on LSA and WordNet knowledge.

Our unsupervised PairingWords system employed a simple term alignment al-
gorithm and achieved robust performance across all datasets. There was interest
in including syntactic features initially, but given the nature of the task, adding
them would likely give minimal gains. While we achieved good scores for the
Phrase–Word and Word–Sense subtasks, there is considerable room for improve-
ment. Future improvements include better use of dictionary resources, especially
when dealing with informal language. Also, the treatment of multiword expres-
sions (MWE) could be improved as they are currently included in the dictionary
and treated as single terms. Another area of application is to augment our word
similarity model with domain specific similarity models, such as cybersecurity or
healthcare.
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