
Robust sensor self-initialization

Whispering to avoid intruders

Carlos Ribeiro

IST / INESC-ID

Abstract. Wireless Sensor Networks (WSN) are becoming bigger and
with this growth comes the need for new automatic mechanisms for ini-
tializations done by hand. One of those mechanisms is the assignment
of addresses to nodes. Several solution were already proposed for mobile
ad-hoc networks but they either: i) do not scale well for WSN; ii) have
no energy constraints; iii) have no security considerations; iv) or have no
mechanisms to handle fusion of network partitions.
We proposed an address self-assignment protocol which: uses negative
acknowledgements and an improved version of a flood control mechanism
to minimize the energy spent; uses a technique named whispering to
achieve robustness against malicious nodes; and uses private nicknames
to handle fusion of network partitions.

1 Introduction

Wireless Sensor Networks (WSN) have been arousing the interest of both re-
searchers and the general community. WSNs are networks composed of small
and cheap devices with sensing abilities which are able to communicate with
each other through radio signals. The combination of sensing and radio commu-
nication abilities makes these networks ideal to build distributed sensing net-
works where each node collaborates by sensing one or more phenomena in its
neighborhood and relaying it to a central node.

In order to be cheap and last for long periods without management sensor
nodes have several challenging constraints, from which the most important one is
energy. Thus every algorithm and protocol designed for sensor networks should
always be energy conservative.

Given that sensor networks should be deployed on every kind of environment,
including very hostile environments, security should be a major concern. Usually,
achieving security implies some energy loss. However, this loss should be kept to
a minimum when there is no threat to defend against.

One of the problems of sensor networks is the naming. Given that a sensor
network could be comprised of a large amount of nodes, the unique addressing
of each node may be a problem. Currently, nodes are initialized by hand with a
unique number when the code is uploaded to the sensor node. This solution is
simple and energy efficient but, it requires the tedious task of programming and
initializing every node. In the initial versions of wireless sensors’ operating sys-
tems, every sensor had to be programmed individually through physical contact

using a special programming device. In those days initialization was not a big
issue because it could be easily done with the programming. However, currently,
wireless sensors are being programmed using their wireless network [1,2], which
makes naming much more difficult.

Wireless programming has two advantages over physical contact program-
ming. It scales better because there is no need to physically move the sensors
to the programming device and sensors can be reprogrammed after deployment
to correct programming mistakes, to adapt the sensor to a new environment or,
simply, to upgrade the software with an improved version.

Given that sensor programming is currently done by wireless radio, and that
wireless radio communications require addressing each individual sensor, then
naming can not be piggybacked on sensor programming as it used to be.

1.1 Zero message solutions

An obvious solution would be for each sensor to choose a random ID for itself.
This solution is fast, energy efficient and safe. It is fast and energy efficient
because it does not involve any messages, and it is safe because there is no way,
for an attacker, to prevent a sensor from choosing an ID.

However, for this solution to work we would need an ID space of at least
32 bit (preferably 64 bit) and, currently, most wireless sensor communication
protocols use 16 bit IDs, mostly because 64 bit IDs would make communication
headers to big for such devices. In TinyOS, the usual payload length is 29 bytes,
and the maximum packet size in 802.15.4 radio is 128 bytes [3], thus it would be
impossible to use 16 bytes just for addressing purposes (8 bytes for the receiver
and 8 for the sender).

With 16 bit IDs the random solution does not work. In such a situation the
collision probability (i.e. the probability of two nodes choosing the same ID)
is given by the birthday paradox p(X(nt)) = 1 −

∏nt−1
i=1 (1 − i

216), in which X
is a discrete uniform distribution of IDs and nt is the total number of nodes
deployed. As it can be seen in Figure 1, the collision probability is over 10%
with only 120 nodes, and reaches 50% with ∼ 300 nodes.

It can be argued that node’s IDs need to be unique only in their vicinities,
i.e. only the nodes with common direct neighbors need to have unique IDs [4].
Surely this is true but it does not help much. In such a situation the collision
probability can be given by p(X(nt, nv)) = 1− (1− nv

216)nt−nv−1
∏nv−1

i=1 (1− i
216),

where nt is the number of nodes deployed and nv is the average number of
nodes directly reachable by each node. As it can be seen in Figure 2 the number
of nodes that need to be deployed to have a 10% collision probability with an
average of 20 neighbors is just 356.

Another solution would be to use a 64 bit unique manufacturer number
to derive the 16 bit ID of each node. But that would require a collision free
transformation function from every 64 bit ID to a 16 bit one, which is not
possible for the same reasons that the random solution does not work.

Thus we need to develop a protocol to ensured collision free IDs. Global
collision free IDs are difficult to ensure, and most of the time they are not

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 400 600 800 1000

C
ol

lis
io

n
pr

ob
ab

ili
ty

Number of nodes

Fig. 1. Collision probability with the num-
ber of nodes deployed.

102

103

104

 5 10 15 20 25 30

N
um

be
r

of
 n

od
es

 d
ep

lo
ye

d

Number of reachable nodes

collision probability > 10%

102

103

104

 5 10 15 20 25 30

N
um

be
r

of
 n

od
es

 d
ep

lo
ye

d

Number of reachable nodes

collision probability > 10%
collision probability > 50%

Fig. 2. Number of nodes deployed for
achieving a 10% and 50% collision proba-
bility with the average number of nodes di-
rectly reachable by each node.

needed [4,5]. In WSNs, nodes are usually addressed by data attributes and not
by their unique global addresses. For instance, in the direct diffusion protocol
[6], communication is data centric. A node requests data by sending interest to
named data. This interest is propagated to its neighbors building an interest
tree. Whenever a source needs to send data, the data flows hop by hop over that
interest tree to all nodes that have manifest interest in it.

1.2 Proposal

We have developed a message efficient and secure protocol to ensure the distri-
bution of local unique IDs among neighbor nodes. The protocol is more efficient
in terms of number of messages than similar ones, it is secure against a bounded
number of malicious nodes and is able to handle late deployment scenarios and
partition rejoining without resetting established addresses.

The protocol efficiency is obtained through the use of only negative acknowl-
edgements and through an improvement over a previously proposed flooding
control technique. The security features of the protocol are obtained without
cryptography, through a technique named whispering. We are assuming that sen-
sor nodes are sold without key material in place. If cryptographic keys are going
to be needed, they will be distributed later over the wireless medium together
with sensor programming. Finally, the solution to handle partition rejoining is
accomplished using private nicknames between sensors.

We are going to describe some related work in Section 2 and the basic protocol
solution in Section 3. In Section 4 we describe the solution to avoid intruders
and in Section 5, we handle the incremental deployment of new sensors. Finally,
in Section 6 we present our conclusions and describe future work.

2 Related work

The naming problem which we intend to solve has been addressed before for
WSNs and for Mobile Ad-hoc Networks (MANET). The IETF Zeroconf working
group proposed a solution for MANETs [7] which rely on the discovering abilities
of the underlying routing protocol. In this proposal each node independently
chooses an address and then sends a routing requesting packet to that address. If
a route is found within a timeout period, the address is already in use; otherwise,
the address is not used and the protocol ends. The main problem of this protocol
is the definition of the timeout when the number of hops needed to reach every
node in the network increases. The protocol was developed for MANETs and do
not scale well for WSNs where the number of nodes and hops between them is
much higher.

Unlike the Zeroconf working group proposal, most naming solutions’ goal is
to find a unique 2-hop ID. This problem is known as the neighborhood unique
naming (NUN) problem, and is similar to the classical coloring graph problem
with conditions at distance 2. In [8] it is proven that there is no determinist
self-stabilizing algorithm to solve the NUN problem in uniform and anonymous
networks under distributed scheduler and proposes a self-stabilizing probabilistic
algorithm. The algorithm is very simple. Each node keeps two variables, one
with its ID and one with the ID of two colliding nodes in its neighborhood. If
there are no collisions in the neighborhood, the second variable is empty. Each
node starts by asking every neighbor their ID to calculate the second variable. It
then asks its neighbors for their variables values. If any of these values is equal
to its own ID the node randomly chooses another. The algorithm was proven to
self-stabilize, although no protocol was given to implement it. In particular, it
is not clear how messages from two distinct nodes with the same ID can not be
confused with a repetition of a previous message.

The same strategy is followed in [9], but instead of using the 2-hop neighbor-
hood it uses a 3-hop neighborhood and a cache in every node to keep the IDs
of its 3-hop neighborhood. It claims, that by using the 3-hop neighborhood, it
bounds each node number of attempts to choose an ID. However, no consistency
protocol for the 3-hop neighborhood cache is given, which makes it difficult to
calculate the average number of messages required to reach a consistent state.

A cache is also used in [4] to keep IDs of direct neighbors. In this proposal,
each node sends a periodical message with its ID. This message is stored in the
cache of its neighbors. If a node detects that two of its neighbors have the same
address, it sends a warning message to one of them. With this protocol, nodes
may change addresses several times during the life-time of the network which
may not be acceptable by every application or routing protocol. Moreover, the
periodic broadcasting of IDs may be too energy expensive, and the authors fail
to prove the self-stabilization of the protocol.

The approach followed in [10] is different but also probabilistic. They leverage
on the wireless nodes’ ability to detect media access collisions to know if there
are other nodes contending for an ID or not. If a node discovers that no one else
is broadcasting at the same time, it takes the ID for itself and every one else

knows that that ID is taken. If several nodes broadcast at the same time, they all
flip a coin to decide if they will participate in the next round. On average, only
half of the contenders transmit in the next round. After several rounds only one
node will transmit, and will get the ID. Although simple, this solution assumes
that the radio is able to listen at the same time it transmits, which is not true
in most inexpensive radio transmitters.

With the exception of the solution described in [11] most 2-distance graph col-
oring algorithms and address assignment protocols are either deterministic and
semi-centralized or distributed and probabilistic. The reason why distributed
protocols are probabilistic is the fact that, under a distributed and unfair sched-
uler, every node may precisely copy all the other nodes’ movements always choos-
ing the same IDs, thus the algorithm may never end. Clearly a deterministic
solution is better than a probabilistic one, because there is always the possibil-
ity that it never ends. However, most deterministic solutions do not scale well
because they are either centralized or semi-centralized.

The centralized solution is never used in MANETs or WSNs. It would be
similar to having a DHCP server replying to every node, which clearly does
not scale beyond a few dozens of nodes. The semi-centralized solutions works by
starting the assignment process at one specific central node and then distributing
the assignment workload among other nodes. The DRCP and DAAP protocols
[12] work together to assign addresses in MANETs. The DRCP is used by the
node requesting an address as in DHCP: the node starts by asking if any of its
neighbors is acting as a DRCP server and if some of them reply, it chooses one
of them to get the address from. After having received the address, the node
uses the DAAP protocol to ask its DRCP server for half of its pool of addresses,
and then proceed by acting as a DRCP server.

The ZigBeeTMcommunication protocol uses two types of addresses: 64 bit
global unique addresses and 16 bit network unique short addresses. The 64 bit
addresses are used at the beginning of the network deployment to establish
the 16-bit addresses, which are used thereafter. The protocol which establishes
the 16-bit addresses is similar to DRCP/DAAP. However instead of using two
distinct steps for assigning an address and for assigning a pool of addresses,
ZigBeeTMonly uses one; and instead of giving up half of its address space to
each child node, a node equally divides its pool of addresses among its neighbors.
Neither DRCP/DAAP or ZigBeeTMaddress assignment protocols scale well when
the number of nodes is too large or the address space is too small.

The solution presented in [11] does not have this problem but it is costly in
terms of time. In essence, the solution uses a token to establish an order between
node’s color changing, which in a network of several hundred nodes may take
some time. Moreover, this solution requires the synchronized update of state
variables in both sender and receiver nodes. This is a problem when nodes do
not have a valid address, because in such situations it is difficult to establish a
single receiver.

Finally, most 2-distance graph coloring algorithms [11,13,14] try to find the
graph coloring which uses the minimum number of colors. We have a much

more relaxed goal. We want to find a 2-distance graph coloring with a minimum
number of messages, bounded by a maximum of 216 colors.

3 Basic protocol

The basic protocol objective is twofold; i) ensure a unique local identification
on the WSN over a distance 2 neighborhood with an arbitrary large probability
p < 1 and, ii) minimize the energy loss by minimizing the number of messages
sent and received.

The protocol assumes no local or global knowledge of topological information.
This includes global and relative geographic coordinates, number of neighbors,
local and global density, or even the global number of nodes. This is important
in a scenario where most sensor nodes do not have a GPS module, and are
distributed randomly over the sensor field. In such scenario, it is not possible
to know geographic information at every sensor without running a localization
protocol, which can only be run if proper addressing is in place. Therefore,
although topological information may be acquired in the future, it is not available
at initialization time.

Unlike several initialization protocols [8,9], we have chosen to keep state vari-
ables private to each node, i.e. we avoid the use of caches with partial knowledge
of the state variables of other nodes. Although such caches would improve the
nodes’ knowledge over their neighborhood, we avoid expensive cache coherence
protocols.

The basic protocol is very simple, each node chooses a random ID for itself
and asks its neighbors if they have chosen the same ID. If at least one of them has
chosen the same ID, it replies with a NACK, saying that a collision was found,
otherwise each receiving node rebroadcasts the query to its own neighborhood.
The nodes receiving these rebroadcasts check the receiving packet for a collision
with their own IDs. If they find a collision, they reply in the same way as the
first hop nodes do, otherwise they do nothing (A complete description of the
protocol can be found in Appendix A).

Notice that there are no positive replies; only negative ones. This is because
the probability of finding a collision in a 2-hop neighborhood is very low, thus
in the usual scenario only query messages are sent. The collision probability in a
2-hop neighborhood is given by pc = 1− (1− 2−16)4nv , where nv is the average
number of neighbors1, which is ∼ 10−3 for a 20 node neighborhood.

The first problem that the protocol needs to overcome is how to distinguish
the rebroadcast messages originated in itself from the ones originated in other
sensors. If a node trying to establish an ID receives a query for that same ID, it
should answer declaring that that ID has been taken, even if that action results
in neither of the nodes sticking with the ID. However, if the node is hearing an

1 Note that, if nv is the average number of nodes within a 1-hop neighborhood, then,
assuming a uniform density distribution, the average number of nodes in a 2-hop
neighborhood is 4nv.

echo of its own query, it should do nothing. Thus we need a way to uniquely
identify the messages.

The messages sent by each node are stamped with a collision free 64 bit
node identifier (extended ID). This extended ID can be a manufacturer unique
number, when available, or a random number generated whenever a node starts.
However, as we will describe later a random number is preferred over a manu-
facturer unique number for security reasons. Note that extended IDs are only
used in the context of the initialization protocol. Afterwards, only 16 bit IDs are
used. In fact, the protocol can be seen as a recoloring protocol with a smaller
color space.

Two other similar problems happen when a rebroadcast node needs to relay
a NACK back to the original querying node, and when a node receives a NACK
for its own ID. In both cases nodes should only act upon NACKs which were
triggered by their own queries, otherwise the protocol may not stabilize.

Self-stabilization, as defined in [15], is an important property of a distributed
protocol. It ensures that regardless of the initial state of the system and regard-
less of the scheduling of actions taken by each participating node, the system
will reach a legitimate final state in a finite number of steps.

Beauquier at al. [16] redefined self-stabilization for probabilistic protocols in
such a way that regardless of the initial state of the system and regardless of the
scheduler strategy, the system will reach a legitimate final state with probability
1. Using the framework for proving self-stabilization of probabilistic protocols,
defined in [16], it can be shown that the previously described protocol, satisfies
the above mentioned definition of self-stabilization, if extended IDs are used to
link queries and replies.

Informally, the framework, defined in [16], states that a probabilistic protocol
is self-stabilizing for a given specification if there is a sequence of predicates over
system states Li(S) . . . Ln(S) where S is a system state and n > i ≥ 0 that:

– The last predicate Ln(S)(known as the legitimate predicate) of the sequence
is a predicate that identifies a legitimate final state according to the specifi-
cation.

– For every scheduler, the probability of reaching a system state satisfying the
specification from a state verifying the legitimate predicate is 1, which can
be formalized by the following conditional probability.

P (Ln(Sm+k)�Ln(Sm)) = 1, k > 0,m ≥ 0

– For every scheduler strategy, if the probability of reaching a state verifying
one predicate in the sequence is 1, then the probability of reaching a state
verifying the next predicate in the sequence is also 1, which can be formalized
by the following conditional probability.

P (Li+1(Sm+k)�Li(Sm)) = 1, k ≥ 1

The first two are easily verified by the protocol. If we choose n to be the
total number of nodes, and Li(N) ` {Ncf (S) > i}, where Ncf (S) is the number

of nodes with a collision free ID in state S, the last predicate (Ln(S)) clearly
identifies a legitimate final state (first requirement). Moreover, after reaching a
legitimate state (i.e. every node has a 2-hop unique identifier) the protocol ceases
to send NACKs. Since IDs are only changed when a NACK arrives, the system
will reach a final configuration verifying the specification (second requirement).

To prove that the protocol satisfies the last requirement, we will use another
result from [16]. It states that the third requisite is verified if both predicates
are closed and verify the local convergence property. Two predicates are said
to verify the local convergence property if, according to a scheduling strategy,
the probability of reaching a state verifying the second predicate from a state
verifying the first predicate, in less than k > 1 steps, is greater than δ > 0.

The predicate Li(N) ` {Ncf (S) > i} is closed under the given protocol,
because whenever a node chooses a 2-hop unique identifier and every 2-hop
neighbor has the opportunity to reply and does not do it, the node never changes
its ID again provided that it only acts upon NACKs to its own queries. If the
node tries to optimize the process of detecting a collision by overhearing NACKs
to queries initiated by other nodes, it does not verify this property and may not
stabilize.

Given the collision probability pc = 1− (1− 2−16)4nv and the probability of
finding a 2-hop unique identifier ps = 1− pc, the probability of collision after k
independent trials is Pc(k) = pk

c and the probability of success is Ps(k) = 1−pk
c .

Thus if we take δ = Ps(k − 1), then Ps(k) > δ provided that pc < 1. Notice
that after only three trials the collision probability on the order of magnitude of
∼ −10 for networks with a neighborhood density from 8 to 16 nodes.

3.1 Broadcast problems

One of the previously described problems of the protocol is that it relies on broad-
cast messages. Broadcast messages are inherently unreliable because whenever
the number of nodes in the neighborhood is not known, the emitter will not be
able to know if messages have arrived or not. However, in WSNs, the problem
is even worse because messages may not arrive for many more reasons than in
other network scenarios:

– The well known hidden terminal problem in radio networks may prevent
messages from arriving without being noticed by the emitter.

– Depending on the MAC protocol, nodes may have the receiver asleep, to
prevent energy loss, when a broadcast message arrives.

The common solution to improve broadcast reliability is to repeat each broad-
cast message several times to improve the probability of being received. However,
this solution increases the potential of collision whenever several nodes are trying
to broadcast a message. When some of these messages are rebroadcasts of previ-
ously arrived broadcast messages, we may be faced with the so called broadcast
storm problem[17].

To reduce the broadcast storm problem we use the counter-based solution
proposed in [17] enriched with distance information. In the original counter-based

solution some nodes are prevented from rebroadcasting a received message in
order to minimize the number of messages sent. Whenever a node receives several
replicas of the same message, it concludes that most of its neighbors have already
received the message, thus it does not need to send it again. By avoiding sending
messages nodes are minimizing the broadcast storm problem and are saving
energy but they are increasing the probability of not reaching nodes that they
should. In [17], it is shown that, in a homogenous radio network, the uncovered
area of a rebroadcast is directly related to the number of copies already received.
In the original implementation, nodes rebroadcast after a random delay, provided
that in the meantime they have not received enough copies of the same message.
In the proposed solution, nodes further away from the source broadcast first,
thus increasing the probability that nodes closer to the source are prevented
from broadcasting.

There are other methods to minimize broadcast storms with better efficiency
ratios, i.e. the ratio between the covered area and the number of broadcasting
nodes is better with other methods. However, all these methods require either
the knowledge of the topological localization of each node [17] or, at least, each
node’s neighbors [18].

In the proposed protocol, after receiving a query message, the node checks if
that message has been previously received. If the message has been previously
received more than a specified number of times, the message is marked as trans-
mitted. Otherwise the message is scheduled for broadcast after a delay directly
proportional to the power of the received message (Function timetosend(int
strength) in Listing 1.2). The result is that the retransmission area is divided
into concentric rings. The nodes in each of these rings rebroadcast at more or
less the same time. Notice that rings are not evenly distributed in space because
the reception power varies with the inverse square of the radius, which is more or
less consistent with the error in measuring message strength, which is much big-
ger for low power receptions, i.e. outer rings are wider than inner rings because
outer nodes have less accurate positioning than inner nodes.

The first question that arises is the number of copies that need to be received
in order to prevent the message to be rebroadcasted. Williams and Cram [19]
found that for networks with densities lower than 11 neighbors this threshold
must be ≥ 4 to get a maximum coverage, i.e. minimize the number of nodes that
never receive the message. However, their scenario is different from our own (we
need to cover a 2 hop region while they need to cover the whole network) and
they do not use the reception signal strength to schedule rebroadcasts.

The graph in Figure 3 shows the impact on the percentage of uncovered area
with the chosen threshold. As expected, the uncovered area decreases with the
increase of the threshold. However, it can be seen that the threshold required to
achieve a significant coverage is much lower with the signal strength information
than without it. To get a coverage of 99.5% (i.e. 0.5% of messages not received)
we need a threshold of 6 without reception power information and a threshold
of 4 with reception power information.

0%

1%

2%

3%

4%

5%

6%

7%

2 3 4 5 6 7 8 9 10

Threshold

%
 M

sg
 N

o
t
A
rr
iv
e
d

Not Power Aware Power Aware

Fig. 3. Impact of the threshold value on the
percentage of messages not delivered, with
and without power aware rebroadcast delay.

11

11,5

12

12,5

13

13,5

14

14,5

15

15,5

16

0,00% 0,01% 0,10% 1,00% 10,00%

% Msg Not Arrived

x
 S
e
n
d
 E
n
e
rg
y

Not Power Aware Power Aware

Fig. 4. Energy spent by each node (divided
by the energy spent by a single message
transmission) for a given coverage.

A lower threshold is better because it reduces the number of messages sent
thus improving energy consumption and minimizing the broadcast storm prob-
lem. In the end, the choice is between energy and coverage. Figure 4 shows the
energy spent by each node as a function of the desired coverage. In this graph,
we have assumed a simplified energy model in which sending a message con-
sumes one energy unit, the reception of a message consumes 1/10 of a unit and
everything else is negligible.

Again, as expected the coverage increases with energy consumption both in
the original solution and in the improved one. However, the solution which makes
use of reception strength information is able to achieve better coverage with the
same energy. In some cases, the uncovered area is 10 times smaller with the same
energy consumption.

4 Avoiding intruders

The previous scenario assumes that every node behaves well. If one or several
nodes start replying to every query saying that they have already chosen that ID,
the well behaved nodes may end up with a depleted battery after repeating the
query several times. If well behaved nodes do not share individual cryptographic
key material with every neighbor, they are not able to distinguish well behaved
neighbors from badly behaved neighbors. In such scenario, the only solution is
to speak progressively softly until the badly behaved nodes are not able to hear
the query. This is similar to whispering to your neighbor to prevent intruders
from overhearing.

Whispering prevents nodes from communicating with more distant nodes
which may have a negative impact on the network connectivity. We minimize
this impact by reducing the power only as much as necessary and only in the
nodes which are direct neighbors of the badly behaved one. Notice that, if a node

Without Whispering

0

50

100

150

200

250

0 50 100 150 200 250

X position

Y
po

st
io
n

Sucess Fail Bad

With Whispering

0

50

100

150

200

250

0 50 100 150 200 250

X position

Y
po

si
tio

n

Sucess Fail Bad

Fig. 5. Impact of whispering over the percentage of affected nodes, in the presence of
a percentage of badly behaved ones.

receives a NACK originated at his neighbor’s neighbor, reducing the power may
prevent it from communicating with legitimate neighbors which are closer to it
than the badly behaved node. It is its neighbor that should reduce transmission
power. However, a node can not know for sure if a NACK is being relayed or
produced at its neighbor, since a badly behaved node may always forge a NACK
as if it were being relayed. Our solution was to reduce the power more quickly
at nodes receiving NACKs to be relayed. Therefore, the only way a malicious
node is able to force another node to reduce its transmission power rapidly is by
being near, otherwise it can only affect the node through relayed NACKs.

The reduction of transmission power should only affect queries, the reply
messages should be transmitted at full power, otherwise a node could be pre-
vented from sending a NACK only because it has a badly behaved node near
it.

After receiving a first query from a node, a badly behaved node may start
issuing NACKs to random IDs, even if it does not receive any more queries (be-
cause of query power reduction) trying to guess the next chosen ID. To prevent
it, a node should change its extend identifier every time it reduces its query
transmission power.

This protocol is not able to completely prevent badly behaved nodes from
stopping some well behaved nodes to choose an ID, but it minimizes the number
of affected nodes. Figure 5 shows the effect of a small percentage of malicious
nodes (2%) over a field of 300 randomly deployed nodes. Dark triangles represent
malicious nodes, light rhombus represent nodes that were able to choose a colli-
sion free ID, and dark squares represent nodes that were not able to choose an
ID, or if, with the effect of power reduction, became isolated from non-malicious
nodes. As expected, the number of nodes which were not able to get an ID with
whispering is much smaller than without it. With whispering, the affected nodes
are in the direct vicinity of the malicious nodes, while without whispering the
affected nodes are spread over their 2-hop neighborhood.

0%

10%

20%

30%

40%

50%

60%

70%

1% 2% 3% 4% 5% 6%

% of malicious nodes

%
 o
f f
ai
le
d
no

de
s

Without whispering With whispering

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

2 4 6 8 10 12

Nº of neighbors

%
 o
f f
ai
le
d
no

de
s

Without whispering With whispering

Fig. 6. Relation between the percentage of failed nodes with the percentage of malicious
nodes and network density, with and without whispering

The number of affected nodes is obviously dependent on the number of badly
behaved ones, but it is also dependent on the network density. The number of
failed nodes increases when the number of nodes in the vicinity of malicious ones
increases. Figure 6 shows how the percentage of affected nodes increases with
the percentage of malicious ones and with the network density. In both cases, the
percentage of failed nodes is much lower and increases much slower with whis-
pering than without whispering. In fact, with whispering, the variation of failed
nodes with the network density is almost negligible, while without whispering
the effect is very noticeable.

5 Handling incrementally deployed scenarios

An important feature of address assignment protocols which is often forgotten is
their ability to handle late deployed sensors and the fusion of network partitions.
The deployment of additional sensors may be necessary either to improve the
sensor coverage or to improve the network lifetime, in a scenario in which the
sensors in place are with a nearly flat battery. The fusion of network partitions
may happen either because there was an obstacle dividing nodes at the time of
deployment which is now removed, or because the addition of new nodes made
two or more networks reachable to each other.

In such scenarios, address collisions may happen because at the time of ad-
dress assignment not every node new about each other. Most address assign-
ment protocols do not consider these scenarios and the ones that do, choose
to rerun the assignment protocol in the colliding nodes [4]. This strategy has
two problems. First, it may have a negative impact on routing, because every
route established through those nodes needs to be rebuilt. Second, an intruder
may prevent a node from getting its ID just by sending messages with that ID,
turning the whispering technique ineffective.

Another problem that these protocols need to handle is how to detect the
existence of colliding addresses. In [4], address collisions are detected during
the periodical neighborhood querying, which is done for this purpose. However,

given that the addition of new nodes and the merging of networks are rare, such
a scheme is too energy consuming. In [20] (a protocol designed for MANETs)
each packet has an additional 64 bit unique number which is used to detect
address collisions, but that it is not an option in WSNs given the size of each
packet.

5.1 Detecting address collisions

Our approach to detect address collisions is motivated by the way that people
distinguish two voices in a crowd. If one of the voices is loud and the other is
soft then there are probably two persons talking. If the heard sentences do not
make sense because they seem garbled, then it is possible that they are produced
by more than one person. Neither of these heuristics gives precise information
about the existence of colliding addresses but they may be used as triggers for
a collision solving protocol.

We have added two functions to detected collisions. One should be called
whenever a message arrives and another should be called whenever an out-
of-order (OoO) message arrives. The first function (recMsgPwr in Listing 1.2)
records the reception power of the last message received from each node. If the
reception power changes up and down more than 10%, the collision solving pro-
tocol is started (startColSolv function in Listing 1.1). The second function
(recMsgOoO in Listing 1.2) counts the number of OoO messages, and starts the
collision solving protocol if the counter exceeds a specific threshold.

5.2 Collision solving protocol

The collision detection protocol described in the previous section does not pro-
vide a definitive answer about the existence of address collisions. It ends by
sending a query to every node with a specific ID. Only if several nodes reply
(with different extended IDs) the collision is confirmed.

When a node detects a collision it assigns a nickname to every node with
the same ID, and informs the node of that nickname. The situation is similar to
having two students in the same class named John, and refer to one as “Little
John” and to the other as “Big John”. Notice that they will still be named John
for every one else, and we cannot just name them “little” and “big”, because we
would create other collisions. Moreover, in other classes they may be called by
another nickname.

The solution is to reserve two bits from the 16 bit addresses for nicknames.
Therefore, only 14 bit of the 16 bit addresses are assigned by the address assign-
ment protocol (the probability of collisions increases but that is not a problem,
because our address assignment protocol knows how to handle collisions), the
remaining 2 bits are originally set to zero. When a node detects a collision, it
informs each of the colliding nodes that their address will have some of those bits
set to one. Each of the colliding nodes stores the nickname by which it is called
by that node in a table. Notice that nicknames are private to their emitters,

e.g. a person may be known as “Little John” by someone and “Big John” by
someone else.

The collision solving process starts by broadcasting a query to every direct
neighbor. Each neighbor replies with its short and extended IDs (ColReply mes-
sage in Listing 1.1). The received extended IDs are stored in a table indexed by
the corresponding short IDs. If there are no collisions the table will be just a
collection of ID pairs, otherwise some short IDs will be associated with several
extended IDs. After a timeout, each of the entries in the table, with more than
one extended ID, is transformed into a message which is sent to every neighbor
with that short ID. After receiving that message, each node takes the alias from
which it becomes known by the sending node from the position of its extended
ID in the message, i.e. if its extended ID is the first one in the list, it has no
nickname (its nickname is 0), otherwise it adopts nicknames 1,2 or 3.

Private nicknames are very useful to handle rare collisions in already estab-
lished networks because there is no ID renewed propagation. A colliding node
may get different nicknames from different neighbors without having to conduct
a distributed agreement between them. However, its use should be restricted to
rare situations (e.g. joining of network partitions) because it takes memory to
keep the nicknames and makes broadcasting harder. Since the source ID on each
message depends on the destination ID, broadcasts can not be sent with a single
source ID. A simple solution would be to send several broadcasts with several
source IDs, but it may not work for some applications.

6 Conclusion

The address self-assigning problem is a well-studied problem in the MANET
world but it has not received much attention in the WSN world. In this pa-
per, we have described a simple address self-assignment protocol and proved
its correctness. To improve the protocol performance, we have proposed an im-
provement to a well-known method of controlling message floods, based on the
level of the power of message reception.

We have introduced the whispering technique to handle intruders when cryp-
tographic keys are not available or have been compromised, and show how to
use it in the proposed protocol. We believe that this is a valid security technique
and intend to study its application in other protocols. Finally, we have proposed
the use of private aliases to handle late address collisions which result from the
late deployment of nodes and the fusion of network partitions.

References

1. Marrn, P.J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., Rothermel, K.:
Flexcup: A flexible and efficient code update mechanism for sensor networks. In:
EWSN. (2006) 212–227

2. Dunkels, A., Grnvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: LCN. (2004) 455–462

3. IEEE: IEEE Std 802.15.4: Wireless MAC and PHY Specifications for LR-WPAN.
IEEE Computer Society (may 2003)

4. Schurgers, C., Kulkarni, G., Srivastava, M.B.: Distributed assignment of encoded
MAC addresses in sensor networks. In: MobiHoc, ACM (2001) 295–298

5. Elson, J., Estrin, D.: Random, ephemeral transaction identifiers in dynamic sensor
networks. In: Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS-01), Los Alamitos, CA, IEEE Computer Society
(April 16–19 2001) 459–468

6. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J.S., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1) (2003)
2–16

7. Ad, M., Perkins, C.E., Das, S.R.: IP address autoconfiguration for ad hoc networks.
Internet Draft draft-ietfmanet-autoconf-01.txt, Internet Engineering Task Force,
MANET WG (July 2000)

8. Gradinariu, M., Johnen, C.: Self-stabilizing neighborhood unique naming under
unfair scheduler. In: Euro-Par. (2001) 458–465

9. Herman, T., Tixeuil, S.: A distributed tdma slot assignment algorithm for wireless
sensor networks. In: ALGOSENSORS. (2004) 45–58

10. Nakano, K., Olariu, S.: Randomized initialization protocols for ad hoc networks.
IEEE Transactions on Parallel and Distributed Systems 11(7) (2000) 749–759

11. Angluin, D., Aspnes, J., Fischer, M.J.: Self-stabilizing population protocols. In:
Ninth International Conference on Principles of Distributed Systems. (December
2005) 79–90

12. Mcauley, A.J., Manousakis, K.: Self-configuring networks. In: MILCOM 2000.
21st Century Military Communications Conference Proceedings, Los Angeles, CA,
IEEE Computer Society (October 12–25 2000) 459–468

13. Gairing, M., Goddard, W., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.:
Distance-two information in self-stabilizing algorithms. Parallel Processing Let-
ters 14(3-4) (2004) 387–398

14. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: SPAA
’05: Proceedings of the seventeenth annual ACM symposium on Parallelism in
algorithms and architectures, New York, NY, USA, ACM Press (2005) 39–48

15. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11) (1974) 643–644

16. Beauquier, J., Gradinariu, M., Johnen, C.: Randomized self-stabilizing and space
optimal leader election under arbitrary scheduler on rings. Technical Report 99-
1225, Universite Paris Sud (1999)

17. Tseng, Y.C., Ni, S.Y., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a
mobile ad hoc network. Wireless Networks 8(2-3) (2002) 153–167

18. Lim, H., Kim, C.: Multicast tree construction and flooding in wireless ad hoc
networks. In: MSWIM ’00: Proceedings of the 3rd ACM international workshop
on Modeling, analysis and simulation of wireless and mobile systems, New York,
NY, USA, ACM Press (2000) 61–68

19. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: MobiHoc. (2002) 194–205

20. Vaidya, N.H.: Weak duplicate address detection in mobile ad hoc networks. In:
MobiHoc, ACM (2002) 206–216

A Listings

typedef enum {
Query , NACK, ColQuery , ColReply , ColSolve

} msgtype t ; // Message Types .
typedef struct { // Message s t ruc ture .

u in t 16 t d id , s i d ; // Dest ination and source IDs .
msgtype t type ; // Message type .
byte hop ; // Fir s t or second hop .
u in t 64 t xid [4] ; // Vector with extend ids .

} msg t ;
u i n t 16 t myId , secCtr , queryPower , replyPower , pwrStep ;
u i n t 64 t myXId , prev x id ;
i n i t () {

myXId= largerandom () ; // Choose a random extend id
queryPower = replyPower= MaxPower ; // Sets the power s tep
pwrStep = (MaxPower−MinPower)/ NCirc l e s ; // for each ring
newId () ; // Chooses a new Id

}
void rece iveMsg (message t msg) {

switch (msg . type) {
case Query : // Query message rece ived

i f (msg . s i d== myId &&
msg . xid [0] != myXId) { // Test i f there i s a c o l l i s i o n

sendNack (msg) ; // Send a NACK i f there i s a c o l l i s i o n
} else i f (! dup l i c a t e (msg)){ // Test i f a copy was prev ious l y rece ived .

i f (msg . hop == 0) { // I f i t i s a f i s t hop query schedule
msg . hop = 1 ; // a message for transmission a f t e r some
sendQueryAfter (msg , de layStep ∗msg . s t r ength /pwrStep) // time .

}
} else i f (incCtr (msg) > MaxCtr)// Inc . and t e s t the no of copies

markAsTrans (msg) ; // I f b i gger than thresho ld , remove
break ; // the message from the sending queue .

case NACK: // Negative ACK rece ived

i f (msg . hop==1 && // I f i t i s a 2nd hop message and
(msg . xid [1]== myXId | | msg . xid [1]== prev x id)) { // i t was sent

msg . hop = 0 ; sendNack (msg) ; // by me then send a NACK to the
} // o r i g i na l query node .
i f (msg . xid [msg . hop]== myXId) // I f the message was sent by me

i f (add2Ctr (msg . hop) | | // Inc . the counter of NACKs and i f
(msg . hop==0 && msg . s i d== myId)) // exceeds the thresho ld or

newId () ; // I ’m the o r i g i na l query node ,
break ; // choose a d i f f e r e n t Id .

case ColQuery : // Receive a Co l l i s i on Query message
msg = {msg . s id ,myAddTo(msg . s i d , ColReply ,myXId} ; // Send a rep ly
send (msg , replyPower) ; // with my short and extended IDs .
break ;

case ColReply : // Receive a Co l l i s i on Reply message
addXidTo (Storage , msg . s i d , msg . xid [0]) ; // Add the extended ID to
break ; // a l i s t indexed by the short ID .

case ColSolve : // Receive a Message with an ordered l i s t of XIDs
for (i =0; i <4 && msg . xid [i] !=myXId ; i ++); // The order of each XId
i f (i >0 && i <4) addToTable (msg . s i d , i) ; // i s i t s a l i a s . Inser t
break ; // the a l i a s toge ther with the source ID .

} }
void s t a r tCo lSo lv (u in t 16 t id) { // Star t the c o l l i s i o n so l v ing process

msg t msg = { id , myAddTo(id) , ColQuery } ; // by sending a c o l l i s i o n
send (msg , queryPower) ; // so l v ing Query ,
scheduleAlarm (onTimeout , de lay) ; // and schedule an alarm .

}
void onTimeout () { // After the alarm expires , a

while (Storage . ha sCo l i s i on s ()) { // msg i s sent for each ID with
msg = Storage [i] . getNextColMsg () ; // c o l l i d i n g extended IDs .
msg . type = ColSolve ; // Each message contains a l l
msg . s i d = myAddTo(msg . d id) ; // extended IDs assoc ia ted
send (msg , replyPower) ; // with each tha t ID .

}}

Listing 1.1. Main protocol functions. The init() and receive() functions are the
main protocol functions. The init() function just schedule a message to be sent
querying for an ID. The receive() function reacts according with the messages
received.

void newId () {
myId = random () ; // Generate a new random short ID .
sendQueryAfter (msg , randDelay) ; // Sends a Query for tha t short ID .

}
boolean add2Counter (byte hop) {// Count the number of NACKs rece ived .

secCtr += hop==0?1:3; // A NACK at the 2nd hop decreases

// power f a s t e r than at 1st .
i f (secCtr >9 && queryPower >0) { // I f to many NACKs were received ,

queryPower −= pwrStep ; // decrease the power unless power
secCtr = 0 ; // i s a lready zero . Reset the counter .
prev x id = myXId ; // Saves the previous extended ID ,
myXId= largerandom () ; // and generates a new one .
return t rue ; // Inform that a new short ID must

} // be generated .
return f a l s e ; // There i s no need to generate

} // a new short ID yet .
void sendQueryAfter (msg t msg , int delay) { // Query messages are sent

msg . type = Query ; msg . xid [msg . hop] = myXid ; // with queryPower ,
sendAt (msg , queryPower , time ()+ delay) ; // and with the extended ID .

}
void sendNack (msg t msg) {

msg . type = NACK; send (msg , replyPower) ; // NACK messages are sent
} // with replypower .

Listing 1.2. Auxiliar functions.

typedef struct { // Nodes s t ruc ture to keep out−of−order counter , l a s t
u int 16 id , pwr , OoOCtr ; // power l e v e l , and l a s t power l e v e l change .
enum {up , down , l e v e l } prev ;

} NodeRecord ;

void recMsgPwr (int nId , int pwr) { // Message from ID with power pwr .
NodeRecord nrec = getAddRecord (nId) ; // Get the record for tha t ID .
i f (! nrec . s o l v i n g && nrec . pwr != 0) {// I f i t i s not so l v ing c o l l i s i o n s

i f (nrec . pwr > 1 .1∗pwr) { // i f power i s 10\% below l a s t power
i f (nrec . prev == up) { // i f l a s t change was d i f f e r e n t

s t a r tCo lSo lv (nId) ; // s t a r t s so l v ing c o l l i s i o n s ,
nrec . prev = l e v e l ; // and se t s the l a s t change to none .

} else
nrec . prev = up ; // Otherwise s e t s l a s t change to up .

} else i f (nrec . pwr < 0 .9∗pwr) { // I f power i s 10\% above l a s t power .
i f (nrec . prevChange == down) { // i f l a s t change was d i f f e r e n t

s t a r tCo lSo lv (nId) ; // s t a r t s so l v ing c o l l i s i o n s ,
nrec . prev = l e v e l ; // and se t s the l a s t change to none .

} else
nrec . prev = down ; // Otherwise s e t s l a s t change to down .

}
nrec . pwr = pwr ; // Saves the l a s t seen power .

}
}
void recMsgOoO(u in t 16 nId) { // Records out−of−order messages

NodeRecord nrec = getAddRecord (nId) ; // Get the record for tha t ID .
nrec . OoOCounter ++; // Increments the out−of−order counter .
i f (! nrec . s o l v i n g && nrec .OoOCtr > OoOThresh) { // I f above thresho ld

s t a r tCo lSo lv () ; // s t a r t s the so l v ing c o l l i s i o n s .
nrec . OoOCounter = 0 ;

}
}
u int 16 myAddTo(u in t 16 nId) { // After the ID assignment process ,

int nickname = getFromTable (nId) ; // the ID of each node i s s p e c i f i c
return myId | nickname ; // for each correspondent node .

}

Listing 1.3. Collision detection functions.

