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Abstract Population managers will often have to deal with problems of meeting
multiple goals, for example, keeping at specific levels both the total population and
population abundances in given stage-classes of a stratified population. In control
engineering, such set-point regulation problems are commonly tackled using multi-
input, multi-output proportional and integral (PI) feedback controllers. Building on
our recent results for population management with single goals, we develop a PI
control approach in a context of multi-objective population management. We show
that robust set-point regulation is achieved by using a modified PI controller with
saturation and anti-windup elements, both described in the paper, and illustrate the
theory with examples. Our results apply more generally to linear control systems with
positive state variables, including a class of infinite-dimensional systems, and thus
have broader appeal.
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1 Introduction

Regulation by feedback arises in numerous areas of science and engineering; such
as acoustics, electrical circuits, aviation and biological systems. According to the
report of Murray et al. (2003): “Feedback is an enabling technology in a variety of
application areas and has been reinvented and patented many times in different con-
texts”. Ubiquitous to the design and synthesis of modern feedback control systems are
(P)roportional, (I)ntegral, (D)erivative controllers. These dynamical models incorpo-
rate current (P part), past (I part) and predictive (D part) information about a measured
variable or variables and create from this information a signal, termed an input or con-
trol, which is then fed back into the to-be-controlled system to achieve some desired
dynamic behaviour. PID controllers are widely used in industrial processes (Lunze
1989; Åström and Hägglund 1995) and have been described as one of the “Success
Stories in Control” (Samad and Annaswamy 2011, p. 103). The special case of inte-
gral control was developed in the 1970s as a technique for regulating the measured
variables of a stable, but controlled, linear system to a fixed and chosen set-point.
Early contributions to the theory of proportional and integral (PI) control are found in
the control engineering literature and include Davison (1975, 1976), Lunze (1985),
Morari (1985) and Grosdidier et al. (1985). Whilst grounded in the field of process
engineering, applications of PI control are multiple and varied. Indeed, established
examples in engineering are complemented by emerging examples in biology, such as
the regulation of blood sugar by insulin (Saunders et al. 1998), bacterial chemotaxis in
living cells (Yi et al. 2000), calcium homeostasis (El-Samad et al. 2002) and, recently
in Guiver et al. (2015), ecological management—the continued focus of the present
work.

In ecological management, PI control provides a suite of techniques for manage-
ment by the addition or removal of individuals from an ecological process, such as a
population. In applied contexts, addition may correspond to captive-release schemes,
translocation or replanting and removal may correspond to harvesting, culling or cop-
picing. Consequently, applications of PI control are broad in scope and importance,
including pest or resource management, agriculture, horticulture and conservation.
Its scope potentially extends to key and immensely timely societal challenges of
the twenty-first century, such as food security (Godfray and Garnett 2014). Indeed,
UNESCO’s Mathematics of Planet Earth’s 2013 programme1 was “born from the will
of the world mathematical community to learn more about the challenges faced by our
planet and the underlying mathematical problems, and to increase the research effort
on these issues” including “[a] growing population competing for the same global
resources”. In addition to the potential applications, our motivation for exploring the
utility of PI control in ecological management is twofold: (a) their ease of computa-
tion and implementation, with very little knowledge required of the to-be-controlled
system, and; (b) their inherent robustness to various forms of uncertainty. We further

1 Quotes taken from http://mpe2013.org/about-mpe2013/.
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elaborate on (a) and (b) in the manuscript and contend that these facets make PI control
ideally suited for ecological management where processes are subject to unknown dis-
turbances and dynamic models are (possibly) highly uncertain. The PI controllers that
we propose here do not seek to use measured data to update the underlying ecological
model over time, by inferring parameters for instance, but the control does change
in response to a measured variable. In this sense and context, feedback control has
parallels to adaptive management, an approach well known in the resource and eco-
logical management literature (Holling 1978; Walters 1986; Williams 2011). Other
authors have noted this connection as well: Heinimann (2010) proposes principles
from control theory as a concept for scholars and practitioners in adaptive ecosystem
management.

Our earlier paper, Guiver et al. (2015), introduces integral control and PI con-
trol, in a context of single management goals, for structured population models.
These deterministic population or meta-population models stratify individuals accord-
ing to some discrete or continuous age-, size- or stage-structure and include matrix
(P)opulation (P)rojection (M)odels (Caswell 2001; Cushing 1998) and (I)ntegral
(P)rojection (M)odels (Easterling et al. 2000; Ellner and Rees 2006; Briggs et al.
2010). Guiver et al. (2015) considers regulation of single (scalar) observations or
measurements to a prescribed set-point, or, in ecological modelling parlance, achieves
a single management goal or objective. It is reasonable to request, however, that more
than one measurement is regulated, and that more than one per time-step management
action is permitted. For example, when designing a replanting programme to conserve
a declining plant population, regulating total abundance may not be as beneficial as
thought when the composition of the resulting stratified population is dominated by the
seed stage-class. It may be more desirable to control both total abundance and abun-
dance of a given stage-class, for instance, flowering plants. Alternatively, in sustainable
harvesting, it may be desirable to harvest (that is, remove from) certain stage-classes
whilst replenishing others, and still maintain a desired abundance of certain stages.

The application of PI control to the above multi-objective management problem is
novel itself and, we believe, a useful and timely contribution to the suite of tools avail-
able to population managers, conservation biologists and other end users. To present
such a solution requires new mathematical results in control theory for two reasons.
First, population level models, such as matrix PPMs and IPMs, are examples of pos-
itive dynamical systems and existing “off-the-shelf” PI control need not respect the
necessary nonnegativity constraints. In an applied context the controller could instruct
management actions that are counter-intuitive or, worse, meaningless, such as remov-
ing more individuals than are currently present. Second, when the measured-variables
are naturally constrained to be nonnegative, it is clear that not every nonnegative vector
with more than one component is a feasible set-point. For example, if one measure-
ment is always required to be larger than another, then this ordering must be preserved
in the candidate set-point, as is the case in the plant example alluded to above.

Therefore, in the present contribution we apply low-gain PI control with multi-
ple management goals (so-called multi-input, multi-output systems) to examples in
ecological management and develop low-gain PI control for discrete-time, positive
state linear systems. The models and terminology is further explained throughout the
manuscript. The material we present is an extension of Guiver et al. (2015), where an
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existing suite of results in control theory was drawn upon and further developed to
address the nuanced situation of positive state variables and input constraints. Anal-
ogously, in regulating multiple outputs with multiple saturating inputs, we need to
develop a different set of tools, described in the manuscript, and in particular draw
upon recent positive state results in Guiver et al. (2014). Our results apply to situations
outside of ecology, adding to their appeal, and are novel, although there are similarities
to the results of Nersesov et al. (2004). We compare and contrast their approach with
ours in Remark 4.8.

Owing to its dual focus, the manuscript has the following deliberate structure.
Section 2 seeks to further motivate PI control as a tool for ecological management,
informally states our main result and illustrates its application through an example. The
subsequent Sects. 3 and 4 form the technical heart of the manuscript and develop the
mathematics summarised in Sect. 2. In order to extend the appeal of this contribution,
including to a possibly non-mathematical audience, we have deliberately placed proofs
of all novel results in “Appendix C”. A second example is presented in Sect. 5 and
the manuscript is concluded by Sect. 6 with a discussion. “Appendices A and B”
contain model parameters used in the examples that are not given in the main text for
ease of presentation and preliminary material required for the proofs of our results,
respectively.

2 Motivation, main result and illustrative example

This section contains an informal overview of our main results and demonstrates their
possible application. We seek as well to further motivate the present contribution by
briefly discussing the distinction between robust and optimal control, particularly in
the context of ecological management. A larger, more comprehensive, introduction
to PI control in the same context is contained in our earlier manuscript (Guiver et al.
2015, Section 2) which, to avoid repetition, we have not reproduced fully here. We
mention that Guiver et al. (2015, Section 2.1) compares and contrasts PI control with
other theoretical approaches to ecological management available in the literature.

For the situation considered here, the key ingredients are:

– a managed population or resource that is changing over time (referred to as the
to-be-controlled system or just system);

– the possibly disturbed observations or measurements (referred to as outputs);
– a management strategy that permits the addition or removal of individuals (referred

to as control actions).

The outputs provide information about aspects of the population, say abundance of
a strata, and the present PI control problem is to choose a series of control actions
to subsequently manage these outputs, that is, to regulate them to prescribed quanti-
ties. A PI controller is, in essence, a mathematical model that uses functions of the
measurements to determine present and future control actions.

To describe PI control, a model of the to-be-controlled system is required. We shall
assume that the population is modelled by a deterministic, linear, stratified popula-
tion model, typically a matrix PPM (Caswell 2001). PPMs are structured population
models, meaning that the modelled population is partitioned into discrete age-, size-

123



Robust set-point regulation for ecological models…

or developmental stage-classes (the latter may include larval, pupal, adult, etc.). A
linear, time-invariant matrix PPM is given by

x(t + 1) = Ax(t), x(0) = x0, t = 0, 1, 2, . . . , (2.1)

where x(t) denotes the structured population, in integer n stage-classes, with initial
population distribution x0 and A is an n × n componentwise nonnegative matrix. The
time-steps t in (2.1) are assumed fixed: a week, month, or breeding cycle, for instance.
The matrix A in (2.1) is often called the projection matrix, and contains life-history
parameters of the population, such as recruitment, survival and transitions between
stage-classes.

The inclusion of measurements y(t) and control actions u(t) in (2.1) leads to the
model

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 ,

y(t) = Cx(t),

}
t = 0, 1, 2, . . . , (2.2)

where the input vector u(t) with integer m components is to-be-determined by the
modeller. The terms B and C in (2.2) are n × m and p × m matrices, respectively,
where p denotes the number of per time-step measurements taken. We note that, at
any given time-step t , the entire population distribution (the state) x(t) may not be
known (or known precisely), and consequently may not be used to help determine u(t).
This is not necessarily a problem for feedback control—as we explain in Sect. 4.4.1,
knowledge of x(t) is not required for PI control to succeed (knowledge of the matrix A

is not required either) and PI control provides so-called global results in that they hold
for any initial population distribution x0. What is crucial to the efficacy of feedback
control is access to the measured variable y(t). The key difference between the present
contribution and Guiver et al. (2015) is that in the latter we restricted attention to
m = p = 1 but here the situation m, p > 1 is permitted, implying that numerous
measurements are recorded and management actions taken—so-called management
with multiple goals in ecological terminology or the multi-input, multi-output case in
control theoretic terminology.

Matrix PPMs (2.1) are examples of discrete-time, positive dynamical systems—
“positivity” refers to the property that the state-variables take only nonnegative
values, typically denoting abundances, densities or concentrations. Positive dynam-
ical systems form the appropriate framework for a variety of physically meaningful
mathematical models and arise as models in a diverse range of fields from biology,
chemistry, ecology and economics to genetics, medicine and engineering (Haddad
et al. 2010, p. xv). Owing to their importance in mathematical modelling positive
dynamical systems are well-studied with textbooks by, for example, Berman et al.
(1989), Krasnosel’skij et al. (1989) and Berman and Plemmons (1994). The theory of
linear positive dynamical systems is rooted in the seminal works of Perron (1907) and
Frobenius (1912) on nonnegative matrices (for a recent treatment see, for example,
Berman and Plemmons 1994, Chapter 2). Control of positive dynamical systems leads
to positive input control systems (Farina and Rinaldi 2000), where the input variables
are also assumed to be positive. Presently, only the state x(t) and output y(t) in (2.2)

123



C. Guiver et al.

need take componentwise nonnegative values, so called so-called positive state sys-
tems (Guiver et al. 2014). Accordingly, u(t) may take negative values, provided that a
nonnegative number or distribution remains. Such a framework allows the modelling
of control actions (or disturbances) such as harvesting, culling, pest management or
predation; actions which, importantly, fall outside the existing positive systems theory.

As a concrete and illustrative example, we explore the potential utility of low-gain
PI control by applying it to the management of a pronghorn (Antilocapra americana)
population based on matrix models from Berger and Conner (2008). Pronghorn are
native to Canada, Mexico and the US, and currently occur in western North America
from Canada through to northern Mexico. Managed populations are found in Yellow-
stone National Park and across the continent numbers are generally stable, having
recovered from near extinction in the 1920s. The species is susceptible, however, to
habitat loss from urban and agricultural expansion and restriction of seasonal move-
ments from fencing (Hoffmann et al. 2008). Pronghorn is legally hunted with permits,
although the subspecies Sonoran pronghorn is endangered and populations in Arizona
and Mexico are protected under the US Endangered Species Act.

The example also seeks to highlight the drawbacks of “off-the-shelf” PI control in
this particular applied context and to motivate additional novel features we develop
in Sect. 4. The pronghorn projection matrix model is an age-structured model, with
time-steps denoting years, and is based on Berger and Conner (2008, Table 4, wolf-
free site). The models provided there are for female pronghorn, although presently
we have included males in the population as well. Consequently there are six stage-
classes denoting female and male, neonates, yearlings and prime adults. The model
parameters used may be found in “Appendix A”. The spectral radius of the projection
matrix A in (2.1) or (2.2) is λ = 0.9222 < 1 so that the uncontrolled population x(t)

specified by (2.1) [or (2.2) with u(t) = 0 for every t] is declining asymptotically.
Suppose, therefore, that the hypothetical management objectives are to raise abun-
dance of female and male prime adults to 120 and 100, respectively, from their initial
abundances of c. 95 and c. 30, assuming a total initial population abundance of 300.
In order to be regulated to the chosen set-point

r =
[

120
100

]
, (2.3)

the female and male prime adults stage-classes must be observed each time-step,
determining the matrix C in (2.2). To affect these changes at least two per-time step
management actions (the same number as observations) are required, and we assume
that we may replenish female and male neonates, determining B in (2.2). The first
and second component of the vector-valued input variable u(t) in (2.2) now denote
how many female and male individuals are released per time-step, respectively. The
first difficulty to overcome is to determine, given the particular A, B and C specified
by the pronghorn model, whether it is possible to choose an input u(t) such that the
output y(t) does indeed converge to r in (2.3)? Note that the state and output variables
must remain nonnegative for a meaningful model and this nonnegativity requirement
in turn imposes geometric constraints on the set of possible inputs u(t). For the sequel
we record this problem as:
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(a) (b)

Fig. 1 Simulations of the low-gain integral control model (I) (see Sect. 3.2) applied to the pronghorn matrix
model. a, b Contain the inputs and outputs, respectively. The dotted lines denote the components of the
limiting input (a) and the chosen set-point (b)

(P1) which nonnegative set-points can be tracked asymptotically whilst preserving
nonnegative state and output variables?

Informally, we say that set-points that may be asymptotically tracked with nonnegative
state and output variables are feasible and we demonstrate in the “Appendix A” that
the set-point r in (2.3) is indeed feasible.

Figure 1 shows simulation results obtained by applying low-gain integral control
to the pronghorn model. Although the output, here denoting measured abundance of
each stage-class, converges to the chosen set-point r over time, four deficiencies of
the “off-the-shelf” integral controller are demonstrated:

(i) during time-steps 50–150, substantially more than 200 female neonates must be
added to the population per time-step (Fig. 1a), which may be too large to be
practical;

(ii) during the same time-steps, the integral controller is instructing the removal
of male neonates, that is, u2(t) < 0 (Fig. 1a), which seems unnecessary and
wasteful;

(iii) most crucially, the resulting measurements y2(t) of male prime adults are nega-
tive for some t (Fig. 1b), which is absurd for this model, and;

(iv) the performance is very slow, predicting at least 500 years(!) to converge to the
desired set-point.

Whilst we acknowledge that the model parameters have been chosen somewhat
pathologically to emphasise these deficiencies, they do help motivate the present con-
tribution quite markedly.

Deficiencies (i)–(iii) above are addressed by considering a modified low-gain PI
control model that includes input saturation. In words, negative inputs u(t) (that is,
when the management strategy suggests removal of individuals) are replaced by zero
and a per time-step maximum bound is imposed for u(t), reflecting limited per time-
step resources or management capability. As we explain in Sect. 4, doing so introduces
a nonlinearity into the feedback model and establishing convergence of the output to
the set-point is more challenging. For the sequel, we record:
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(a) (b)

Fig. 2 Simulations of the low-gain integral control model (Iaw) (see Sect. 4.2) applied to the pronghorn
matrix model. a, b Contain the inputs and outputs, respectively. The dotted lines denote the components of
the limiting input (a) and the chosen set-point (b). The dotted–crossed lines in a denote per time-step input
saturation limits

(P2) how can input saturation be included in low-gain PI control and still ensure that
the desired set-point is tracked asymptotically by the output?

Deficiency (iv) of rate of convergence of the feedback model may be adjusted by the
use of a (P)roportional component as well as an (I) component, as we describe in the
manuscript. Our main results are low-gain PI control models for positive state linear
systems that address issues (P1) and (P2), stated as Theorem 4.6 and Corollary 4.7.
We establish several robustness results in Sect. 4.4, that capture how the low-gain PI
control systems can handle uncertainty. Figure 2 contains simulation results obtained
by applying low-gain integral control with input saturation to the pronghorn model.
From the simulations we see that each of issues (i)–(iv) present in Fig. 1 do not appear
and a robust solution to the stated management problem is provided.

Having outlined a low-gain PI control solution to the above management problem,
we comment on how the solution may be additionally combined with other manage-
ment approaches present in the literature and, moreover, how feedback control differs
from optimal control. These latter observations are intended to further motivate the
present exploration of the utility of PI controllers in ecological management.

Remark 2.1 (i) An existing suite of management strategies proposed in ecological
matrix modelling are based on tools from perturbation theory. Typically, mod-
elled vital rates are altered with a view to obtaining some asymptotically desired
dynamic behaviour (such as stasis or growth in conservation), which is described
by replacing A in (2.1) with A + �, for some perturbation matrix �. Sensitivity
(Demetrius 1969) or elasticity (Kroon et al. 1986) analyses are often employed
and use methods from calculus to determine the effect of small changes in partic-
ular vital rates on the resulting asymptotic behaviour. These calculations are used
to inform where potential management or conservation strategies should invest
their efforts. Numerous examples are present in the literature and we highlight,
for example, shark conservation (Otway et al. 2004) and the effects of Brazil nut
tree seed extraction on its demography (Zuidema and Boot 2002). Biologically,
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perturbation analysis denotes improving or degrading vital rates through environ-
mental or demographic changes, the former for instance, through improved quality
or access to food or decreased mortality rates by protecting habitats. These meth-
ods are not directly comparable to PI control, as they do not denote the addition
or removal of individuals, but may be combined with PI control approaches. We
revisit the above pronghorn example in Sect. 5 and combine low-gain PI control
proposed here with a second management strategy.

(ii) Low-gain PI control is an example of feedback control. Complementary to feed-
back control is optimal control which, to some audiences, may be synonymous
with control theory itself. Here an input is chosen to achieve some desired dynamic
behaviour as well as to minimise a prescribed functional; typically denoting the
cost or effort of the management strategy in ecological applications. Optimal
control has proven very popular in mathematical biology (Lenhart and Workman
2007). Pontryagin’s celebrated maximum principle (see, for example, Liberzon
2011, Chapter 4) has been employed in models for the optimal control of HIV
(Kirschner et al. 1997), epidemics (Hansen and Day 2011) and vector-borne
diseases (Blayneh et al. 2009). Techniques from optimal control have appeared
extensively in the mathematical ecology, conservation and resource management
literature where an input to a control system denotes a management strategy
that is applied to a ecological process, such as a modelled population. To name
but a few examples, research by Hastings and collaborators has tackled optimal
management of deterministic models for the invasive perennial deciduous grass
Spartina by applying linear programming (Hastings et al. 2006), so-called lin-
ear quadratic optimal control (Blackwood et al. 2010) or dynamic programming
(Lampert et al. 2014). Elsewhere applications of Pontryagin’s maximum prin-
ciple have appeared in the fisheries management literature (Kellner et al. 2011;
Moeller and Neubert 2013). Solutions to population management problems have
also been proposed by optimising prescribed cost-functionals in the situation
when the underlying dynamics are assumed stochastic, such as those given by
(P)artially (O)bservable (M)arkov (D)ecision (P)rocesses (Monahan 1982). Sto-
chastic dynamic programming techniques are then used to numerically compute
optimal strategies. Substantial research has been undertaken by Possingham and
collaborators, including Shea and Possingham (2000), Chadès et al. (2011) and
Regan et al. (2011).

Whilst the design of management strategies via optimal control have an appeal in
that they would minimise some specified cost, there are downsides. First, computing
optimal controls is often analytically intractable or computationally highly expensive
[suffering from, for example, the “curse of dimensionality”, coined in Bellman (1957),
see more recently Powell (2007)] and so optimal controls can be impractical to imple-
ment. Second, and often overlooked, it is not always clear that “off-the-shelf” optimal
control approaches will respect positivity of the system states (although one exception
we are aware of appearing in the control literature is Nersesov et al. (2004)). Third, and
a more serious and pressing obstacle, population-level ecological models are typically
highly uncertain. Uncertainty is a broad term in ecology and ecological modelling,
although in this context both Regan et al. (2002) and Williams (2001) contain help-
ful and interesting codices of the term. Presently, uncertainty encompasses choice of
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model structure (for example, type of model, number of stage-classes or any mod-
elled density-dependence), parametric uncertainty (for instance, how to accurately fit
vital rates for a chosen model) and unknown disturbances of the dynamics (such as
unmodelled immigration or sampling error). Therefore, we argue that it is essential that
ecological management strategies, be it for sustainable harvesting, pest management
or conservation, are designed to be robust. Informally, a control scheme is robust with
respect to a source of uncertainty if it performs as intended in spite of that uncertainty.
Another facet of robust control is quantifying the extent to which a control objec-
tive fails when operating in uncertain or unknown operating conditions. The study of
robust control [with textbooks by, for example, Green and Limebeer (1995) or Zhou
and Doyle (1998)] was in part born out of the hugely important observation by con-
trol engineers in the 1970s that optimal control techniques need not be robust and,
moreover, over-optimisation leads to fragility (Doyle 1978). Indeed, as we sought to
emphasise in Guiver et al. (2015), so-thought optimal controls can have disastrous
performance when applied to an uncertain model and hence our current continued
exploration of robust feedback control in ecological management.

3 Problem formulation: multi-input, multi-output low-gain PI control

Sections 3 and 4 contain the technical heart of the manuscript where we formulate
both the problem exposited in Sect. 2 and its solution. Specifically, in this section we
recap so-called multi-input, multi-output low-gain PI control and in the next we extend
known results to address the issues (P1) and (P2). Recall that proofs of all novel stated
results are contained in “Appendix C”.

3.1 Notation

We introduce some notation, although most notation we use is standard, or is defined
as it is introduced. Briefly, we let N0, N, R and C denote the sets of nonnegative
integers, positive integers, real and complex numbers, respectively. For positive integer
n, denoted n ∈ N, we let Rn and Cn denote real and complex n-dimensional Euclidean
space, respectively, equipped with the usual two-norm, always denoted by ‖ · ‖. As
usual, we let R1 = R and C1 = C. For m ∈ N, Rn×m and Cn×m denote the sets of
n × m matrices with real and complex entries, respectively. We shall denote by I the
identity matrix, used consistently without specifying its dimensions. The notation ‖ ·‖
also denotes the operator two-norm induced from ‖ · ‖ on Cn or Rn . We denote by
r(A) the spectral radius of A ∈ Cn×n which, recall, is given by

r(A) = sup{|λ| : λ ∈ σ(A) },

where σ(A) denotes the spectrum of A—its set of eigenvalues when A is a matrix.
The state x of the uncontrolled linear model (2.1) converges to zero or diverges to
infinity when r(A) < 1 or r(A) > 1, respectively (the latter at least for some nonzero
initial states x0).
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The symbols Rn
+ and R

n×m
+ denote the sets of componentwise nonnegative vectors

and matrices, respectively. A vector z in Rn belongs to Rn
+ if zk ≥ 0 for every k, where

zk denotes the kth component of z. We call vectors z ∈ Rn
+ nonnegative and say that

z ∈ Rn
+ is positive if zk > 0 for every k. For vector z ∈ Rn , the term ‖z‖1 denotes the

vector one-norm of z, and is defined as

‖z‖1 :=
n∑

k=1

|zk | =
n∑

k=1

zk, if z nonnegative.

The superscript T denotes matrix or vector transposition, so that if z ∈ Rn then zT is
a row vector.

3.2 Multi-input, multi-output low-gain PI control

For the most part in the present manuscript we consider the discrete-time linear
model (2.2) where

(A, B, C) ∈ R
n×n × R

n×m × R
p×n, (3.1)

for n, m, p ∈ N and given x0 ∈ Rn . The variables u, x and y denote the input,
state and output of (2.2), respectively. Although our motivating applications are the
management of ecological models where the input, state and output typically have
clear biological interpretations, here we are describing the more general situation. In
particular, PI control does not require nonnegativity assumptions on A, B or C . We
shall impose additional structure on (2.2) and (3.1) in Sect. 4.

The transfer function G of the linear system (2.2) [also of the triple (A, B, C)] is
the function of a complex variable, defined as

G : C → C
p×m, z �→ G(z) := C(z I − A)−1 B, (3.2)

where recall that I in (3.2) is the (here n×n) identity matrix. The function G is certainly
well-defined for every complex z that is not an eigenvalue of A and, moreover, provides
a relationship between an input u and the resulting output y related by (2.2). More
information about G is contained in “Appendix B” but, it suffices here to note that if
r(A) < 1 then G(1) is well-defined and has the property that if u has a limit u∞ then,
for any initial state x0, y in (2.2) has the limit

lim
t→∞

y(t) = C(I − A)−1 Bu∞ = G(1)u∞. (3.3)

From the Neumann series definition

G(1) = C(I − A)−1 B =
∑

k∈N0

C Ak B = C(I + A + A2 + · · · )B,
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and the limit relationship (3.3) it follows that the (i, j)th entry of G(1) is the eventual
i th measurement when the j th input variable is one for all times. The interpretation
is somewhat similar to that of the fundamental matrix in matrix population modelling
(Caswell 2001, p. 112). By conducting controlled experiments, such as in applications
in electrical circuits, it is sometimes possible to obtain an estimate of G(1) (Penttinen
and Koivo 1980; Lunze 1985), although this is possibly inappropriate in ecological
management.

Integral control has been developed in the situation r(A) < 1 to solve the so-called
set-point regulation problem or objective, namely, to generate an input u such that the
resulting outputs y of (2.2) converge to a prescribed set-point r ∈ Rp. The objective
should be achieved independently of the initial state x0 and with only knowledge of
y and G(1). The internal model principle (Francis and Wonham 1976) dictates that
in order to achieve the set-point regulation objective via feedback control, the control
strategy must contain an integrator, or synonymously an integral controller which,
when connected via feedback to (2.2), leads to:

t ∈ N0

⎧
⎪⎨
⎪⎩

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = x0,

xc(t + 1) = xc(t) + gK (r − y(t)), xc(0) = x0
c ,

u(t) = xc(t).

(Ia)

(Ib)

(Ic)

Equation (Ia) is model (2.2)—the to-be-controlled system with the measured output
y(t). Equation (Ib) is the integral controller model, with xc(t) ∈ Rm for each t ∈ N0
denoting its state with initial state x0

c . Equation (Ic) is a feedback connection from (Ib)
to (Ia) via the input u(t). The terms K ∈ Rm×p, g > 0 and x0

c ∈ Rm in (Ib) are design
parameters and r is the desired set-point.

The following “low-gain” result for integral control is well-known and based on,
for example, Logemann and Townley (1997, Theorem 2.5, Remark 2.7). The term
“low-gain” refers to the fact that the positive parameter g in (I) (often called a “gain”)
is required to be sufficiently small.

Theorem 3.1 (Low-gain integral control) Suppose that the integral control system (I)
with m = p satisfies

(A1) r(A) < 1, and;
(A2) K and G(1) are such that every eigenvalue of the product K G(1) has positive

real part.

Then, there exists g∗ > 0 such that for all g ∈ (0, g∗), all r ∈ Rp and all (x0, x0
c ) ∈

Rn × Rm the solution (x, xc) of (I) has the properties:

(a) limt→∞xc(t) = x∞
c := G(1)−1r ;

(b) limt→∞x(t) = x∞ := (I − A)−1 BG(1)−1r ;
(c) limt→∞y(t) = limt→∞Cx(t) = r .

When r(A) ≥ 1 then the conclusions of Theorem 3.1 do not apply to (I). However,
in this situation (I) can be modified by including a (P)roportional feedback component.
Specifically, the feedback connection (Ic) is replaced by

u := −F1x + xc, (3.4)
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if the state x is known and available to the modeller, or by

u := −F2 y + xc, (3.5)

when only the output y is available. The matrices F1 ∈ Rm×n and F2 ∈ Rm×m

are additional design parameters. We denote by (PI1) and (PI2) the combinations of
(Ia), (Ib) and (3.4) or (Ia), (Ib) and (3.5), respectively. For completeness, we record
that (PI1) is given by

x(t + 1) = Ax(t) + Bu(t), x(0) = x0,

xc(t + 1) = xc(t) + gK (r − Cx(t)), xc(0) = x0
c ,

u(t) = −F1x(t) + xc(t) ,

⎫
⎪⎬
⎪⎭

t ∈ N0 (PI1)

while in (PI2) the third line of (PI1) is replaced by (3.5). Inserting the expression for
u in (PI1) into the dynamic equation for x also in (PI1) and introducing the new input
variable v := xc yields

x(t + 1) = (A − B F1)x(t) + Bv(t), x(0) = x0,

xc(t + 1) = xc(t) + gK (r − Cx(t)), xc(0) = x0
c ,

v(t) := xc(t) ,

⎫
⎪⎬
⎪⎭

t ∈ N0,

demonstrating that (PI1) is an instance of (I), only with A replaced by A − B F1. The
same argument shows that (PI2) simplifies to (I) as well, now with A replaced by
A − B F2C . We do not give the details. The upshot is that Theorem 3.1 is applicable to
(PI1) provided that F1 can be chosen such that A − B F1 satisfies (A1) and K can be
chosen such that K and the transfer function of (A1, B, C) together satisfy (A2). In
usual situations the crucial requirements is the choice of F1 such that r(A− B F1) < 1,
as here a suitable K in (PI1) is given by K = (C(I − A1)

−1 B)−1 (see Remark 3.2
below). The analogous statements are true for (PI2).

Theorem 3.1 is the basis for the robust feedback control solution to the multi-
ple management goals problem, motivated in Sect. 2. Additional features need to be
included in the model (I) to cope with the demands of ecological management, and are
done so in the next section. We conclude the current section by making some remarks
on the roles of the dimensions of the input and output spaces, m and p, respectively,
and also assumption (A2) that appears in the above theorem.

Remark 3.2 (i) In the case that r(A) < 1, we see from (3.3) that the range of possible
limiting outputs is equal to the image of G(1), which is at most m-dimensional.
For every r ∈ Rp to belong to this image then necessarily we require that m ≥
p and that G(1) is surjective. In words, as many control actions are needed as
observations are to be regulated. When m > p then there is some redundancy, or
non-uniqueness, in the choice of inputs.

(ii) For any m, p ∈ N, assumption (A2) implies that K G(1) is invertible, as zero is
not an eigenvalue of K G(1). In this case G(1) must be injective as if G(1)v = 0
for some v ∈ Rm then K G(1)v = 0 and thus v = 0. Therefore, by the rank-
nullity theorem, m ≤ p. In order for every reference r ∈ Rp to be a candidate
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limit of the output, we require that G(1) is surjective hence m ≥ p (as noted
in (i)). Combined we see that necessarily m = p. Therefore, m = p and (A2)
together imply that G(1) is invertible, and hence the inverses in parts (a) and (b)
of Theorem 3.1 make sense. Consequently, the spectrum condition (A2) implies
that K = K G(1) · G(1)−1 is invertible as well.

(iii) Conversely, if (as usual) m = p and G(1) is invertible, then assumption (A2)
is not restrictive. A candidate K is G(1)−1 which clearly satisfies σ(K G(1)) =
σ(I ) = {1} with positive real part. We note that K = G(1)−1 requires knowledge
of G(1). If G(1) is not known exactly then K can be based on an estimate of (the
inverse of) G(1) which we investigate further in Sect. 4.4.3.

4 Multi-input, multi-output low-gain PI control for positive systems
with input saturation

Having recapped low-gain PI control for linear systems in Sect. 3 we now intro-
duce additional structure that arises from considering positive state linear systems,
our primary focus, and present a low-gain, multi-input, multi-output PI controller.
Specifically, we additionally assume that (A, B, C) in (2.2) satisfy

(A, B, C) ∈ R
n×n
+ × R

n×m
+ × R

p×n
+ , (4.1)

and all initial states x0 are componentwise nonnegative, so that x0 ∈ Rn
+. As in

Theorem 3.1, in our subsequent low-gain PI control results, we shall assume that
m = p (see Remark 3.2 for motivation of this choice).

The framework (2.2) and (4.1) includes matrix PPMs where the input, state and
output of (2.2) denote the control action, the stage- or age-structured population abun-
dances, and some measurement or observation of the population, respectively. In this
applied context the assumption that m = p means that as many per time-step measure-
ments of the population are made as are available per-time step management actions.

We seek a version of Theorem 3.1 for asymptotic tracking of a chosen nonnegative
set-point r ∈ Rm

+. As motivated in Sect. 2, the two issues recorded there as (P1) and
(P2) must be overcome. To that end, in Sect. 4.1 we describe the set of feasible set-
points—these are candidate limits of the output of a positive state linear system where
nonnegativity of the state and output variables is preserved (P1). Then, in Sect. 4.2,
we establish stability of a low-gain integral control system with the additional feature
that the input to the state equation is saturated (P2). Saturating the input introduces a
nonlinearity into the feedback system, and that the conclusions of Theorem 3.1 still
hold must be derived. Recall that the motivation for saturating the input is to avoid
removing individuals when conservation is the ultimate goal and to reflect the realistic
constraint of per-time step resource or capacity limits.

4.1 Feasible set-points for positive state control systems

In this section we answer the question (P1): to which nonnegative set-points can the
output y of (2.2) and (4.1) converge? Although we shall apply these results to inputs u
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generated by a PI controller, for now it suffices to consider convergent inputs. For that
reason we do not need to impose the restriction m = p in this section. We introduce
some terminology and notation.

Definition 4.1 For (A, B, C) as in (3.1) we say that r ∈ Rp is trackable if there exists
a convergent input u such that the output y of (2.2) converges to r as t tends to infinity.
Supposing further that (A, B, C) satisfy (4.1) we say that r ∈ R

p
+ is trackable with

positive state if r is trackable and moreover the state x(t) of (2.2) is componentwise
nonnegative for every t ∈ N0. We call the set of such r the set of trackable outputs of
(A, B, C) with positive state.

We seek to characterise the set of trackable outputs of (A, B, C) with positive state.
For X ∈ R

s×t
+ , where s, t ∈ N, the set 〈X〉+ denotes all nonnegative linear combina-

tions of the columns of X , which is a subset of Rs
+. We also denote componentwise

nonnegativity of a matrix X or vector v by X ≥ 0 or v ≥ 0 (respectively, also 0 ≤ X

and 0 ≤ v).
We remind the reader that the subsequent claims are proved in “Appendix C”.

Lemma 4.2 Suppose that (A, B, C) is given by (4.1) and that r(A) < 1. Then

(a) GC AB(1) := C(I − A)−1 B ≥ 0;
(b) for each F ∈ Rn×m, F ≥ 0 such that A1 := A − B F ≥ 0, the set of trackable

outputs of (A, B, C) with positive state contains 〈GC A1 B(1)〉+.

Next we recall an assumption from Guiver et al. (2014),2 which pertains to a non-
negative pair (A, B) ∈ R

n×n
+ × R

n×m
+ :

(H) There exists F ∈ Rn×m, F ≥ 0 such that A1 := A− B F ≥ 0 and for any v ∈ Rn
+

and w ∈ Rm , if A1v + Bw ≥ 0, then w ≥ 0.

Assumption (H) for the pair (A, B) captures the situation whereby for any nonnegative
x it is possible to choose negative u such that Ax + Bu is “as small as possible”, yet
still nonnegative. Indeed, the choice of u that achieves this is u = −Fx . Assumption
(H) always holds if B = b = ei , the i th standard basis vector, as then the required
F = f T is the i th row of A. For instance, with

A =

⎡
⎣

f1 f2 f3
g1 s2 0
0 g2 s3

⎤
⎦ ≥ 0 and B = e1 =

⎡
⎣

1
0
0

⎤
⎦ ,

then F = f T =
[

f1 f2 f3
]

≥ 0 gives

A1 = A − b f T =

⎡
⎣

0 0 0
g1 s2 0
0 g2 s3

⎤
⎦ ≥ 0,

2 Assumption (H) was labelled (A) in Guiver et al. (2014), which has been changed to (H) to avoid confusion
with (A1) and (A2).
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and so if A1v + bw ≥ 0 then by inspection of the first component, necessarily w ≥ 0.
Assumption (H) always holds for any A ∈ R

n×n
+ when B = [ci1 ei1 , . . . , cik

eik
] for

some distinct i j ∈ {1, 2, . . . , n} with ci j
> 0 for each j . Furthermore, Guiver et al.

(2014, Lemma 2.1) contains a constructive algorithm for checking whether assumption
(H) holds for any pair (A, B), and determines the required F (which is unique) when
it exists.

We have recalled assumption (H) because if the (A, B) component of (2.2) satisfies
(H) then there exists a characterisation of the set of trackable outputs of (A, B, C)

with positive state.

Proposition 4.3 Suppose that (A, B, C) is given by (4.1), r(A) < 1 and additionally

that the pair (A, B) satisfies assumption (H). Then the set of trackable outputs of

(A, B, C) with positive state is precisely equal to

〈GC A1 B(1)〉+ = 〈C(I − A1)
−1 B〉+,

where A1 is as in (H).

The next result provides a recipe for enlarging the guaranteed set of possible trackable
outputs with positive state, particularly in the case that (H) is not satisfied.

Lemma 4.4 Suppose that (A, B, C) is given by (4.1) and that r(A) < 1. If F ∈ R
n×m
+

is such that A1 := A − B F ≥ 0 then

(a) I − G F A1 B(1) is invertible, and;
(b) 〈GC AB(1)〉+ ⊆ 〈GC A1 B(1)〉+.

Remark 4.5 A straightforward adjustment to the proof of Lemma 4.4 demonstrates that
the sets 〈GC AB(1)〉+ have a monotonically decreasing nested structure with respect
to the partial ordering of componentwise nonnegativity on A, in that

0 ≤ A ≤ Ā ⇒ 〈GC ĀB(1)〉+ ⊆ 〈GC AB(1)〉+,

where A ≤ Ā means that 0 ≤ Ā − A. The largest possible set that can be achieved by
this process is 〈C B〉+ and occurs when F ≥ 0 can be chosen such that A − B F = 0.
In this case the set of trackable outputs of (A, B, C) with positive state must contain
〈C B〉+. Proposition 4.3 demonstrates that, when assumption (H) holds, 〈GC A1 B(1)〉+
is the largest possible set for tracking with positive state.

4.2 Low-gain integral control with input saturation

In this section we address question (P2) by demonstrating that suitable adjustments to
the integral control model (I), incorporating saturation on the input, achieve set-point
regulation, as well as bounding the per time-step input and preserving nonnegativity
of the state and output variables. Recall that the three-faceted motivation for saturating
the input is to: (i) allow for the inclusion of per time-step bounds representing resource
or capacity constraints associated with the implementation of a management strategy;
(ii) prevent negative control signals particularly problematic when conservation is the
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Fig. 3 Graph of the saturation
function satUi

defined in (4.2)

desired outcome, and; (iii) prevent (meaningless) negative state and output variables.
These three issues are all exhibited in Fig. 1 yet are resolved in Fig. 2.

We next introduce the input saturation function which is incorporated into a low-
gain integral control model in (Iaw). For given U > 0 define the function sat U by

sat U : R → R, w �→ sat U (w) :=

⎧
⎨
⎩

0, w < 0
w, 0 ≤ w ≤ U,

U, U < w

(4.2)

an example of which is graphed in Fig. 3. The diagonal saturation function sat is
defined as the componentwise combination of satUi

functions as follows:

sat : R
m → R

m
+, v �→ sat (v) := [sat U1(v1)sat U2(v2) . . . sat Um (vm)]T . (4.3)

Here the constants Ui > 0 for i ∈ {1, 2, . . . , m} are chosen and in applications
denote the per time-step bound on the i th component of the input. To incorporate
input saturation into a low-gain integral control model we consider:

x(t + 1) = Ax(t) + Bu(t), x(0)= x0,

xc(t + 1) = xc(t)+gK (r − Cx(t))−E(xc(t)−sat (xc(t))), xc(0)= x0
c ,

u(t) = sat (xc(t)),

⎫
⎪⎬
⎪⎭

t ∈ N0,

(Iaw)

where E ∈ Rm×m is a design parameter additional to those appearing in (I) and is
discussed in more detail in Sect. 4.3. Our main result of the manuscript is Theorem 4.6
below, which mirrors Theorem 3.1, and guarantees that the low-gain integral control
model with input saturation (Iaw) achieves asymptotic tracking of the output of (Iaw)
to a prescribed set-point under the (same, previously employed) assumptions (A1) and
(A2) and a known choice of E . The theorem provides solutions to problems (P1) and
(P2).

Theorem 4.6 Suppose that (Iaw) satisfies (A1) and (A2) and choose

E := gK G(1), (4.4)
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where g > 0 is as in (Iaw). Then, there exists g∗ > 0 such that for all g ∈ (0, g∗), all

r ∈ 〈G(1)〉+ such that

r = G(1)u+, for some u+ ∈ R
m
+ with u+ ≤ U, (4.5)

and all (x0, x0
c ) ∈ Rn

+ × Rm
+, the solution (x, xc) of (Iaw) satisfies x(t) ≥ 0 for each

t ∈ N0 and has the properties:

(a) limt→∞xc(t) = x∞
c := G(1)−1r ;

(b) limt→∞x(t) = x∞ := (I − A)−1 BG(1)−1r ;
(c) limt→∞y(t) = limt→∞Cx(t) = r .

By appealing to the results of Sect. 4.1, including a proportional component in the
feedback law in (Iaw) gives rise to a larger set of candidate set-points. Let (PI1aw)
denote the feedback system

x(t + 1) = Ax(t) + Bu(t), x(0) = x0,

xc(t+1) = xc(t)+gK (r −Cx(t))−E(xc(t)−sat (xc(t))), xc(0)= x0
c ,

u(t) = −F1x(t) + sat (xc(t)),

⎫
⎪⎬
⎪⎭

t ∈N0,

(PI1aw)

which differs from (Iaw) only by the inclusion of an additional proportional state-
feedback −F1x(t) to the updated input u = −F1x + sat (xc). As before, F1 ∈ Rm×n

is another design parameter. We let (PI2aw) denote the feedback system (PI1aw)
with −F1x(t) instead replaced by −F2 y(t) = −F2Cx(t), that is, an output-feedback
which replaces u in (PI1aw) u = −F2Cx + sat (xc). Again, F2 ∈ Rm×m is a design
parameter. We present the following corollary for the low-gain PI control systems
(PI1aw) and (PI2aw).

Corollary 4.7 The low-gain PI systems (PI1aw) and (PI2aw) specified by (A, B, C)

satisfying (4.1) are equal to (Iaw) specified by (A1, B, C) and (A2, B, C), where

A1 := A − B F1 and A2 := A − B F2C, respectively. If F1 is such that A1 ≥ 0 and

(A1, B, C) satisfy (A1) and (A2) then the conclusions of Theorem 4.6 apply to (Iaw)
specified by (A1, B, C), and similarly for F2.

4.3 Comparing and contrasting low-gain feedback systems (I) and (Iaw)

In this section we record some observations on the low-gain integral control system
(Iaw), the above theorem and corollary, and their relation to other published results.
The integral control scheme (Iaw) differs from (I) by the saturation function in the
definition of u, and by the term involving E appended to controller state dynamics
as well. The term involving E is crucial and, intuitively, acts as a correction term,
activating at time-steps t when the integral control state xc(t) saturates meaning that
xc(t) �= sat (xc(t)). The input is not saturated when sat (xc(t)) = xc(t) and for these
time-steps the term in (Iaw) involving E is zero and plays no role. Loosely speaking,
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at these times (Iaw) is behaving as though there is no saturation, the resulting model is
linear and Theorem 3.1 applies. Theorem 4.6 makes the previous assertion rigorous.

The feedback system (Iaw) with E = 0 was considered in Guiver et al. (2015) in the
specific so-called single-input, single-output case (meaning m = p = 1), so that B =
b and C = cT are vectors. Here assumption (A1) is as before, and assumption (A2)
reduces to G(1) > 0 (it suffices to take K = 1). However, in contrast to the situation in
Guiver et al. (2015), saturating a multi-input (m > 1) control signal can be inherently
destabilising, resulting in the desired set-point regulation objective not being achieved.
Roughly, if E = 0 then the control signal may get ‘stuck’ in the saturating region,
and the resulting failure is attributed to what is known as “actuator saturation” or
“integrator windup” in control engineering literature (Johanastrom and Rundqwist
1989). Anti-windup control refers to the study of mechanisms to alleviate or remove
windup in PI controllers and, owing to its importance in applications, is a hugely
well-studied topic. The already 20-year-old chronological bibliography of Bernstein
and Michel (1995) contains 250 references. We refer the reader to Tarbouriech and
Turner (2009) for a recent overview of anti-windup control. There are many possible
such mechanisms, for example in how to choose the matrix E that appears in (Iaw),
also known as a static anti-windup component. The advantages of our choice of E in
Theorem 4.6 and elsewhere are that it:

(i) is straightforward to compute and thus implement;
(ii) possesses demonstrable robustness to model uncertainty, and;

(iii) can be extended to a class of infinite-dimensional systems.

For readers less familiar with (or indeed interested in) anti-windup control, the key
feature of the present discussion is that the term involving E in (Iaw) is a crucial
feature and should not be omitted. We reiterate that although our results are aimed at
ecological models, they apply to any positive state linear system described by (2.2).
As far as we know, the anti-windup method we propose and its proof is novel in a
control theory context as well.

One approach to anti-windup control present in the literature determines the anti-
windup component E via the solution of a set of certain linear matrix inequalities
(LMIs) see, for example, Mulder et al. (2001) or Silva and Tarbouriech (2006).
Although these LMIs can often be solved numerically and can result in other per-
formance criteria being met (such as so-called “bumpless transfer”), they introduce
another level of complexity for the modeller. Moreover, since they use Lyapunov
based arguments, they seemingly do not extend across to systems that have infinite-
dimensional Banach spaces as state-spaces (thus precluding IPMs, for instance).

Remark 4.8 (i) Although when r(A) < 1 no F1 or F2 component is required to
apply Theorem 4.6, the use of (PI1aw) or (PI2aw) often results in faster con-
vergence than that of (Iaw), highlighted as issue (iv) in Sect. 2. Moreover, if
F1 ∈ Rn×n is such that

0 ≤ A − B F1 ≤ A,

then Lemma 4.4 (b) implies that there is a larger choice of possible references
achievable by (PI1aw) than by (Iaw), which thus encourages the use of PI control
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even in the case that r(A) < 1. Similar comments apply to F2 for the (PI2aw)
system.

(ii) If K and G(1) are such that K G(1) is positive semi-definite then it can be shown
that the conclusions of Theorem 4.6 hold for (Iaw) with E = 0, that is, with no
anti-windup component. Although the choice K = G(1)−1 guarantees this con-
dition, such a choice requires exact knowledge of G(1) and the requirement that
K G(1) is positive semi-definite is very non-robust to parameter uncertainty. For
this reason we have, therefore, insisted on including the anti-windup component
E(xc − sat (xc)) in (Iaw).

(iii) As mentioned in the introduction, feedback control that preserves nonnegativity
of state and solves a non-zero state-regulation problem has been considered in
Nersesov et al. (2004). The goals of that paper and ours here are similar, but
there the authors work in continuous-time, and use a feedback derived from a
constrained optimal control problem (as opposed to a low-gain integral controller)
to steer the state to a prescribed non-zero equilibrium. They do not consider input
saturation to avoid negative states but instead constrain the structure of the inputs.
Their work builds on that of Leenheer and Aeyels (2001). Roszak and Davison
(2009) solve the continuous-time, nonnegative output regulation problem (also
called the servomechanism problem, hence their title) using low-gain integral
control. There, the authors determine the model parameter K in (I) using optimal
control results—a different approach to ours. Another key difference between
that work and ours is that the input is not saturated (that is, bounded) from above
and thus, as we understand, “integrator windup” is not an issue.

4.4 Robustness of low-gain PI control

The efficacy of the low-gain PI control systems considered so far is predicated on
several modelling assumptions:

(U1) that the system of interest is accurately modelled by (2.2) and (4.1);
(U2) there are no external signals or noises affecting the dynamics of the state x or

the input u;
(U3) there is no measurement or sampling error in y;
(U4) the steady-state gain G(1) is known.

In practice, all four of these assumptions are likely to be violated and thus here we
quantify to what extent low-gain PI control is robust to failures of (U1)–(U4). By doing
so we seek to describe how concepts from robust feedback control apply to sources
of uncertainty that arise in ecological modelling. A more detailed discussion may be
found in Guiver et al. (2015, Section 3.1), but briefly, Table 1 [based on Guiver et al.
(2015, Table 1)] connects the list above with sources of uncertainty described in the
ecology literature.

4.4.1 Robustness to choice of model structure and model parameters

When modelling ecological processes, such as managed populations, there are often
a plethora of models to choose from that all attempt to capture the same underlying
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Table 1 Connecting sources of
uncertainty present in low-gain
PI control with uncertainty
terminology appearing in the
ecology literature

Williams (2001) Regan et al. (2002)

(U1) Structural uncertainty Natural variation

Model uncertainty

(U2) Environmental variation Inherent randomness

Partial controllability

(U3) Partial observability Measurement error

Systematic error

(U4) Structural uncertainty Model uncertainty

dynamics. Within structured population models of the form (2.1) there are age- or
size- based models, that partition the life cycle (perhaps a continuum of stages) into
predetermined discrete stage-classes. The above choices imply that there is choice, or
indeed, uncertainty in A, B and C in (2.1), challenging (U1). The state dimension n

may even be uncertain. Low-gain PI control is robust to this source of uncertainty in
the sense that knowledge of A, B and C is not required to implement it. The measured
variable y(t) is required, and it is assumed that y(t) = Cx(t), for some choice of C ,
but C itself is not needed. Rather, A, B and C are required to satisfy the assumptions
(A1) and (A2). Assumption (A1) does not need A to be known, and simply means that
the population of interest is in decline. Recall that when seeking to use PI control to
reduce a growing population, then assumption (A1) amounts to the requirement that the
population can be stabilised (that is, made to decline) by state- or output-feedback—
see (PI1) and the discussion below. Assumption (A2) does require knowledge of G(1)

to determine a suitable K (and E for (Iaw)), which may be determined from A, B and
C , but may also be known by experiment or experience. As we explain in Sect. 4.4.3,
an estimate of G(1) maybe sufficient to determine a K that together satisfy (A2).
Finally, we comment that since assumptions (A1) and (A2) are necessary for low-gain
integral control (as well as sufficient), we cannot allow any greater model uncertainty.

4.4.2 Robustness to external disturbances

External dynamics affecting the state, input and output may be included in the original
model (2.2) by writing:

x(t + 1) = Ax(t) + Bu(t) + d1(t), x(0) = x0,
y(t) = Cx(t) + d2(t),

}
t ∈ N0, (4.6)

where d1(t) ∈ Rn and d2(t) ∈ Rp are typically unknown. In a population model d1
may denote either a disturbance to the population such as (unmodelled) immigration,
emigration or predation or an input error, meaning that the intended input u(t) is
disturbed. Similarly, d2 denotes some form of measurement or sampling error. The
inclusion of d1 and d2 seeks to address the assumptions (U2) and (U3). A reasonably
general framework is to assume that d1 and d2 in (4.6) are bounded, and of course are
such that x and y remain nonnegative. We refer the reader to Eager et al. (2014) and the
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references therein for more information on the impacts of nonnegative disturbances
on populations modelled by matrix PPMs.

When only boundedness of d1 and d2 is assumed then we cannot in general expect
the same convergence of the output y of the feedback system (4.6) connected with a
low-gain PI controller as that exhibited by (Iaw), (PI1aw) or (PI2aw). The next result
provides upper bounds on the difference of the state and output from their respective
asymptotic limits in terms of the initial error and the maximum values of d1 and d2.
The result is an (I)nput-to-(S)tate-(S)tability estimate and we refer the reader to Sontag
(2008) for more background on ISS.

Proposition 4.9 Suppose that the low-gain integral control system with disturbances

x(t + 1) = Ax(t) + Bu(t) + d1(t), x(0) = x0,
y(t) = Cx(t) + d2(t),

xc(t + 1) = xc(t)+gK (r − y(t))−E(xc(t)−sat (xc(t))), xc(0)= x0
c ,

u(t) = sat (xc(t)),

⎫
⎪⎪⎬
⎪⎪⎭

t ∈ N0,

(4.7)

with bounded disturbances d1 and d2 satisfies (A1) and (A2), and choose E :=
gK G(1) where g > 0 is as in (Iaw). Then, there exists g∗ > 0 such that for all

g ∈ (0, g∗), all r as in (4.5) and all (x0, x0
c ) ∈ Rn

+ × Rm
+, the solution (x, xc) of (4.7)

satisfies

∥∥∥∥∥∥

⎡
⎣

x(t) − x∞

xc(t) − x∞
c

y(t) − r

⎤
⎦
∥∥∥∥∥∥

≤ M0γ
t

∥∥∥∥
[

x0 − x∞

x0
c − x∞

c

]∥∥∥∥+ M1 max
j∈N0
j≤t−1

‖d1( j)‖

+M2 max
j∈N0
j≤t−1

‖d2( j)‖, t ∈ N, (4.8)

for some constant γ ∈ (0, 1) and M0, M1, M2 > 0 and where x∞
c and x∞ are as in

(a) and (b) of Theorem 3.1, respectively. The constants γ, M0, M1 and M2 depend on

A, B, C, g and K , but not on r, x0, x0
c , d1 or d2. Furthermore, g∗ is independent of

the disturbances d1 and d2.

Low-gain PI control without saturation or positivity constraints is known to have the
desirable property that convergent input disturbances d1 = B f1, for some disturbance
f1, are rejected by the integral controller, meaning that the output still converges to the
desired set-point. Meanwhile, convergent output disturbances d2 result in asymptotic
tracking of the output to the set-point offset by the limit of the disturbance. A con-
vergent output disturbance includes constant disturbances which may, for example,
correspond to a systematic or persistent measurement error. The next corollary demon-
strates that, broadly speaking, the same disturbance rejection and offset in the set-point
properties hold for the low-gain integral control model (Iaw) with input saturation.

Corollary 4.10 Suppose that the low-gain integral control system with distur-

bances (4.7) satisfies (A1) and (A2), and choose E := gK G(1) where g > 0 is
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as in (Iaw). Suppose that f1 and d2 are convergent with respective limits f ∞
1 and d∞

2 .

Then, there exists g∗ > 0 such that for all g ∈ (0, g∗), all r ∈ Rm
+ such that

r − d∞
2 = G(1)(u+ + f ∞

1 ), for some u+ ∈ R
m
+ such that u+ ≤ U, (4.9)

and all (x0, x0
c ) ∈ Rn

+ × Rm
+, the solution (x, xc) of (4.7) satisfies:

(a) limt→∞xc(t) = G(1)−1(r − d∞
2 ) = u+ + f ∞

1 ,

(b) limt→∞x(t) = (I − A)−1 BG(1)−1(r − d∞
2 ) = (I − A)−1 B(u+ + f ∞

1 ),

(c) limt→∞y(t) = limt→∞Cx(t) = r − d∞
2 .

The constant g∗ is independent of f1 and d2.

4.4.3 Robustness to uncertainty in the steady-state gain G(1)

In the final part of our material on robustness with respect to various forms of uncer-
tainty, here we consider the situation where the steady-state gain matrix G(1) is not
known precisely, meaning that (U1) is violated. Knowledge of G(1) is used in low-
gain integral control and PI control in three separate situations: first, in determining
K to satisfy (A2) that appears in the original integral control model (I), the PI mod-
els (PI1), (PI2) and, the focus of the present study, (Iaw). Second, G(1) is used in
determining E that appears in (Iaw). Both of the components K and E are required
to ensure that low-gain PI control as presented is effective as described in Sect. 4.3.
Recall that the choice K = G(1)−1 satisfies (A2) and E = gK G(1) is sufficient to
ensure that the conclusions of Theorem 4.6 (and Corollaries 4.7, 4.10, Proposition 4.9)
hold. Third, knowledge of G(1) is used in Lemma 4.2 to help determine the set of
trackable outputs with positive state, which in turn provides feasible set-points.

Uncertainty in G(1) typically arises from uncertainty in the parameters or even the
dimensions of A, B or C . Throughout this section we shall assume that the unknown
transfer function G in (3.2) can be decomposed as

G = Ĝ + �G, (4.10)

where Ĝ is known and �G is expected to be “small”. More generally, in this section
variables with hats shall always denote known quantities and capital deltas denote
uncertain terms.

Lemmas 4.11–4.13 below are technical preliminary results gathering sufficient
conditions for the main result of the section, Corollary 4.15. This latter result states that
if a known nominal estimate Ĝ is close to the unknown G, meaning that ‖G − Ĝ‖∞
is small3, then basing the design of K and E on the nominal estimate Ĝ(1) of G(1) is
sufficient for low-gain PI control to succeed.

We first demonstrate how the decomposition (4.10) arises from parametric uncer-
tainty in A, B and C . We let ρ(A) = C\σ(A) denote the resolvent set of A, (when A

is a matrix then ρ(A) is the set of all complex numbers that are not eigenvalues of A).

3 Where ‖G‖∞ := supRe z>0 ‖G(z)‖2 denotes the norm of the Hardy space H∞ = H∞(C+
0 , C

m×m )

when G ∈ H∞ see, for example, Partington (2004, Definition 1.4.2).
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Lemma 4.11 Suppose that (A, B, C) ∈ Rn×n × Rn×m × Rm×n for m, n ∈ N admit

the decompositions

A = Â + �A, B = B̂ + �B, C = Ĉ + �C,

then

GC AB(z) = C(z I − A)−1 B = G
Ĉ Â B̂

(z) + �C(z I − Â)−1(B̂ + �B)

+ Ĉ(z I − Â)−1�B + (Ĉ + �C)(z I − A)−1�A(z I − Â)−1(B̂ + �B),

(4.11)

which is defined for all z ∈ C∩ρ(A)∩ρ( Â) and is in the form (4.10) with Ĝ = G
Ĉ Â B̂

and �G the sum of the remaining three terms on the right hand side of (4.11).

Lemma 4.12 Suppose that G admits the decomposition (4.10) and that Ĝ(1) is invert-

ible. Choose K = QĜ(1)−1, where Q ∈ Cm×m is such that σ(Q) ⊆ C
+
0 . Then

assumption (A2) is satisfied for K and G(1) if

‖QĜ(1)−1�G(1)‖ <
1

supω∈R ‖(ωi + Q)−1‖ . (4.12)

If Q = I , the m × m identity matrix, then K and G(1) satisfy (A2) if

min{‖�G(1)Ĝ(1)−1‖, ‖Ĝ(1)−1�G(1)‖} < 1. (4.13)

A sufficient condition for (4.13) is that

‖�G(1)‖ <
1

‖Ĝ(1)−1‖
. (4.14)

Lemma 4.13 Let X denote a bounded operator on a Hilbert space (such as a square

matrix with real or complex entries), with −1 ∈ ρ(X), so that I + X is invertible.

Then the conditions

(a) ‖X‖ < 1
2 , or;

(b) ‖X‖ ≤ 1 and ‖(I − X)(I + X)−1‖ ≤ 1;

are sufficient for

‖(I + X)−1 X‖ < 1. (4.15)

Remark 4.14 An estimate of the form (4.15) appears as a condition on X in Corol-
lary 4.15 below, hence the inclusion of sufficient conditions here. We comment that
(a) and (b) do not imply one another as X = − 1

4 I satisfies (a) but not (b) and X = I

satisfies (b) but not (a).
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Corollary 4.15 Suppose that (A, B, C) as in (4.1) satisfy (A1) and the associated

transfer function G admits the decomposition (4.10), where Ĝ is known and K and Ĝ

together satisfy (A2) and choose

E := gK Ĝ(1), (4.16)

where g > 0 is as in (Iaw). Then, there exists M∗ > 0 and g∗ > 0 (which in general

depends on M∗) such that for all �G in (4.10) with

‖�G‖∞ < M∗, (4.17)

and

‖[I + Ĝ(1)−1�G(1)]−1 · [Ĝ(1)−1�G(1)]‖ < 1, (4.18)

all g ∈ (0, g∗), all r ∈ 〈G(1)〉+ as in (4.5) and all (x0, x0
c ) ∈ Rn

+ × Rm
+, the solution

(x, xc) of (Iaw) satisfies x(t) ≥ 0 for each t ∈ N0 and has the properties (a), ( b) and

(c) of Theorem 3.1.

Remark 4.16 Corollary 4.15 can easily be extended to the PI systems (PI1aw) or
(PI2aw), considered in Corollary 4.7, by replacing A by A1 and A2 as appropriate.

4.5 Low-gain PI control with input saturation for a class of infinite-dimensional

systems

We have so far focussed on solving the robust set-point regulation problem with
multiple management goals by applying low-gain PI control in the situation where
the underlying (ecological) model is assumed finite-dimensional. Abstractly, we have
developed low-gain PI control with input saturation for discrete-time positive-state lin-
ear systems. In this section we demonstrate that many of the results presented extend
to a class of discrete-time, infinite-dimensional linear systems which includes the class
of IPMs. IPMs were introduced by Easterling et al. (2000) (see also Ellner and Rees
2006; Rees and Ellner 2009 or Briggs et al. 2010) as a tool for population modelling
where the n discrete age-, size- or stage-classes of a PPM are replaced by a continu-
ous variable. As a concrete example, a shrub or tree population model may partition
individuals according to a continuous variable denoting height or stem diameter. An
IPM is a discrete-time linear system on the function space L1(Ω) specified by integral
operator:

A : L1(Ω) → L1(Ω), (Av)(ξ) =
∫

Ω

k(ζ, ξ)v(ζ ) dζ, v ∈ L1(Ω),

almost all ξ ∈ Ω, (4.19)

for some nonnegative-valued kernel

Ω × Ω ∋ (ζ, ξ) �→ k(ζ, ξ) ≥ 0, (4.20)
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where, for simplicity say, Ω is the closure of some bounded set in Rn , n ∈ N. At each
time-step t ∈ N0, the state of an IPM is a function of the continuous variable ξ ∈ Ω .

To formulate integral control in a possibly infinite-dimensional setting let X denote
an ordered real Banach space, so that X is equipped with a partial order ≤ (also ≥)
that respects vector space addition and multiplication by nonnegative scalars. The
positive cone C induced by (B,≥) is the set of x ∈ X such that x ≥ 0 and is a closed,
convex set (so that if x, y ∈ C and α ≥ 0 then x + y, αx ∈ C) with the property that
x,−x ∈ C implies that x = 0. For real Banach spaces X1,X2 with respective positive
cones C1, C2 a bounded linear operator T : X1 → X2 is called positive if T C1 ⊆ C2.
In words, T is positive if every positive element of X1 is mapped to a positive element
of X2.

Example 4.17 (i) The situation considered throughout the manuscript thus far has
taken X = Rn for n ∈ N with partial order ≥ denoting usual componentwise
nonnegativity, so that x ∈ Rn , x ≥ 0 if xk ≥ 0 for every k ∈ {1, 2, . . . , n}. As
such, the positive cone of Rn and this partial ordering is the nonnegative orthant
C = Rn

+.
(ii) To model IPMs we choose X = L1(Ω) with the partial ordering ≥ of almost

everywhere pointwise inequality, that is f ∈ L1(Ω), f ≥ 0 if f (ξ) ≥ 0
for almost all ξ ∈ Ω . With this choice of partial ordering the nonnegativity
assumption in (4.20) implies that A in (4.19) is a positive operator. Moreover, by
Krasnosel’skij et al. (1989, Theorem 2.1), Eq. (4.20) is sufficient to infer that A

in (4.19) is a bounded operator. ⊓⊔

Consider the linear system (2.2) where now

A : X → X , B : R
m → X , C : X → R

m, (4.21)

are bounded, positive, linear operators and X is as above. The state-space X may
now be infinite-dimensional but, for simplicity, the input and output spaces are still
assumed to be Rm . Since B and C are bounded and finite-rank, then necessarily they
can be written

Bu =
m∑

i=1

bi ui , ∀u =
[
u1 . . . um

]T ∈ R
m, (4.22)

and (Cx) j = c j x, ∀ j ∈ {1, 2, . . . , m}, x ∈ X , (4.23)

for some bi ∈ X and c j : X → R, linear functionals on X . Using the expres-
sion (4.22), B is positive if, and only if, bi ∈ C for every i ∈ {1, 2, . . . , m}. Similarly,
C is positive if, and only if, c j is positive for every j ∈ {1, 2, . . . , m}, here meaning
that c j (C) ⊆ R+.

The low-gain integral control system with input saturation is still defined by (Iaw),
with design parameters E, K ∈ Rm×m , g > 0 and x0

c ∈ Rm . Note that for each time-
step t ∈ N0, the integral controller state xc(t) ∈ Rm is still finite-dimensional and thus
readily computable. The expression (3.2) for the transfer function G is well-defined
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when A, B and C are as in (4.21), and consequently assumptions (A1) and (A2) are
as before.

To include a (P)roportional feedback in the control law as in (PI1aw) or (PI2aw)
requires bounded linear operators

F1 : X → X or F2 : R
m → X , (4.24)

respectively. When F1 and F2 are bounded then so are

A1, A2 : X → X , A1 := A − B F1, A2 := A − B F2C, (4.25)

as the composition and difference of bounded operators.
The main result of this section demonstrates that the low-gain integral controller

(Iaw) still achieves the robust set-point regulation problem in the more general case
when (A, B, C) are as in (4.21). By noting that the PI system (PI1aw) with F1 or F2
as in (4.24) reduces to (Iaw) with A replaced by A1 or A2 given by (4.25), the next
result includes both the state- and output-feedback cases.

Theorem 4.18 Assume that the low-gain integral control feedback system (Iaw) spec-

ified by positive operators (A, B, C) in (4.21) satisfies assumptions (A1) and (A2) with

E = gK G(1) in (Iaw). Then, there exists g∗ > 0 such that for all g ∈ (0, g∗), all r

as in (4.5) and all (x0, x0
c ) ∈ C × Rm

+, the solution (x, xc) of (Iaw) has the properties

(a), (b) and (c) of Theorem 3.1 and furthermore x(t) ∈ C for every t ∈ N0.

The robustness results Proposition 4.9, Corollary 4.10 and Corollary 4.15 also

apply when (Iaw) is specified by positive operators (A, B, C) in (4.21).

The proofs of the above results are exactly the same as the earlier named results; none
of the arguments used there required that X is finite-dimensional.

Remark 4.19 The results of Sect. 4.1 on feasible nonnegative set-points translate to
the situation when X is a real, partially ordered Banach space. Again, none of the
proofs explicitly use that X is finite-dimensional. However, assumption (H) should be
replaced by:

(H′) Let X denote a real, partially ordered Banach space with positive cone C. Given
the pair of bounded, linear, positive operators A : X → X , B : Rm → X there
exists a bounded, positive operator F : X → Rm such that defining Â := A−B F

it follows that Â is positive and for any v ∈ C and w ∈ Rm , if Âv + Bw ∈ C

then w ∈ Rm
+.

Importantly, the constructive characterisation Guiver et al. (2014, Lemma 2.1) does

not hold in the general Banach space case, however, as it is truly a finite-dimensional
result.

5 Examples

Example 5.1 Matrix projection models for the sustainable harvesting of two species
of palm trees in Mexico are considered in Olmsted and Alvarez-Buylla (1995). We
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use a matrix PPM from there of the palm species Coccothrinax readii to demonstrate
how a potential harvesting and conservation strategy could be based on a low-gain PI
control law. The projection matrix A is given by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.35 0 0 0 0 0 0 0 55.8
0.18 0.8 0 0 0 0 0 0 0

0 0.1 0.89 0 0 0 0 0 0
0 0 0.07 0.94 0 0 0 0 0
0 0 0 0.06 0.92 0 0 0 0
0 0 0 0 0.08 0.94 0 0 0
0 0 0 0 0 0.06 0.94 0 0
0 0 0 0 0 0 0.06 0.94 0
0 0 0 0 0 0 0 0.06 0.95

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.1)

The nine stages denote seedlings, saplings I and II, juveniles I–V, and adult trees and
the time-steps correspond to years. We refer the reader to Olmsted and Alvarez-Buylla
(1995) for details on the phenology of C. readii.

The spectral radius of A in (5.1) is 1.0549 > 1, so that the uncontrolled popu-
lation (2.1) is predicted to grow asymptotically. As with the pronghorn example in
Sect. 2, we assume that we do not know the entire population distribution at each
time-step exactly and again only have access to some part of the state. For simplicity,
we consider the case where just two per time-step measurements are made and corre-
spondingly have access to two stages for replenishment. We assume that the seedlings
and adult tree stage classes may be restocked and harvested, respectively, leading to
the B matrix:

B =
[

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

]T

.

Furthermore, we assume that we are able to measure the abundances of the final two
stages; the largest juvenile trees and adult trees so that:

C =
[

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

]
.

The set-point regulation objective is to determine a feedback F2 in (PI2aw) and ref-
erence r such that the low-gain PI control system (PI2aw) drives the population to
some non-zero level, and to determine the resulting adult tree harvest. The input u(t)

is given by:

u(t) =
[

u1(t)

u2(t)

]
= −F2Cx(t) + sat (xc(t)), t ∈ N0, (5.2)

where u1(t) denotes the number of seedlings planted at time-step t ∈ N0, and is desired
to be nonnegative. Similarly, u2(t) denotes the number of adult trees harvested at time-
step t ∈ N0, and should be negative. Indeed, we do not want to harvest seedlings or
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plant adult trees. Roughly speaking, the negative term −F2Cx on the right hand side
of (5.2) determines the harvesting yield and the positive term sat (xc) from the integral
control law determines the replanting scheme.

We require F2 ∈ R2×2 such that

A0 := A − B F2C ∈ R
9×9
+ and r(A0) < 1. (5.3)

Then, for each r =
[
r1 r2

]T = GC A0 B(1)v ∈ R2
+ for v ∈ R2

+, the following asymp-
totic yields are obtained

population distribution: x∞ = (I − A0)
−1 Bv, (5.4)

planting/harvesting effort: u∞ = −F2r + v = (−F2GC A0 B(1) + I )v, (5.5)

measured abundances: x∗
8 = r1 and x∗

9 = r2. (5.6)

First, we construct F2 ∈ R2×2 to satisfy (5.3). By considering the product B F2C , we
seek to replace the ninth row of A by zero, which necessitates

F2 =
[

0 0
f1 f2

]
:=
[

0 0
0.06 0.95

]
, (5.7)

and yields

A0 = A − B F2C

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 55.8
0.18 0.8 0 0 0 0 0 0 0

0 0.1 0.89 0 0 0 0 0 0
0 0 0.07 0.94 0 0 0 0 0
0 0 0 0.06 0.92 0 0 0 0
0 0 0 0 0.08 0.94 0 0 0
0 0 0 0 0 0.06 0.94 0 0
0 0 0 0 0 0 0.06 0.94 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, with r(A0)

= 0.94 < 1. (5.8)

Choosing F2 as in (5.7) satisfies (5.3) from which we compute

GC A0 B(1) =
[
γ1 γ2
0 1

]
:=
[

1.4685 81.9441
0 1

]
.

It remains to determine r , or equivalently v. In terms of components the reference
r = G(1)v is given by

r1 = γ1v1 + γ2v2 and r2 = v2. (5.9)
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Table 2 Summary of the roles
of r1, r2, v1 and v2 in the C.

readii planting/harvesting
example

Quantity Interpretation

v1 Asymptotic planting level

v2 = r2 Asymptotic adult tree abundance

r1 Asymptotic final juvenile stage class abundance

Of the four quantities r1, r2, v1 and v2, two are free to be chosen, provided that
0 ≤ v1 ≤ U1 and 0 ≤ v2 ≤ U2, and the remaining two are determined by (5.9).
Rewriting (5.5) in components gives

[
u∞

1
u∞

2

]
=
(

−
[

0 0
f1 f2

] [
γ1 γ2
0 1

]
+
[

1 0
0 1

])[
v1
v2

]

⇒ u∞
1 = v1 and u∞

2 = − f1γ1v1 + (1 − f1γ2 − f2)v2. (5.10)

Therefore, from (5.10) we see that v1 ≥ 0 is the asymptotic replanting level, and
from (5.9) that v2 = r2 is the desired asymptotic adult tree abundance. For given
v1, v2, the expression u∞

2 ≤ 0 in (5.10) determines the asymptotic number of adult
trees harvested per time-step. The asymptotic abundance of the penultimate stage-class
is r1. These relations are summarised in Table 2.

For the following numerical simulation we suppose an initial population distribution
with no adult trees, so that

x0 = 2[160 120 80 91 79 68 57 45 0]T ,

As an example, we take

v = [10 8]T ⇒ r = G(1)v = [670.24 8]T and u∞ = [10 − 39.8]T ,

meaning that, asymptotically, per time-step 10 seedlings are planted, almost 40 adult
trees are harvested with eight adult trees remaining in the population. Of course, in
practice only an integer number of trees can be harvested per year and we believe
that the 39.8 = −u∞

2 is an artefact of the model considered. The asymptotic harvest
yield can be altered by tuning v1 and v2 as explained above. To see the role of input
saturation, we take

U = [50 40]T ,

meaning particularly that at most 50 seedlings may be planted per time-step. We
repeat the projections for different g values, g ∈ {0.01, 0.005, 0.0025, 0.001} and
always take

x0
c = 0 and K =

[
1 0
0 30

]
(G(1))−1.
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Fig. 4 Projections of the replanting and harvesting scheme for the matrix PPM of C. readii from Sect. 5.
See the main text for more description. In each plot the solid, dashed, dashed–dotted and solid-crossed

correspond to g values of 0.01, 0.005, 0.0025 and 0.001, respectively. The dotted lines are the references

The results are plotted in Fig. 4. The set-point regulation objectives are achieved
and the harvest of adult trees increases from zero to (almost) 40 per year, peaking at
approximately 43 trees per year. Furthermore, although not specified as a management
objective, the total tree abundance rises from ‖x0‖1 = 1400–5100. We note that the
resulting dynamics are rather slow; the time-steps here denote years. This is, in part we
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suspect, because of the admittedly somewhat limited control actions of only adding to
the first stage class and removing from the last. The uncontrolled dynamics themselves
are slow as mathematically the matrix A has nearly ones on the diagonal and very small
entries on the sub diagonal. Biologically, the species C. readii is long lived; Olmsted
and Alvarez-Buylla (1995) estimate the maximal life span as over 145 years, yet the
model is a size based model. That said, the speed of convergence could be increased by
allowing more control actions and measurements and adding a ‘larger’ proportional
part F to the control law. In this case the explanation of the roles of r and v related
by r = G(1)v become more complicated. It is also the case that we have not explored
the roles of tuning K and g further, or of the initial controller state x0

c ; all of which
can affect the transient dynamics of the model.

To demonstrate robustness of the PI controller, we now assume that the recruitment
of the population is not fixed at 55.8, but unknown and denoted by f . We have relegated
proofs of the subsequent claims to “Appendix C”. If f ≥ 0 is constant, then owing to
the particular structure of this model and the uncertainty, the reference r is still tracked
asymptotically. This is an example of convergent disturbance rejection, Corollary 4.10.
Moreover, a calculation shows that

G(1) =
[
γ1 γ1 f

0 1

]
, (5.11)

and hence the relations (5.10) and (5.9) hold with γ2 replaced by γ1 f . The key interpre-
tations that v1 is the asymptotic planting level and r2 = v2 is the asymptotic abundance
of adult trees hold as before and are thus independent of f . Figure 5 contains three
simulations with randomly chosen, but positive f . Here we have fixed v1 and v2 as
before, so that now r1 and the asymptotic harvest yield varies as f and thus G(1) does.

A more appropriate model may be to consider the situation where f is time varying
with values f (t), t ∈ N0, the inclusion of which reflects environmental or demographic
stochasticity. It can be demonstrated that the second output y2, denoting adult trees,
still converges to r2. The population abundances x , planting/harvesting quantities u

and abundance of largest juvenile trees need not converge in general. However, the
ISS estimate of Proposition 4.9 applies. Figure 5 contains a simulation where f (t) is
drawn from a pseudo-random truncated normal with mean 55.8 and variance 4. We
note that, as predicted, the second output, number of adult trees present, rejects the
disturbances to the model and is the same across all simulations. ⊓⊔

Example 5.2 We revisit the matrix projection model for pronghorn from Sect. 2 to
demonstrate how low-gain PI control may be combined with other management strate-
gies. The restocking strategy dictated by the low-gain PI controller (Iaw) solves the
stated management problem, demonstrated in Fig. 2. However, the asymptotic restock-
ing levels are c. 200 and c. 150 female and male neonates per year, respectively, to
maintain a stable population with 120 prime females and 100 prime males. These
restocking levels may be too large to implement practically. We suspect that they are
so high because the modelled rate of neonate survival and transition to the (next) juve-
nile stage class is very low, 0.059 in fact (below 6 %). Recall that the uncontrolled
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Fig. 5 Projections of the replanting and harvesting scheme for the matrix PPM of C. readii from Sect. 5 in the
presence of model uncertainty. See the main text for more description. In each plot the solid, dashed, dashed–

dotted correspond to three different and assumed unknown values of f > 0. The solid-crossed correspond
to f (t) drawn from a truncated normal distribution. Here g = 0.05 is fixed across the simulations. The
dotted lines are the references

population specified by (2.1) has asymptotic rate of decline 0.9222 < 1. We inves-
tigate the effect of improved neonate survival (of both sexes) p on the asymptotic
growth rate of the controlled population. Appealing to the perturbation analysis of
Hodgson et al. (2006, Theorem 3.3) the relationship in Fig. 6 is obtained between per-
turbation to survival and resulting asymptotic growth rate. The details are contained
in “Appendix A”.

Although a perturbation of only 0.1180 is required to reach population stasis, note
that this corresponds to an approximately 200 % increase of current neonate survival,
which may also be infeasible to implement. Therefore, to reach the same management
objective described in Sect. 2, we explore the combination of the low-gain PI control
model (Iaw) with a perturbation of 0.0590 (which is still 100 % of current survival)
to neonate survival. Practically, the latter management strategy corresponds to some
environmental change. Note that the perturbation to survival alone leads to an asymp-
totic growth rate of 0.9638 < 1, so is not enough by itself to reverse the predicted
asymptotic decline. Simulations of the combined management strategy are plotted
in Fig. 7. The demonstrable difference between Figs. 2 and 7 is that in the later the
asymptotic restocking rates have fallen to c. 50 and c. 25 female and male individuals
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Fig. 6 Plot of perturbation to
neonate survival p against
asymptotic growth rate (spectral
radius) for the projection matrix
model for pronghorn in
Example 5.2. The cross denotes
the unperturbed model and the
dotted line denotes the
perturbation required to achieve
a growth rate of one,
corresponding to asymptotic
persistence
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Fig. 7 Simulations of the low-gain integral control model (Iaw) applied to the perturbed pronghorn matrix
model of Example 5.2. a, b Contain the inputs and outputs, respectively. The dotted lines denote the
components of the limiting input (a) and the chosen set-point (b)

per year, respectively. Finally, we note that writing the perturbation to the pronghorn
projection matrix A as A + D1 pD2 (with D1 and D2 given by (6.6)), it is possible
to see how the predicted asymptotic level of restocking changes with perturbation p

(provided that r(A+ D1 pD2) < 1. Indeed, according to Theorem 4.6 (a), u∞ is given
by

u∞ = (C(I − (A + D1 pD2))
−1 B)−1r.

⊓⊔

6 Discussion

Low-gain PI control with input saturation has been reconsidered and extended to
discrete-time, positive state linear systems where multiple outputs are regulated
to desired, necessarily nonnegative, set-points. Our results hold for both finite-
dimensional and a class of infinite-dimensional systems. The motivation for the current
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study is twofold: first, to further explore the utility of feedback control in ecological
management type problems, and it is in this context that we have posed much of the
present material and our examples. The second purpose is to further develop the suite
of robust feedback control for positive state systems—models that arise in a variety
of other physically and biologically motivated scenarios.

The present contribution is a sequel to Guiver et al. (2015), where we first consid-
ered low-gain PI control as a potential tool for ecological management. There only
a single (scalar) per time-step measurement or output of the to-be-controlled system
was made, with a view to regulating to a single (scalar) set-point, and thus only a
single per time-step control action is required. In other words, Guiver et al. (2015)
considered robust regulation of a single management goal. Although conceptually
very similar, additional mathematical difficulties arise in extending these results to the
natural situation where several management objectives are specified (that is, multi-
input, multi-output systems) and additionally in the presence of input saturation to
reflect per time-step resource constraints. Specifically, two issues had to be overcome.
First, in Sect. 4.1 we described the set of feasible set-points: candidate asymptotic
outputs of a positive state linear system. Feasible set-points are subsequently used
in our main results, Theorem 4.6 and Corollary 4.7, as the asymptotic limits of the
output of a low-gain PI control system. To summarise, Lemma 4.2 states that the set
of trackable outputs with positive state includes the nonnegative linear span of the
columns of G(1), the transfer function evaluated at one. The set of trackable outputs
with positive state is enlarged by incorporating a proportional component to the feed-
back law, Lemma 4.4. Second, in Sect. 4.2 we addressed the problem of including
input saturation and still achieving robust set-point regulation. We achieved this by
appending a simple anti-windup mechanism (the term involving E in (Iaw)) in the
integral controller and thereby preventing the destabilising phenomenon associated
with input saturation in control theory known as “integrator windup”, discussed in
Sect. 4.3. Our main results are Theorem 4.6 and Corollary 4.7 which are low-gain
PI control results for positive state systems and mirror the existing, well-known case
recorded in Theorem 3.1.

The low-gain PI control system (Iaw) contains demonstrable robustness to certain
sources of model uncertainty and disturbances, as described in Sect. 4.4. These facets
are a hugely important aspect of feedback control, and a reason why population man-
agers may wish to consider its utility in applications, as ecological models are often
highly uncertain. To ensure, however, that (Iaw) is efficacious a sufficiently accurate
estimate of G(1) is required. A possible fruitful future avenue of research would be to
investigate techniques for computing the matrix parameter E (which, recall, depends
on G(1)) adaptively, so that E is the output of some dynamic or iterative process.
Adaptive control techniques are already known to compute the low-gain parameter
g > 0 adaptively; either in the scalar output case (Logemann and Ryan 2000), or in the
multi-input, multi-output case but without input saturation (Ke et al. 2009). An adap-
tive scheme here would ideally determine a suitable E without requiring knowledge
of G(1).

We comment that transfer functions are ubiquitous objects in control theory as they
provide a so-called “frequency domain” description of (usually-controlled) dynamic
processes. Historically, the term frequency in an engineering context refers to the

123



C. Guiver et al.

frequency of oscillation, such as of an electrical alternating current. Intuitively, and
amongst other beneficial properties, the frequency domain provides an elegant descrip-
tion of the behaviour of dynamical systems driven by periodic signals and how
dynamical systems alter or modulate the phase and amplitude of an incoming peri-
odic signal. Given that numerous physical and biological drivers are (at least roughly)
periodic (such as daylight, rainfall or temperature), it is no surprise that a frequency
domain approach to ecological modelling has recently been brought to an ecological
audience (Greeman and Benton 2005; Worden et al. 2010). Transfer functions have
also been employed in ecological modelling in the context of perturbation analysis
in Hodgson and Townley (2004), Hodgson et al. (2006) and Stott et al. (2012), as
we exploited in Example 5.2 for a modelled pronghorn population. Here the transfer
function provides an analytic relationship between perturbations to a population’s life
histories and the resulting change to asymptotic growth rate and, in that sense, is a
form of sensitivity analysis. We believe that the mature and well-studied language
of systems and control theory has much to offer ecological modelling and manage-
ment. Conversely, the continued study of ecology or ecosystems from a control theory
perspective, particularly processes that exhibit feedback structures or feedback-type
behaviour may, in the spirit of biomimicry, lead to novel concepts in control theory
with other applications.

In closing, we reiterate the distinction between robust control and optimal con-
trol. Recall that in the former a control or input is designed to achieve some desired
dynamical behaviour in spite of uncertainty or disturbances to the dynamics whilst
in the latter, a control or input is chosen to achieve some desired dynamic behav-
iour while also minimising a prescribed functional. Broadly speaking (as there are
always exceptions), robust control is not optimal and optimal control is not robust.
We have explored the use of feedback control for robust ecological management
and have not addressed the subject of costs here. As we sought to emphasise in
Guiver et al. (2015), inputs obtained from many classical optimal control results
are not always robust to various forms of uncertainty. Needless to say, as we
believe that ecological models are naturally prone to uncertainty, and indeed as
the biological and ecological literature contains numerous papers contributing to
the theory and application of optimal control, we have instead focussed on fur-
ther developing the set of robust feedback control tools for ecological management.
We acknowledge the demands placed on population managers by limited resources,
and the consequent desire to use those resources wisely. Certainly, more research is
required in combining optimal control with robust control in the field of ecological
management.
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Appendix A: Model parameters used in examples

Pronghorn matrix PPM The matrix model for female pronghorn is based on Berger
and Conner (2008, Table 4, wolf-free site) and is

⎡
⎣

0 0 0.829
0.059 0 0

0 0.872 0.872

⎤
⎦ ,

where stage classes one to three denote female neonates, yearlings and prime adults,
respectively. We have removed the fourth stage class denoting senescent adults as
this stage does not contribute to the life-cycle, and its inclusion results in a reducible
matrix.

To include males into the model, we assume that they have the same vital rates as
the females, and that the sex-ratio is equal, which leads to the projection matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0.8290 0 0 0
0.059 0 0 0 0 0

0 0.8720 0.8720 0 0 0
0 0 0.8290 0 0 0
0 0 0 0.059 0 0
0 0 0 0 0.8720 0.8720

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.1)

in (2.1) and (2.2), where stages one to six now denote female neonates, yearlings,
prime adults and male neonates, yearlings, prime adults. The matrix A has r(A) =
0.9222 < 1, thus (A1) holds and the uncontrolled population is predicted to decline
asymptotically. The modelling assumption that we are able to independently replenish
both neonate stage classes and that we observe both the adult stage classes leads to

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
0 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and C =
[

0 0 1 0 0 0
0 0 0 0 0 1

]
. (6.2)

To verify that the choice of set-point r = [120 100]T in (2.3) is trackable with positive
state, the matrices (A, B, C) as in (6.1) and (6.2), respectively, give rise to

G(1) = C(I − A)−1 B =
[

0.6028 0
0.2009 0.4019

]
,

and so the asymptotic input

u∞ = (G(1))−1r =
[

199.0739
149.3149

]
, (6.3)

is required. Since u∞ ≥ 0 then evidently r = G(1)u∞ ∈ 〈G(1)〉+ and hence r

is trackable with positive state by Lemma 4.2. Obviously, non-integer numbers of
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individual pronghorns do not make sense and the numbers in (6.3) are an artefact of
the non-integers appearing in A and would, in practice, of course be rounded to the
nearest integer.

To apply a low-gain integral control model (I) to the pronghorn PPM additionally
requires that a matrix K , a small positive parameter g and an initial input u(0) = x0

c

are specified. For the simulations in Fig. 1 we chose:

u(0) =
[

0
0

]
, g = 0.01 and K =

[
1.6589 2.9032

−5.1829 1.0372

]
. (6.4)

Recall that K and G(1) are required to have the property that every eigenvalue of the
product K G(1) has positive real part [assumption (A2)]. In fact we have chosen K

deliberately so that

G(1)K =
[

1 1.75
−1.75 1

]
=: Q ⇒ σ(Q) = {1 ± 1.75i} ⊆ C

+
0 .

Figure 2 contains simulations of the low-gain PI control model with input saturation
(Iaw) applied to the pronghorn PPM. To do so per time-step constraints Ui from (4.3)
on each input component are required. To ensure that (4.5) holds, each Ui must be
no smaller than the respective components of u∞ in (6.3) and hence we (somewhat
arbitrarily) take

U :=
[

210
160

]
. (6.5)

For the simulations in Fig. 2 we chose:

u(0) =
[

0
0

]
, g = 0.004 and K =

[
33.1790 2.4884
−16.58 48.5155

]
.

When revisiting the pronghorn model in Example 5.2 we write a perturbation p to
neonate survival as

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0.8290 0 0 0
0.059 + p 0 0 0 0 0

0 0.8720 0.8720 0 0 0
0 0 0.8290 0 0 0
0 0 0 0.059 + p 0 0
0 0 0 0 0.8720 0.8720

⎤
⎥⎥⎥⎥⎥⎥⎦

= A + p

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

= A + p

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

[
1 0 0 0 0 0
0 0 0 1 0 0

]

=: A + pD1 D2. (6.6)
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Hodgson et al. (2006, Theorem 3.3) states that for λ /∈ σ(A), λ ∈ σ(A + pD1 D2)

if, and only if, 1 ∈ σ(pD2(λI − A)−1 D1). When unravelled the latter condition is
equivalent to

1 = 90361 × 103 p

1.25 × 108λ3 − 1.09 × 108λ2 − 5331299
. (6.7)

For p in the interval [0, 0.5), Eq. (6.7) is solved for λ (seeking the largest positive
solution denoting r(A + pD1 D2)) and plotted in Fig. 6. The simulations of (Iaw)
applied to the pronghorn PPM with A replaced by A + 0.059D1 D2 in Fig. 7 were
conducted with parameters:

u(0) =
[

0
0

]
, g = 0.003 and K =

[
0.415 0

−0.5802 1.244

]
.

⊓⊔
Example 5.1 continued For the robustness arguments we first replace the (1, 9)th
entry of A in (5.1) by f > 0 and let f̂ = 55.8 so that the original A is denoted by Â.
Therefore

A = Â + e1( f − f̂ )eT
9 =: Â + e1δeT

9 ,

where ei is the i th standard basis vector, and thus also

A0 := A − B FC = Â − B FC + e1δeT
9 =: Â0 + e1δeT

9 .

Appealing to the block structure of A0, it follows that σ(A0) = σ( Â0) is independent
of f . Consequently, A satisfies (A) for every f > 0. Similarly, from (5.11) a calculation
shows that

G(1) = C(I − A)−1 B =
[
γ1 γ1 f

0 1

]
,

and hence the known choice

K =
[

1 0
0 30

]
Ĝ(1)−1 =

[
γ −1

1 −γ1 f̂

0 30

]
,

is such that K and G(1) satisfy (A2) for every f > 0. We claim that the y2 dynamics,
which recall are those of the 9th stage-class, are independent of δ. To see this we note
that the dynamics for the state x are

x(t + 1) = Â0x(t) + Bsat (xc(t)) + e1eT
9 δx(t), x(0) = x0, t ∈ N0,

which by inspection of the 9th component yields that

y2(t) = x9(t) = sat U2(x (2)
c (t)).
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Moreover, from the integral control update law

x (2)
c (t + 1) = x (2)

c (t) + 30g(r2 − x9(t)) − 30g(x (2)
c (t) − sat U2(x (2)

c (t)))

= (1 − 30g)︸ ︷︷ ︸
<1

x (2)
c (t) + gr2, t ∈ N0,

provided g < 1/30, where x
(2)
c (t) denotes the second component of xc(t). Therefore,

x
(2)
c (t) and thus y2(t) converge as t → ∞ (the latter to r2), independently of δ. The

above argument holds if f = f (t) is time-varying. Now writing

A(t) = Â + e1( f (t) − f̂ )eT
9 = Â + B

[
0 f (t) − f̂

0 0

]
C =: Â + B�(t)C,

the whole state dynamics are given by

x(t + 1) = A(t)x(t) + Bu(t) = Ax(t) − B FCx(t) + Bsat (xc(t))

= Â0x(t) + Bsat (xc(t)) + B�(t)Cx(t)

= Â0x(t) + Bsat (xc(t)) + B

[
( f (t) − f̂ )y2(t)

0

]

︸ ︷︷ ︸
=:d(t)

, x(0) = x0, t ∈ N0.

If f (t) is constant then d(t) is convergent, and hence the disturbance to x(t) is rejected
by the output, by Corollary 4.10. If f (t) is time-varying then the ISS estimates of
Proposition 4.9 apply. ⊓⊔

Appendix B: The Z-transform, transfer functions and convolutions

We collect more notation that shall be required for some of the proofs. First, for B a
Banach space with norm ‖ · ‖ and p ∈ [1,∞] we let ℓp = ℓp(N0;B) denote the usual
sequence space of B-valued sequences v such that

‖v‖ℓp = ‖v‖p :=

⎛
⎝
∑

j∈N0

‖v( j)‖p

⎞
⎠

1
p

< ∞, p ∈ (1,∞) or

‖v‖ℓ∞ = ‖v‖∞ = sup
t∈N0

‖v(t)‖ < ∞,

For each sequence v, t ∈ N0 and p ∈ [1,∞), the quantity ‖v‖ℓp(0,t) denotes

⎛
⎝

t∑

j=0

‖v( j)‖p

⎞
⎠

1
p

,
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with an analogous definition for ‖v‖ℓ∞(0,t). If H is a Hilbert space with norm ‖ · ‖
induced from an inner-product, then ℓ2(N0;H) is itself a Hilbert space. For a sequence
v ∈ ℓ2, the Z-transform of v, denoted v̂, is a H-valued function of a complex variable
given by

z �→ v̂(z) =
∑

j∈N0

v( j)

z j
, z ∈ C, (7.1)

defined wherever the summation converges absolutely, and can be thought of as a
discrete-time Laplace transform. We let E := {z ∈ C : |z| > 1} denote the exterior of
the unit complex disc and circle and let H2 = H2(E;H) denote the Hardy space of
bounded, analytic H-valued functions on E with finite Hardy norm

‖w‖H2 = sup
r>1

(∫

|z|=1
‖w(r z)‖2 dz

) 1
2

.

If v ∈ ℓ2 then v̂ ∈ H2 and furthermore the Parseval equivalence of norms holds

‖u‖2 = ‖û‖H2 , ∀u ∈ ℓ2. (7.2)

The above claims are well-known see; for example, Staffans (2005, p. 699).
If r(A) < 1 and u ∈ ℓ2 then applying the Z-transform to (2.2) and eliminating x̂(z)

yields that

ŷ(z) = C(z I − A)−1x0 + C(z I − A)−1 Bû(z) = C(z I − A)−1x0 + G(z)û(z),

(7.3)

so that when x0 = 0

ŷ(z) = G(z)û(z), ∀z ∈ E. (7.4)

For two sequences u, v we let u ∗ v denote the (discrete) convolution of u and v, with
terms given by

(u ∗ v)(t) :=
t∑

j=0

u(t − j)v( j), t ∈ N0,

and record the following fact regarding the Z-transform of convolutions

(̂u ∗ v)(z) = û(z) · v̂(z), ∀u, v ∈ ℓ2, ∀z ∈ E. (7.5)

We shall also require the following ℓ2 and pointwise estimates for convolutions, respec-
tively

‖u ∗ v‖2 ≤ ‖u‖1 · ‖v‖2, ∀u ∈ ℓ1, ∀v ∈ ℓ2. (7.6)
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and

‖(u ∗ v)(t)‖ ≤ ‖u‖2 · ‖v‖2, ∀u, v ∈ ℓ2, ∀t ∈ N0. (7.7)

A proof of (7.6) may be found in Desoer and Vidyasagar (1975, p. 244) and (7.7)
follows from the Cauchy–Schwarz inequality (equivalently, the Hölder inequality with
exponents p = q = 2). Let X denote a Banach space and

A : X → X , B : R
s → X , C : X → R

s,

denote bounded, linear operators with r(A) < 1. Then the function

z �→ G(z) = C(z I − A)−1 B, z ∈ E,

(as defined in (3.2)) is equal to the Z-transform of the sequence h defined by

h(t) = C At B : R
m → R

m, t ∈ N0, (7.8)

that is,

ĥ(z) = G(z), ∀z ∈ E. (7.9)

Since r(A) < 1 it follows that h ∈ ℓp(N0; Rm×m) for every p ≥ 1. Furthermore,
combining (7.2), (7.5) and (7.9) we obtain the crucial estimate for u ∈ ℓ2 and h as
in (7.8)

‖h ∗ u‖2 =‖(̂h ∗ u)‖H2 =‖ĥ · û‖H2 =‖G · û‖H2 ≤ ‖G‖∞ · ‖û‖H2 =‖G‖∞ · ‖u‖2.

(7.10)

For any finitely nonzero sequence v, v = PT v, for some T ∈ N where PT is the
truncation operator

(PT w)( j) =
{

w( j) j ∈ {0, 1, . . . , T },
0 j ≥ T + 1.

Clearly, PT v ∈ ℓ2 for every T ∈ N, and applying estimate (7.10) above yields the
truncated version

‖h ∗ v‖ℓ2(0,T ) ≤ ‖G‖∞ · ‖v‖ℓ2(0,T ), (7.11)

that we shall also require for the proofs in the following “Appendix C”.
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Appendix C: Proofs of results

Proof of Lemma 4.2 (a) Since by assumption r(A) < 1, the equality

(I − A)−1 =
∑

j∈N0

A j ,

holds (and the Neumann series converges absolutely) and thus as A, B and C are
nonnegative

GC AB(1) =
∑

j∈N0

C A j B ∈ R
p×m
+ , as required.

(b) A useful ingredient in the following proof is that with A = A1 + B F , since
B, F ≥ 0 it follows that A1 ≤ A and so [by, for example, Berman and Plemmons
(1994, p. 27)]

r(A1) ≤ r(A) < 1. (8.1)

A consequence of (8.1) is that GC A1 B(1) is well-defined and from (a), GC A1 B(1) ∈
R

p×m
+ . Choose r ∈ im+GC A1 B(1), so that there exists u+ ∈ Rm

+ such that

r = GC A1 B(1)u+.

Consider the state–feedback input

u(t) := −Fx(t) + u+, t ∈ N0, (8.2)

which when inserted into (2.2) gives rise to the closed–loop system

x(t + 1) = Ax(t) + Bu(t) = A1x(t) + Bu+, t ∈ N0. (8.3)

Note that as A1, B, u+ ≥ 0 it follows from (8.3) that x(t) ≥ 0 for each t ∈ N0.
Invoking (8.1) yields that x is convergent, with limit

x∞ = (I − A1)
−1 Bu+. (8.4)

Consequently, the input u given by (8.2) is also convergent as is the output y, which
therefore satisfies

lim
t→∞

y(t) = lim
t→∞

Cx(t) = Cx∞ = C(I − A1)
−1 Bu+ = GC A1 B(1)u+ = r,

whence r ∈ R
p
+ is trackable with positive state. ⊓⊔
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Proof of Proposition 4.3 It suffices to prove that the set of trackable outputs of
(A, B, C) with positive state is contained in 〈GC A1 B(1)〉+, as the converse inclu-
sion was established in Lemma 4.2 (b). Assume that r ∈ R

p
+ is trackable with positive

state, so that there exists a convergent input u (not necessarily nonnegative) such that
the state x(t) is nonnegative for each t ∈ N0 and furthermore the output converges to
r . Thus for each t ∈ N0

0 ≤ x(t + 1) = Ax(t) + Bu(t) = A1x(t) + B(u(t) + Fx(t)), (8.5)

so that by assumption (H), u(t) + Fx(t) ≥ 0. Furthermore as u, and thus x , are
convergent

u(t) + Fx(t) → û ≥ 0, as t → ∞,

yielding that

r = lim
t→∞

Cx(t) = C(I − A1)
−1 Bû ∈ 〈GC A1 B(1)〉+.

⊓⊔

Proof of Lemma 4.4 (a) It is well-known [see, for example, Hodgson et al. (2006,
Theorem 3.3)] that

1 ∈ σ(A1 + B F) ⇐⇒ 1 ∈ σ(G F A1 B(1)) ⇐⇒ 0 ∈ σ(I − G F A1 B(1)).

As r(A1 + B F) = r(A) < 1, the above equivalences yield that 0 /∈ σ(I −
G F A1 B(1)), proving the claim.

(b) A calculation using the Sherman–Woodbury–Morrison Formula [see, for exam-
ple, Hager (1989)] gives that

GC AB(1) = C(I − A)−1 B = C((I − A1) − B F)−1 B

= GC A1 B(1) + GC A1 B(1)[I − G F A1 B(1)]−1G F A1 B(1)

= GC A1 B(1)[I − G F A1 B(1)]−1

= GC A1 B(1)
∑

k∈N0

(G F A1 B(1))k, (8.6)

where we have used part (a) for the existence of the inverse of I − G F A1 B(1).
Claim (b) follows from (8.6) once we note that the Neumann series appearing
in (8.6) is nonnegative.

⊓⊔

Proof of Theorem 4.6 The choice of r in (4.5) ensures that there exists v ∈ Rm such
that

r = G(1)sat (v). (8.7)

123



Robust set-point regulation for ecological models…

We note that v need not be unique. From its definition, the saturation function has the
idempotent property that

sat (sat (w)) = sat (w), ∀w ∈ R
m . (8.8)

We define the shifted function s̃at : Rm → Rm by

s̃at : R
m → R

m, s̃at (w) := sat (w + sat (v)) − sat (v), (8.9)

which from (8.8) satisfies s̃at (0) = 0. Introduce the shifted co-ordinates x̃ and x̃c by

x̃(t) := x(t) − x∞, t ∈ N0, (8.10a)

and x̃c(t) := xc(t) − sat (v), t ∈ N0, (8.10b)

where x∞ is as in Theorem 4.6 (b). For notational convenience we introduce the
(so-called deadzone) nonlinearity Ψ by

Ψ : R
m → R

m, Ψ (w) := w − s̃at (w), (8.11)

which, it is routine to verify, satisfies the linear estimate

‖Ψ (w)‖ ≤ ‖w‖, ∀w ∈ R
m . (8.12)

An elementary sequence of calculations shows that x̃ and x̃c have dynamics given by

[
x̃(t + 1)

x̃c(t + 1)

]
=
[

A B

−gK C I

] [
x̃(t)

x̃c(t)

]
−
[

B

E

]
Ψ

([
0 I
] [ x̃(t)

x̃c(t)

])
, t ∈ N0,

(8.13)

which, after introducing

ξ :=
[

x̃

x̃c

]
, A :=

[
A B

−gK C I

]
, B := −

[
B

E

]
and C :=

[
0 I
]
, (8.14)

is rewritten as

ξ(t + 1) = Aξ(t) + BΨ (Cξ(t)), ξ(0) = ξ0, t ∈ N0. (8.15)

Our aim is to demonstrate that our choice of E = gK G(1) ∈ Rp×m in (4.4) ensures
that zero is a globally asymptotically stable equilibrium of (8.15) for all sufficiently
small, but positive, g. To that end, as in Theorem 3.1 (see Logemann and Townley
1997, Theorem 2.5, Remark 2.7), assumptions (A1) and (A2) (particularly the choice
of K ) imply that there exists ĝ > 0 such that

r(A) < 1, ∀g ∈ (0, ĝ). (8.16)
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For such g ∈ (0, ĝ), we consider the transfer function Gg of the triple (A,B, C), which
is given by

z �→ Gg(z)=C(z I − A)−1B=−
[
0 I
] [z I − A −B

gK C (z − 1)I

]−1 [
B

E

]
, z ∈C, |z|≥1.

By using blockwise inversion and subsituting our choice of E = gK G(1), it follows
that Gg reduces to

Gg(z) = ((z − 1)I + gK G(z))−1(gK G(z) − gK G(1)). (8.17)

We seek to establish the following claim: there exists a g∗ ∈ (0, ĝ) and ρ ∈ (0, 1)

such that for all g ∈ (0, g∗)

‖Gg‖∞ ≤ ρ . (8.18)

In what follows we let T denote the complex unit circle T = {z ∈ C : |z| = 1}. We
note that for every g ∈ (0, ĝ) and z ∈ T, z I − A is invertible (as r(A) < 1), as is

[
z I − A −B

gK C (z − 1)I

]
,

and hence by, for example, Zhang (2005, Theorem 1.2), it follows that the Schur
complement

T (z) := (z − 1)I + gK G(z),

is invertible as well. For z ∈ T we define

Q(z) := gK (G(z) − G(1)),

so that

Gg(z) = T (z)−1 Q(z), z ∈ T. (8.19)

Consider the following chain of equivalences: fix ρ ∈ (0, 1)

‖Gg‖∞ ≤ ρ ⇐⇒ sup
z∈T

‖Gg(z)‖ ≤ ρ ⇐⇒ ‖Gg(z)‖ ≤ ρ ∀z ∈ T,

⇐⇒ ‖(Gg(z))
∗‖ ≤ ρ ∀z ∈ T,

where superscript ∗ denotes the Hilbert space adjoint operator, and we have used in
the last equivalence that a bounded operator on a Hilbert space has the same operator
norm as its adjoint. Therefore

‖Gg‖∞ ≤ ρ ⇐⇒ ‖(Gg(z))
∗u‖2 ≤ ρ2‖u‖2, ∀z ∈ T, ∀u ∈ C

m . (8.20)
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Expressing the right hand side of (8.20) in terms of the inner-product 〈·, ·〉 on Cm and
using the decomposition (8.19) yields that

‖Gg‖∞ ≤ ρ ⇐⇒ 〈(Gg(z))
∗u, (Gg(z))

∗u〉 ≤ ρ2〈u, u〉, ∀z ∈ T, ∀u ∈ C
m,

⇐⇒ 〈(Q(z))∗(T (z))−∗u, (Q(z))∗(T (z))−∗u〉 ≤ ρ2〈u, u〉,
∀z ∈ T, ∀u ∈ C

m,

⇐⇒ 〈(Q(z))∗v, (Q(z))∗v〉 ≤ ρ2〈(T (z))∗v, (T (z))∗v〉,
∀z ∈ T, ∀v ∈ C

m,

where we have set v = (T (z))−∗u, and noted that as T (z) is bijective, v ∈ Cm ranges
across all of Cm as u ∈ Cm does. Hence,

‖Gg‖∞ ≤ ρ ⇐⇒ ‖(Q(z))∗v‖2 ≤ ρ2‖(T (z))∗v‖2, ∀z ∈ T, ∀v ∈ C
m,

⇐⇒ ‖(Q(z))∗v‖ ≤ ρ‖(T (z))∗v‖, ∀z ∈ T, ∀v ∈ C
m . (8.21)

We seek to establish that the right hand side of (8.21) holds, which, written out in full
claims that there exists g∗ > 0 and ρ ∈ (0, 1) such that for all g ∈ (0, g∗)

‖g(K G(z) − K G(1))∗v‖ ≤ ρ‖[(z − 1)I + g(K G(z))∗]v‖, ∀z ∈ T, ∀v ∈ C
m,

(8.22)

where for w ∈ C, w denotes its complex conjugate. The arguments that follow are
based on those used in the proof of Logemann and Townley (1997, Theorem 2.5),
although adapted for our purposes. Seeking a contradiction, suppose that the above
claim is false. Therefore, there exist sequences (gn)n∈N ⊆ (0,∞), (zn)n∈N ⊆ T and
(vn)n∈N ⊆ Cm such that gn ց 0 as n → ∞, but

‖gn(K G(zn)−K G(1))∗vn‖>

(
1 − 1

n

)
‖[(zn −1)I +gn(K G(zn))

∗]vn‖, ∀n ∈ N.

(8.23)

The inequality (8.23) necessitates that vn �= 0 for each n ∈ N and so (by multiplying
both sides of (8.23) by a positive constant if necessary) we may assume that

‖vn‖ = 1, n ∈ N. (8.24)

Arguing similarly, inequality (8.23) also necessitates that zn �= 1 for each n ∈ N and,
as zn ∈ T, it follows that

Re zn < 1, ∀n ∈ N. (8.25)

Since the sequences (zn)n∈N ⊆ T and (vn)n∈N ⊆ Cm are both bounded, we may
pass to a subsequence (not relabelled) along which both (zn)n∈N ⊆ T and (vn)n∈N ⊆
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Cm converge. We denote the limits of these sequences by z∞ ∈ T and v∞ ∈ Cm ,
respectively, and note that (zn)n∈N has limit z∞. The equalities (8.24) imply that

‖v∞‖ = 1 and so v∞ �= 0.

Since (K G(zn))n∈N is bounded, taking the limit n → ∞ in (8.23) yields that

0 ≥ ‖(z∞ − 1)v∞‖ = |z∞ − 1| · ‖v∞‖ = |z∞ − 1| ≥ 0,

and hence z∞ = 1 = z∞. Dividing both sides of (8.23) by gn > 0, we obtain the
following estimates for n ∈ N, n ≥ 2

‖(K G(zn) − K G(1))∗vn‖ >

(
1 − 1

n

)∥∥∥∥
[

zn − 1

gn

I + (K G(zn))
∗
]

vn

∥∥∥∥ ,

≥ 1

2

∥∥∥∥
[

zn − 1

gn

I + (K G(zn))
∗
]

vn

∥∥∥∥ ,

≥ 1

2

∥∥∥∥
(

zn − 1

gn

)
vn

∥∥∥∥− 1

2
‖(K G(zn))

∗vn‖, (8.26)

so that

0 ≤
∣∣∣∣
zn − 1

gn

∣∣∣∣ =
∥∥∥∥
(

zn − 1

gn

)
vn

∥∥∥∥ ≤ 2‖(K G(zn) − K G(1))∗vn‖

+‖(K G(zn))∗vn‖ ≤ Γ, (8.27)

for some constant Γ > 0. Therefore, the sequence ( zn−1
gn

)n∈N is bounded and hence
has a convergent subsequence, which we pass to without relabelling, and denote the
limit by l∞. Taking the limit n → ∞ in (8.26) yields that

0 ≥ ‖l∞v∞ + (K G(1))∗v∞‖ ≥ 0,

whence

(K G(1))∗v∞ = −l∞v∞. (8.28)

In particular, as v∞ �= 0 we conclude from (8.28) that −l∞ ∈ σ((K G(1))∗) ⊆ C
+
0 ,

since

σ((K G(1))∗) = σ(K G(1)) ⊆ C
+
0 = C

+
0 .

Therefore, Re (−l∞) ≥ 2α > 0, for some α > 0 and hence there exists N ∈ N such
that

Re
1 − zn

gn

= Re
1 − zn

gn

≥ α > 0, n ∈ N, n ≥ N . (8.29)
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Define z′
n = 1 + i Im zn for n ∈ N and using (8.25) and |zn| = 1 we compute

|z′
n − zn|

|1 − zn| = 1 − Re zn√
2(1 − Rezn) + |zn|2 − 1

= 1√
2

√
(1 − Re zn) → 0, as n → ∞.

(8.30)

Now for each n ∈ N

1 − z′
n

gn

= 1 − zn

gn

+ zn − z′
n

1 − zn

· 1 − zn

gn

,

and thus

Re
1 − z′

n

gn

= Re

(
1 − zn

gn

+ zn − z′
n

1 − zn

· 1 − zn

gn

)

= Re

(
1 − zn

gn

)
+ Re

(
zn − z′

n

1 − zn

· 1 − zn

gn

)

≥ Re

(
1 − zn

gn

)
−
∣∣∣∣
zn − z′

n

1 − zn

∣∣∣∣ ·
∣∣∣∣
1 − zn

gn

∣∣∣∣ . (8.31)

Inserting (8.27), (8.29) and (8.30) into (8.31) implies that

lim inf
n→∞

(
Re

1 − z′
n

gn

)
≥ α

2
> 0,

which is a contradiction, since by construction

Re
1 − z′

n

gn

= 0, n ∈ N.

The inequality (8.18) is sufficient for us to invoke a small-gain proof. From (8.15) we
have that for each t ∈ N

ξ(t) = Atξ(0) +
t−1∑

j=0

At−1− jBΨ (Cξ( j))

⇒ Cξ(t) = CAtξ(0) +
t−1∑

j=0

CAt−1− jBΨ (Cξ( j)). (8.32)

Since r(A) < 1, (and B and C are bounded) it follows that the sequences a and h

with terms a(t) = CAt and h(t) = CAtB, t ∈ N0, respectively, both belong to ℓ2.
Therefore, we estimate from (8.32) for T ∈ N
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‖Cξ‖ℓ2(0,T ) ≤ ‖a‖ℓ2(0,T ) · ‖ξ(0)‖ + ‖h ∗ Ψ (Cξ)‖ℓ2(0,T −1)

≤ ‖a‖ℓ2(0,T ) · ‖ξ(0)‖ + ‖Gg‖∞ · ‖Ψ (Cξ)‖ℓ2(0,T ),

≤ ‖a‖ℓ2(0,T ) · ‖ξ(0)‖ + ‖Gg‖∞ · ‖Cξ‖ℓ2(0,T ), (8.33)

where we have used the linear bound (8.12) for Ψ and the convolution bound (7.11).
Invoking the estimate (8.18) we rearrange (8.33)

‖Cξ‖ℓ2(0,T ) ≤
‖a‖ℓ2(0,T ) · ‖ξ(0)‖

1 − ‖Gg‖∞
≤ ‖a‖ℓ2 · ‖ξ(0)‖

1 − ‖Gg‖∞
. (8.34)

The bound (8.34) holds for every T ∈ N, and we hence conclude that x̃c = Cξ ∈ ℓ2

and thus claim (a) holds, that is,

x̃c(t) → 0, as t → ∞ ⇒ xc(t) → sat (v) = G(1)−1r, as t → ∞. (8.35)

From (8.15) it follows that x̃ has dynamics

x̃(t + 1) = Ax̃(t) + B s̃at (x̃c(t)), x̃(0) = x0 − x∞, t ∈ N0

whence, as r(A) < 1 and by (8.35)

x̃(t) = At x̃(0) +
t−1∑

j=0

At−1− j B s̃at (x̃c(t)) → 0, as t → ∞,

proving parts (b) and (c). ⊓⊔

Proof of Corollary 4.7 We only prove the result for (PI1aw), as the proof for (PI2aw)
is very similar and is omitted. With F1 chosen as in the statement of the result, it
follows immediately from inspection of (PI1aw) that

x(t + 1) = Ax(t) + Bu(t) = Ax(t) − B F1x(t) + Bsat (xc(t))

= (A − B F1)x(t) + Bsat (xc(t)), x(0) = x0, t ∈ N0, (8.36)

so that (PI1aw) specified by (A, B, C) is in fact an instance of (Iaw) specified by
(A1, B, C). By assumption A1 := A − B F1 ∈ R

n×n
+ , so that (A1, B, C) satisfy (4.1),

(A1) and (A2) hold for (A1, B, C) and thus the result follows by applying Theorem 4.6
to (Iaw) specified by (A1, B, C). ⊓⊔

Proof of Proposition 4.9 The proof is based on that of Theorem 4.6. Introducing the
shifted co-ordinates x̃ and x̃c as in (8.10a) and (8.10b), respectively, then the disturbed
feedback system can be written as

[
x̃(t + 1)

x̃c(t + 1)

]
=
[

A B

−gK C I

] [
x̃(t)

x̃c(t)

]
−
[

B

E

]
Ψ

([
0 I
] [ x̃(t)

x̃c(t)

])
+
[

d1(t)

−gK d2(t)

]
,

t ∈ N0, (8.37)
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which after introducing

ξ :=
[

x̃

x̃c

]
, D :=

[
d1

−gK d2

]
, A :=

[
A B

−gK C I

]
,

B := −
[

B

E

]
and C :=

[
0 I
]
, (8.38)

we rewrite as

ξ(t + 1) = Aξ(t) + BΨ (Cξ(t)) + D(t), ξ(0) = ξ0, t ∈ N0. (8.39)

The solution ξ of (8.39) can be expressed as

ξ(t) = Atξ(0) +
t−1∑

j=0

At−1− jBψ(Cξ( j)) +
t−1∑

j=0

At−1− jD( j), t ∈ N. (8.40)

From the proof of Theorem 4.6 there exists g∗ > 0 such that for all g ∈ (0, g∗)

r(A) < 1 and ‖Gg‖∞ = sup
z∈T

‖C(z I − A)−1B‖ < 1,

(see (8.16) and (8.18), respectively). Therefore, by continuity for each g ∈ (0, g∗)
there exists μ > 1 such that

r(μA) = μr(A) < 1 and ‖Gg,μ‖∞ = sup
z∈T

‖C(z I − μA)−1B‖ < 1. (8.41)

Multiplying (8.40) by μt−1 and setting η(t) := μt−1ξ(t), t ∈ N0 gives

η(t)=(μA)tη(0)+
t−1∑

j=0

(μA)t−1− jBψ(Cξ( j))μ j +
t−1∑

j=0

(μA)t−1− jD( j)μ j , t ∈N,

(8.42)

and applying C to (8.42) produces

Cη(t) = C(μA)tη(0) +
t−1∑

j=0

C(μA)t−1− jBψ(Cξ( j))μ j

+
t−1∑

j=0

C(μA)t−1− jD( j)μ j , t ∈ N. (8.43)
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Introduce the sequences hμ, aμ, s(μ, ξ) and Dμ with respective terms

hμ(t) = C(μA)tB, aμ(t) = C(μA)t ,

s(μ, ξ)(t) = Ψ (Cξ(t))μt , Dμ( j) = D( j)μ j , t ∈ N0.

The property r(μA) < 1 from (8.41) implies that aμ, hμ ∈ ℓ1∩ℓ2. We estimate (8.43)
in a similar manner to as in (8.33), yielding that

‖Cη‖ℓ2(0,t) ≤ ‖aμ‖ℓ2(0,t) · ‖η(0)‖ + ‖hμ ∗ s(μ, ξ)‖ℓ2(0,t−1) + ‖hμ ∗ Dμ‖ℓ2(0,t−1)

≤ c1‖ξ(0)‖+‖Gg,μ‖∞ · ‖s(μ, ξ)‖ℓ2(0,t)+‖hμ‖ℓ1(0,t−1) · ‖Dμ‖ℓ2(0,t−1),

≤ c1‖ξ(0)‖ + ‖Gg,μ‖∞ · ‖Cη‖ℓ2(0,t) + c2‖Dμ‖ℓ2(0,t−1), t ∈ N,

(8.44)

where c1 = ‖aμ‖2, c2 = ‖hμ‖1, we have used the convolution estimate (7.6), the
linear estimate (8.12) and the definition of η. Rearranging (8.44) gives

‖Cη‖ℓ2(0,t) ≤ c3‖η(0)‖ + c4‖Dμ‖ℓ2(0,t−1), t ∈ N, (8.45)

with constants

c3 = c1

1 − ‖Gg,μ‖∞
, c4 = c2

1 − ‖Gg,μ‖∞
.

Taking norms in (8.42) gives that

‖η(t)‖ ≤ ‖(ρ A)tη(0)‖ +

∥∥∥∥∥∥

t−1∑

j=0

(μA)t−1− jBψ(Cξ( j))μ j

∥∥∥∥∥∥

+

∥∥∥∥∥∥

t−1∑

j=0

(μA)t−1− jD( j)μ j

∥∥∥∥∥∥
, t ∈ N. (8.46)

The second and third terms on the right hand side of (8.46) are convolutions, which
we bound from above using (7.7) to give

‖η(t)‖ ≤ c5‖η(0)‖ +
(

t−1∑

k=0

‖(μA)kB‖2

) 1
2

· ‖s(μ, ξ)‖ℓ2(0,t−1)

+
(

t−1∑

k=0

‖(μA)k‖2

) 1
2

· ‖Dμ‖ℓ2(0,t−1)
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where c5 := ‖aμ‖∞. As r(μA) < 1 and B is bounded, there exist constants c6 and
c7 such that

‖η(t)‖ ≤ c5‖η(0)‖ + c6‖s(μ, ξ)‖ℓ2(0,t−1) + c7‖Dμ‖ℓ2(0,t−1)

≤ c5‖η(0)‖ + c6‖Cη‖ℓ2(0,t) + c7‖Dμ‖ℓ2(0,t−1)

≤ (c5 + c6c3)︸ ︷︷ ︸
=:c8

‖η(0)‖ + (c7 + c6c4)︸ ︷︷ ︸
=:c9

‖Dμ‖ℓ2(0,t−1), t ∈ N, (8.47)

where we have inserted (8.45). We compute that

‖Dμ‖ℓ2(0,t−1) =

⎛
⎝

t−1∑

j=0

‖μ jD( j)‖2

⎞
⎠

1
2

≤

⎛
⎝

t−1∑

j=0

μ2 j

⎞
⎠

1
2

‖D‖ℓ∞(0,t−1)

=
(

μ2(μ2t − 1)

μ2 − 1

) 1
2

‖D‖ℓ∞(0,t−1)

≤ c10μ
t‖D‖ℓ∞(0,t−1), t ∈ N,

which, when substituted into (8.47) produces

‖η(t)‖ ≤ c8‖η(0)‖ + c9c10μ
t‖D‖ℓ∞(0,t−1), t ∈ N.

Recalling that η(t) = μt−1ξ(t) we obtain

‖ξ(t)‖ ≤ c8μ
−t‖ξ(0)‖ + c9c10μ‖D‖ℓ∞(0,t−1)

≤ c8μ
−t‖ξ(0)‖ + c11‖d1‖ℓ∞(0,t−1) + c12‖d2‖ℓ∞(0,t−1), t ∈ N,

from the definition of D in (8.38). We have established the first two estimates in (4.8).
To acquire the estimate for y(t) − r , we repeat the above calculation from (8.46), but
now estimate y(t) − r = [ C 0 ] ξ(t) instead of ξ(t). The proof is the same as above,
as
[
C 0
]

is bounded. In summary, we have established (4.8) with γ = 1
μ

∈ (0, 1) and
constants M0, M1 and M2 relabelled from the c j constants appropriately. ⊓⊔

Proof of Corollary 4.10 The proof of the result borrows heavily from the proof of (4.8)
in Proposition 4.9. For given f ∞

1 and d∞
2 let r and u+ be as in (4.9), and note that

u+ = sat (v),

for some v ∈ Rm
+ (not necessarily unique). Define

w∞ := (I − A)−1 B(sat (v) + f ∞
1 ), (8.48)

Define the shifted co-ordinates x̃ and x̃c by

x̃(t) := x(t) − w∞, x̃c(t) := xc(t) − sat (v), t ∈ N0.
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An elementary sequence of calculations shows that x̃ and x̃c have dynamics given by

[
x̃(t + 1)

x̃c(t + 1)

]
=
[

A B

−gK C I

] [
x̃(t)

x̃c(t)

]
−
[

B

E

]
Ψ

([
0 I
] [ x̃(t)

x̃c(t)

])

+
[

B( f1(t) − f ∞
1 )

−gK (d2(t) − d∞
2 )

]
, t ∈ N0, (8.49)

which can be written as (8.39) with

D(t) =
[

B( f1(t) − f ∞
1 )

−gK (d2(t) − d∞
2 )

]
, t ∈ N0. (8.50)

In deriving Proposition 4.9 we established the existence of a g∗ > 0 such that for all
g ∈ (0, g∗) and all initial states (x0, x0

c ) ∈ Rn
+ ×Rm

+, there exists μ > 1 and constants

C1, C2 > 0 such that the solution ξ =
[

x−w∞
xc−s̃at (v)

]
of (8.39) satisfies the estimate

‖ξ(t)‖ ≤ C1μ
−t‖ξ(0)‖ + C2μ‖D‖ℓ∞(0,t−1), t ∈ N. (8.51)

Since D in (8.50) is convergent, it is bounded and hence the inequality (8.51) implies
that ξ is bounded. A straightforward time-invariance argument yields that for every
T ∈ N0

‖ξ(t + T )‖ ≤ C1μ
−t‖ξ(T )‖ + C2μ‖D‖ℓ∞(T,T +t−1), t ∈ N. (8.52)

By construction D(t) → 0 as t → ∞, which coupled with the boundedness of ξ

and (8.52) implies that ξ(t) → 0 as t → ∞, proving the corollary. ⊓⊔

Proof of Lemma 4.11 The proof is elementary using the follow identity

(V + W )−1 = V −1 − (V + W )−1W V −1,

for both V and V + W boundedly invertible, which itself follows from rearranging
(V + W )−1(V + W ) = I . As such, for z ∈ C ∩ ρ(A) ∩ ρ( Â)

(z I − A)−1 = ((z I − Â) − �A)−1

= (z I − Â)−1 + ((z I − Â) − �A)−1(�A)(z I − Â)−1. (8.53)

The result now follows by multiplying (8.53) by C = Ĉ + �C and B = B̂ + �B on
the left and right hand sides respectively, expanding and collecting together terms as
suggested. ⊓⊔

Proof of Lemma 4.12 The proof makes use of the complex stability radius developed
by Hinrichsen and Pritchard (1986a, b). For given Q ∈ Cm×m with σ(Q) ⊆ C

+
0 , then
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clearly σ(−Q) ⊆ C
−
0 , with C

−
0 the open left-half complex plane. For assumption

(A2) we require that

−K G(1) = −K Ĝ(1) − K�G(1) = −Q − K�G(1),

also has spectrum contained in C
−
0 . Viewing −K�G(1) as a structured perturba-

tion to −Q, by Hinrichsen and Pritchard (1986b, Proposition 2.1) it follows that
σ(−K G(1)) ⊆ C

−
0 if

‖ − K�G(1)‖ = ‖K�G(1)‖ <
1

supω∈R ‖(ωi + Q)−1‖ ,

which, noting that K = QĜ(1)−1, is (4.12). In the case that Q = I then

sup
ω∈R

‖(ωi + Q)−1‖ = sup
ω∈R

‖(ωi + 1)−1 I‖ = sup
ω∈R

1

|ωi + 1| = 1,

yielding one ingredient of the inequality (4.13). When Q = I , so that K = Ĝ(1)−1,
then we also note that

−G(1)K = −Ĝ(1)K − �G(1)K = −I − �G(1)K ,

and thus σ(−G(1)K ) ⊆ C
−
0 if

‖ − �G(1)K‖ = ‖�G(1)K‖ <
1

supω∈R ‖(ωi + I )−1‖ = 1,

which is the second ingredient in establishing (4.13). Here we have used that
σ(−G(1)K ) ⊆ C

−
0 if, and only if, σ(−K G(1)) ⊆ C

−
0 , which follows from the fact

that the non-zero eigenvalues of −K G(1) are precisely equal to those of −G(1)K .
That (4.14) is sufficient for (4.13) follows immediately from the fact that the matrix
2–norm satisfies

‖�G(1)Ĝ(1)−1‖ , ‖Ĝ(1)−1�G(1)‖ < ‖Ĝ(1)−1‖ · ‖�G(1)‖.

⊓⊔

Proof of Lemma 4.13 If (a) holds then we simply estimate

‖(I +X)−1 X‖ ≤ ‖(I + X)−1‖ · ‖X‖=

∥∥∥∥∥∥

∑

j∈N0

(−X) j

∥∥∥∥∥∥
· ‖X‖≤

⎛
⎝
∑

j∈N0

‖X‖ j

⎞
⎠ · ‖X‖

= ‖X‖
1 − ‖X‖ < 1 ⇐⇒ ‖X‖ <

1

2
,
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as required. We claim that (b) implies that X + X∗ � 0, where P � 0 or 0 � P

both denote positive definiteness of P (as opposed to the usual P ≥ 0 or 0 ≤ P ,
which in this manuscript denotes componentwise nonnegativity of P). Denote Y =
(I − X)(I + X)−1, and note that (b) implies that ‖Y‖2 ≤ 1 or, in other words,
I − Y ∗Y � 0. From here we compute that

0 � I − Y ∗Y = I − (I + X)−∗(I − X)∗(I − X)(I + X)−1

= (I + X)−∗[(I + X)∗(I + X) − (I − X)∗(I − X)](I + X)−1

= 2(I + X)−∗[X + X∗](I + X)−1

⇒ 0 � X + X∗, (8.54)

as claimed. The inequality ‖X‖ ≤ 1 implies that ‖X∗‖ ≤ 1 and thus, letting H denote
the Hilbert space on which X is defined

〈X∗v, X∗v〉 ≤ 〈v, v〉 = ‖v‖2, ∀v ∈ H. (8.55)

We combine (8.54) and (8.55) and estimate for v ∈ H and ρ2 ∈ ( 1
2 , 1)

0 ≤ (2ρ2 − 1)〈v, v〉 + ρ2〈(X + X∗)v, v〉
≤ ρ2〈v, v〉 + (ρ2 − 1)〈X∗v, X∗v〉 + ρ2〈(X + X∗)v, v〉
⇒ 〈X∗v, X∗v〉 ≤ ρ2〈(I + X)∗v, (I + X)∗v〉,

and taking u = (I + X)∗v ∈ H yields that

〈X∗(I + X)−∗u, X∗(I + X)−∗u〉 ≤ ρ2〈u, u〉 ⇒ ‖X∗(I + X)−∗u‖ ≤ ρ‖u‖.
(8.56)

Since v ∈ H and hence u ∈ H was arbitrary, we conclude from (8.56) that

‖(I + X)−1 X‖ = ‖X∗(I + X)−∗‖ = sup
u∈H
u �=0

‖X∗(I + X)−∗u‖
‖u‖ ≤ ρ < 1,

as required. ⊓⊔

The next lemma is a technical result that prepares the proof of Corollary 4.15. The
lemma demonstrates that the assumptions of Corollary 4.15 are sufficient for the
(unknown) transfer function Gg associated with the feedback system (Iaw) to satisfy

‖Gg‖∞ < 1, (8.57)

for all perturbations �G that are not too large in norm. Once (8.57) is established, then
the proof of Corollary 4.15 is identical to the latter part of the proof of Theorem 4.6.
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Establishing (8.57) is achieved in part by choosing g > 0 sufficiently small, and hence
we obtain a low-gain result. However, the value of Gg(1) is independent of g, indeed

‖Gg‖∞ ≥ ‖Gg(1)‖ = ‖[I + Ĝ(1)�G(1)]−1 · [Ĝ(1)�G(1)]‖,

and hence condition (4.17) (see also (8.58) below) is necessary for (8.57) to hold.

Lemma 6.1 Suppose that G = Ĝ + �G ∈ H∞ where Ĝ ∈ H∞ and K ∈ Rm×m is

such that K and Ĝ(1) satisfy σ(K Ĝ(1)) ⊆ C
+
0 . Then, there exists ρ ∈ (0, 1), M∗ > 0

and g∗ > 0 (which depends on M∗) such that for all �G in (4.10) with

‖�G‖∞ < M∗ and ‖[I + Ĝ(1)−1�G(1)]−1 · [Ĝ(1)−1�G(1)]‖ < 1, (8.58)

and all g ∈ (0, g∗), the function

z �→ Gg(z) := ((z − 1)I + gK G(z))−1(gK G(z) − gK Ĝ(1)), z ∈ C, |z| ≥ 1,

belongs to H∞ and

‖Gg‖∞ ≤ ρ. (8.59)

Proof First note that as σ(K Ĝ(1)) ⊆ C
+
0 is a finite set and eigenvalues depend

continuously on bounded perturbations, we may choose N̂ > 0 such that

‖�G‖∞ < N̂ ⇒ σ(K G(1)) ⊆ C
+
α , (8.60)

for some α > 0. The spectrum condition (8.60) implies that G(1) = Ĝ(1) + �G(1)

is invertible (see Remark 3.2), as is Ĝ(1). Hence

I + Ĝ(1)−1�G(1) = Ĝ(1)−1 · G(1),

is also invertible, and thus the operator that appears in the second estimate in (8.58) is
well-defined whenever ‖�G‖∞ < N̂ .

We seek to establish the existence of M̂ > 0 and ĝ > 0 such that for all �G with
‖�G‖∞ ≤ M̂ and for all g ∈ (0, ĝ) it follows that Gg ∈ H∞. By inspection of Gg , it
suffices to prove that for �G and g as above

E ∪ T ∋ z �→ T (z) := (z − 1)I + gK G(z),

satisfies T −1 ∈ H∞, as then Gg ∈ H∞ as the product of H∞ functions. Boundedness
of gK G implies that

‖T (z)v‖ ≥ κ‖v‖, ∀v ∈ C
m, ∀z ∈ T ∪ E, |z| ≥ R, (8.61)

for some R sufficiently large. The function T −1 is analytic if

T ∪ E ∋ z �→ det(T (z)),
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has no zeros in T ∪ E. The function z �→ det(T (z)) is itself analytic, and thus can
only have at most finitely many zeros (since by (8.61) it is not identically zero), and
we seek to prove that it has none.

The spectrum condition (8.60) implies that T (z) is invertible at z = 1 for any g > 0
and �G with ‖�G‖ < N̂ . Therefore, by continuity, there exists r̂ > 0, M̂1 > 0 (with
M̂1 < N̂ ) and ĝ1 > 0 such that for all �G with ‖�G‖∞ ≤ M̂1, and for all g ∈ (0, ĝ1)

det(T (z)) �= 0, ∀z ∈ B(1, r̂), (8.62)

where B(1, r̂) is the complex ball of radius r̂ and centre one. Moreover, we estimate
that

‖T (z)‖ = ‖(z − 1)I + gK G(z)‖ ≥ r̂

2
− g‖K G(z)‖, ∀z ∈ (E ∪ T)\B

(
1, r̂

2

)
,

and hence there exists ε > 0, M̂2 > 0 (again with M̂2 < N̂ ) and ĝ2 > 0 such that for
all �G with ‖�G‖∞ ≤ M̂2, and for all g ∈ (0, ĝ2)

‖T (z)‖ ≥ ε, ∀z ∈ (E ∪ T)\B
(

1, r̂
2

)
. (8.63)

The lower bound (8.63) implies that T is injective and thus invertible on (E ∪
T)\B

(
1, r̂

2

)
. Taking M̂ = min{M̂1, M̂2} and ĝ = min{ĝ1, ĝ2} and combining (8.62)

and (8.63) we have proven that there exists M̂ > 0 and ĝ > 0 such that for all �G

with ‖�G‖ < M̂ and all g ∈ (0, ĝ) then T −1 ∈ H∞ and hence Gg ∈ H∞ as well.
To prove the norm estimate (8.59) we argue by contradiction and suppose that

the claim is false. Then, there exists sequences (Mn)n∈N, (gn)n∈N ⊆ (0,∞) and
(�nG)n∈N such that gn, Mn ց 0 as n → ∞,

‖�nG‖∞ < Mn and ‖[I +Ĝ(1)−1�G(1)]−1 · [Ĝ(1)−1�G(1)]‖<1, ∀n ∈ N,

(8.64)

but

‖Ggn ‖∞ > 1 − 1

n
,

where for n ∈ N

z �→ Ggn (z) = ((z − 1)I + gn K (Ĝ(z) + �nG(z)))−1gn K (Ĝ(z)

+�nG(z) − Ĝ(1)), z ∈ T ∪ E.

Arguing as in the proof of Theorem 4.6, particularly between (8.18) and (8.23), the
above supposition can be expressed as the existence of (zn)n∈N ⊆ T and (vn)n∈N ⊆
Cm , with ‖vn‖ = 1 such that
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‖gn(Ĝ(zn) + �nG(zn) − Ĝ(1))∗K ∗vn‖

>

(
1 − 1

n

)
‖[(zn − 1)I + gn(Ĝ(zn)

+�nG(zn))∗K ∗]vn‖, ∀n ∈ N. (8.65)

As the sequences (zn)n∈N and (vn)n∈N are bounded, we may pass to a subsequence,
without relabelling, along which (zn)n∈N and (vn)n∈N converge to respective limits
z∞ ∈ T and v∞ ∈ Cm . We note that ‖v∞‖ = 1 and thus v∞ �= 0. The norm
estimate (8.64) certainly implies that the sequence (�nG(zn))n∈N is bounded and so
taking a limit n → ∞ in (8.65) gives

0 ≥ ‖(z∞ − 1)v∞‖ = |z∞ − 1| · ‖v∞‖ ≥ 0.

We deduce that z∞ = 1 = z∞. Dividing both sides of (8.65) by gn > 0, we obtain
the following estimates

‖(Ĝ(zn) + �nG(zn) − Ĝ(1))∗K ∗vn‖ >

(
1 − 1

n

)∥∥∥∥
[
(zn − 1)

gn

I +(K G(zn))∗
]

vn

∥∥∥∥ ,

≥ 1

2

∥∥∥∥
[

zn − 1

gn

I + (K G(zn))
∗
]

vn

∥∥∥∥ , n ≥ 2

≥ 1

2

∥∥∥∥
(

zn − 1

gn

)
vn

∥∥∥∥− 1

2
‖(K G(zn))∗vn‖,

(8.66)

so that

0 ≤
∣∣∣∣
zn − 1

gn

∣∣∣∣ =
∥∥∥∥
(

zn − 1

gn

)
vn

∥∥∥∥

≤ 2‖(Ĝ(zn) + �nG(zn) − Ĝ(1))∗K ∗vn‖ + ‖(K G(zn))
∗vn‖ ≤ Γ, (8.67)

for some constant Γ > 0. Therefore, the sequence ( zn−1
gn

)n∈N is bounded and hence
has a convergent subsequence, which we pass to without relabelling, and denote the
limit by l∞.

We note that the norm estimate (8.64) implies that

�nG(zn) → 0, as n → ∞,

and so taking the limit n → ∞ in (8.66) yields that

0 ≥ ‖l∞v∞ + (K Ĝ(1))∗v∞‖ ≥ 0,

whence

(K Ĝ(1))∗v∞ = −l∞v∞. (8.68)
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In particular, as v∞ �= 0 we conclude from (8.68) that −l∞ ∈ σ((K Ĝ(1))∗) ⊆ C
+
0 ,

since

σ((K Ĝ(1))∗) = σ(K Ĝ(1)) ⊆ C
+
0 = C

+
0 .

Therefore, Re (−l∞) ≥ 2α > 0, for some α > 0 and hence there exists N ∈ N such
that

Re
1 − zn

gn

= Re
1 − zn

gn

≥ α > 0, n ∈ N, n ≥ N . (8.69)

However, zn ∈ T and if zn = 1 for any n ∈ N with n ≥ N then Re 1−zn

gn
= 0,

contradicting the uniformly positive estimate (8.69). Therefore, it suffices to suppose
that

Re zn < 1, ∀n ∈ N. (8.70)

The proof now finishes identically to that of Theorem 4.6, arguing from the line
after (8.29). ⊓⊔

Proof of Corollary 4.15 The hypotheses of the corollary ensure that Lemma 6.1
applies and therefore for g ∈ (0, g∗) the estimate (8.57) (or (8.59)) holds. The proof
of the corollary is now the same as that of Theorem 4.6, following from the paragraph
preceding Eq. (8.32). ⊓⊔
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