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Abstract

Design Optimization of structures is considered under variation of loading,

geometry and material properties. A hybrid, genetic/nonlinear programming

algorithm is coupled to a Monte Carlo simulation technique which seeks to

locate an optimal design which can function adequately under the specified

range of variation. Crossectional, geometric and topological changes are

considered in the formulation. A traditional finite element solution is performed

for each simulation where a specific value is selected for each design parameter

from a statistical distribution which defines the range of variation. A design

evaluation is the result of a number of simulations which produces an output

distribution for each constraint imposed upon the design. The solution is

executed in a parallel computing environment due to the large number of finite

element analysis runs required. A specific example involving a truss structure is

presented.

1 Introduction

Traditional analysis or optimization of a structure requires exact specification of

loading, restraints and material properties. Since this is not truly representative

of the actual structure, a safety factor is assigned which provides latitude in the

true environment the structure will see versus the specific instance assumed in

the computational analysis. The question one must ask is whether or not this is

the most meaningful way to conduct structural design, analysis or optimization.

Disasters of varying scale are well documented through history, where bridges

or other structures suffered catastrophic consequences due to unforeseen

loading or material failure. Translated into computational terms, this means that

these structures were designed with incorrectly specified restraints or material
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properties, load cases which were inaccurate or incomplete or even constitutive

assumptions which were invalid. Of course, the computer has been a recent

invention in the scope of these events, so it would be inappropriate to focus the

blame on computational analysis. The issue remains, however, as to whether

the computer allows us to perform the structural design task in a fundamentally

better way.

There is no doubt that structural analysis and optimization provides a far better

understanding of the structure being designed as well as the ability to investigate

a number of alternative designs. On the other hand, there is virtually a

guarantee that the constraint set imposed will be at least partially active at the

solution. This means that maximum allowed stresses and displacements will be

reached in some region(s) for the final design. A safety factor is still employed,

so the computational process is not that dissimilar to traditional design

methodology. The final resulting design may be lighter and less costly, but is it

a better or more robust design? By moving away from a deterministic analysis

and considering variation, weight and cost savings may still be achieved while

the fundamental character of a robust design is simultaneously achieved.

Robust in this sense refers to a design which is insensitive to reasonable

variation in design properties and parameters.

The concept of robust design is certainly nothing new. The basic premise of the

popular Taguchi methods in experimental design [1] is to reduce the sensitivity

of a design with respect to uncontrollable factors. This infers that not only must

the nominal value or mean of the design parameter distribution be considered,

but also the form of the distribution itself. Each design parameter, whether it is

a material property, load or geometric dimension has variation. If this variation

can be represented by a statistical distribution, either real or assumed, then the

objective function and design constraint satisfaction for a particular design

become distributions as well. This means that the stress in elements or members

as well as nodal displacements and other design constraints are not single valued

for each design considered. The resulting range of values is of interest, for in

conjunction with optimization, they can lead to a design which is less sensitive

to variation than would be possible using a conventional formulation.

The advantage of the consideration of variation is documented in Figure 1,

where three different design cases are plotted. The maximum computed design

stress is plotted versus frequency of occurrence based on a sampling of values

from the input load and material distributions. For a conventional analysis, only

the nominal stress will be known. This means that the designs producing the

results documented by Case 1 and Case 2 are considered to be equal in

performance as the nominal or mean stress is identical. Case 2, however, has an

obvious advantage in that it has less variation than does Case 1. This has

significant importance in the areas of safety and damage tolerant design. Since

the design represented by Case 2 is less sensitive to loading and material
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property variation, it is less likely to fail in service even when subjected to

loading beyond that assumed in the design. It might even be possible to allow

for a smaller safety factor as demonstrated by Case 3 in Figure 1. Case 3 has a

higher nominal stress, but the maximum stress contained in the distribution is

within the design limit imposed for all three cases (40000). Of course the input

parameter distribution is rarely known, but the inclusion of some variation can

lead to designs which have near or even sub-optimal weight and cost values,

while simultaneously being less sensitive to variation.

CASE 3

STRESS

Figure 1. Output Distribution for Maximum Stress for Three Design

Cases

2. Problem Formulation

Each input parameter which is allowed to vary is represented by a statistical

distribution. For a normally distributed variation, this means a nominal value

and standard deviation must be defined. It is not necessary to know the exact

form of this distribution, but the wider the range of variation allowed, the more

robust the final design. Forms of allowable input parameter variation, include

load magnitude, load direction, material properties and geometric dimensions.

A Monte Carlo simulation is performed to evaluate each design where all

variation contributors are included. For each individual simulation of a design,

a set of values are randomly selected from the specified distributions and the

outputs are computed. The result from the total number of simulations is an

estimate of the output distribution of the objective function and each constraint.

Once again, for a normal distribution, this estimate consists of the mean and
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standard deviation. The actual number of simulations should be large enough to

allow for a reasonable estimate of the output distribution, but small enough to

keep the computational burden within practical limits.

The problem formulation for a minimum weight structure, subject to maximum

stress and displacement constraints is as follows:

MINIMIZE WEIGHT = S p (Volume) ; over all elements (1)

Subject to

CON(l) = {SLIMIT - (SMAX(MEAN) + NS*SMAX(SDEV))} (2)

and

CON(2) = {DLIMIT - (DMAX(MEAN) + NS*DMAX(SDEV))} (3)

Here, SLIMIT and DLIMIT are the maximum allowable stress and

displacement. SMAX(MEAN) and DMAX(MEAN) are the computed mean

values of the output distributions. SMAX(SDEV) and DMAX(SDEV) are the

computed standard deviations of the maximum stress and displacement for the

given design. The NS value simply represents the number of standard

deviations desired between the mean level and the maximum allowed level. For

instance, if NS is selected as three, 99.97% of the simulations for a design

would have to fall below the design limit in order to satisfy the constraint. A

formulation similar to that represented by Equations 1-3 was applied

successfully to manufacturing tolerance optimization with the specific inclusion

of variation [2].

The formulation is somewhat similar to a conventional design optimization with

a deterministic evaluation employed. The difference, however, is that the

formulation above captures variation in a more general fashion than does the

safety factor approach. A simple case of this is when a structure is designed

considering only loading in one direction. The resulting optimal structure may

support this load and even an order of magnitude more before failure which is

consistent with the safety factor. A load with a significant component in

another direction, though, may cause failure, due to buckling or a re-distribution

of loads (tension to compression) which was not considered. The inclusion of

design parameter variation allows the optimization a straightforward means of

compensating for these effects.

3. Optimization

The desire to locate design solutions which are robust or insensitive to variation

in design parameters requires an optimization approach which is global in

nature. Designs which are far apart in the design space, may have similar
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objective function and constraint values, but may have significantly different

sensitivities to load or material property variation. This global optimization

should also allow for topological change, as this is the most likely means of

influencing the robust character of a design. This capability is an attribute of

genetic algorithms and thus the application of genetic or evolutionary

optimization is made to control all topological issues. Alternatively, the

geometric and sizing issues require the capability of continuous variable

optimization which is not conveniently addressed by genetics. The continuous

variable design optimization problem is better resolved by a conventional

gradient based nonlinear programming algorithm. The total process employed

herein is a hybrid approach where the top level design topology is determined

by the genetic algorithm and the geometric refinement is handled by a gradient

based penalty function method. The combination has been proven effective on a

wide range of problems spanning a number of Engineering disciplines.

3.1 Genetic Algorithm

Genetic Optimization methods emulate the process of natural selection in

nature. Each design topology is represented by a string or chromosome which

can be combined with other chromosomes to produce a series of design

populations where both the average performance as well as the best design

continuously improves. The chromosome contains strings of decision values

which for a beam or truss structure define which members are active and for a

plate, shell or solid structure define which elements are active. The technique

operates on a population of designs, rather than a single design which is where

the global nature of the process is introduced. Since the encoding of the design

is operated on instead of modifications to an existing design, topological issues

are easily included. The rules governing the transition of population to

population are probabilistic rather than deterministic which includes randomness

due to mutation.

To see how the genetic encoding is implemented, consider the structural

topology pictured in Figure 2. The design involves a truss structure which is to

support two loads at specified locations. The ground attachment points may

move, but must remain on the vertical line shown. Only topological issues are

addressed by the genetic algorithm which include the definition of the active

members and potentially how many ground attachment and intermediate nodal

points are used. In order to keep the maximum number of truss members fixed

which simplifies the genetic representation, the number of nodes is fixed and

only the active member selection is addressed. Figure 2 contains two floating

nodes (points 1 and 3) and two ground attachment points (5 and 6). The

floating nodes may or may not be utilized, depending upon the active members

selected.
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With the above assumptions, a total of fourteen truss members are possible.

The most basic encoding then becomes a string of fourteen binary digits which

for a particular topology might be:

Encoding = {0,0,0,0,0,1,1,1,0,0,1,0,1,1} (4)

A zero in a position indicates that a member is inactive while a one in a position

indicates it is active. The encoding represented in Equation 4, then, identifies

members 6,7,8,11,13 and 14 as active which produces a six bar truss design.

The analysis begins with a population of encodings generated randomly and

operates on them with the genetic algorithm to update the population from

generation to generation until convergence is achieved. Details on the

algorithmic procedures employed are provided by Goldberg [3] and Davis [4].

Figure 2. Possible Design Topologies for a Two Load, Six Node Truss

Structure

3.2 Nonlinear Programming Algorithm

Once the design topology is known, the optimization problem becomes one of

determining geometric dimensions involving size and location. These issues are

concerned with continuous variables and as such are easily handled by

conventional nonlinear programming techniques. Whether the optimization is

performed on a conventional formulation or one involving variation, design

constraints must be included. This gives rise to a penalty type method. The

general form of the penalty function is given as:
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P(x) = F(x)+ Q(R,CON) (5)

Here F(x) is the objective function (weight), Q is a particular penalty function

form which penalizes an infeasible design, R is a penalty parameter which is

used to force convergence to a feasible design and CON is the vector of

constraint values. The exact penalty form varies widely in practice. The

particular form utilized here, is a biased penalty function [5] which seeks to

reduce the distortion of the original objective function contours.

Once again referring to Figure 2, the design variables for the nonlinear

programming formulation include the crossectional area of each active member

as well as the location of the ground and free nodes. For the genetic encoding

represented by Equation 4 there are a total of twelve variables, six crossectional

areas, the y location of each ground point and the x and y location for each

floating node.

3.3 Integration

The general flow through the optimization is quite straightforward. The genetic

optimizer operates at the highest level and determines the topology of the

design. Control is then passed to the penalty function algorithm to optimize the

geometry and crossectional areas for the topology selected. Each evaluation of

an objective function or constraint requires a number of evaluations, based on

the number of simulations required to estimate the output distributions. This

results in a large number of finite element analysis runs. The dual parallel

nature, at the genetic population level and at the simulation level, can be

exploited to reduce solution time. In addition, design sensitivity information

can be utilized to further reduce the computational effort.

A number of other issues deserve some mention. The topology of a particular

design represented by the genetic encoding may not be a structure at all. This

situation is handled by assigning a small crossectional area to the non-active

members. This ensures a non-singular stiffness matrix for the finite element

solution. It also has the added benefit of maintaining a consistent size and form

in the stiffness matrix. The other issue is related to the specific values selected

for the input parameter variation distributions. In order to maintain an

equivalence between design comparisons, the same set of randomly generated

input value sets are use for all design evaluations. This allows a reasonably

small number of simulations for each design evaluation.
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4.0 Example

In order to illustrate the capability of the robust design methodology, consider

the example pictured in Figure 3. Two loads must be supported at a distance of

360 and 720 units from the vertical supporting plane. Several solutions to the

problem considering minimum weight have been presented for this example [6].

To maintain consistency with the formulation developed for input parameter

variation, two ground points and two free nodes will be included. Input

parameter variation is considered in load magnitude, load direction and material

modulus.

**-+»

I NODE 3

m NODE 4

*@=*»

I NODE 1

NODE 2

X

NODE 6 LOAD1 LOAD 2

Figure 3. Two Load Design Example

The variation introduced is summarized in Table 1. The constraints are required

to be satisfied to at least one sigma value of the output distributions, with a

maximum stress limit of 25,000 and displacement limit of 2.5 units.

Mean

Std.

Deviation

Load

Magnitude

100,000

20,000

Load 1/2

Direction

-90 Deg

15Deg

Material

Modulus E

10E+06

2E+05

Table 1. Variation in Input Parameters Imposed for Example
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The solution located for the robust design formulation is compared to

previously generated solutions in Table 2. The resulting design was a four bar

truss with active members 7,8,13 and 14. The final topology is pictured in

Figure 4.

Mean

Stress

St. Dev

Stress

Mean

Disp.

St. Dev.

Disp.

Elements

Weight

Robust Design

12,226

2438

1.86

0.645

4

2574

Design 1 [6]

13,240

2038

2.72

0.808

5

3210

Design 3 [6]

14,181

3051

2.59

0.692

4

1916

Table 2. Comparison of Solution Results

LOAD1 LOAD 2

Figure 4. Optimal Solution Topology

A direct comparison to the previously reported results is difficult as when

variation is considered, both of the previous results have displacements above
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the allowable, even at their mean level. The results do show, however that the

mean values for the constraints are lower and the standard deviation for the

active displacement constraint is less for the robust design. The standard

deviation with regard to stress is a little higher for the robust design compared

to Design 1, but it should be noted that the nominal stress is over ten standard

deviations below the maximum. When the robust design is allowed to approach

a 2 unit displacement, the weight is reduced to 1492, which is actually a much

lighter structure than was previously found.

It is interesting to point out that Designs 1 and 2 reported in Table 2 were

actually optimized under a multiple-objective formulation where sensitivity was

a design consideration. Minimum weight designs generated by a standard

formulation in the same weight range (+50% of robust design optimal) typically

have standard deviations in the range of 5000-10,000 for stress and 0.80 to 1.25

for displacement. This certainly places the robust design optimal solution in a

very good comparative position. It is less sensitive to the critical constraint and

has a weight equal to or better than the best previously reported design.

5.0 Summary and Conclusions

A new structural design methodology has been presented which considers the

robust character of the design and has been demonstrated on a simple example.

The key attribute of the procedure is the inclusion of variability in the input

parameters and their effect on the desired output performance. The algorithm

employed is a hybrid combination of genetic and conventional nonlinear

programming algorithms. A Monte Carlo simulation approach is applied to

address the variation in the input parameters. The parallel nature of the

algorithm compensates for the additional computational burden inherent in the

approach. The results on the simple example, clearly demonstrate the

advantage of the approach.
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