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Abstract

Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain
environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the
concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy
numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing
principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our
framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large
perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures.
Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our
framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific
organization of the pathway allows the system to maintain global concentration robustness of the diffusible response
regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis
that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest
that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the
respective perturbations.
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Introduction

All living cells rely on the capacity to respond to intra- or

extracellular signals and have evolved a dedicated biochemical

machinery to continuously sense, transmit, and process a variety of

internal and environmental cues. A key requisite for reliable signal

processing is the capability of living cells to keep the stationary

intracellular concentrations of certain molecules, such as active

signaling compounds, within tightly defined bounds – despite

conditions of uncertainty and in the face of multiple perturbations.

While the apparent insensitivity of key intracellular concentra-

tions, and hence of cellular function, to detrimental influences is

widely recognized as a salient property of cellular signaling,

knowledge of the precise mechanisms underlying these instances of

pathway robustness is still fragmentary [1–6].

Here, we report a simple, yet highly efficient, novel formalism

that pinpoints the necessary architecture for concentration

robustness in living cells. We assert and substantiate by mathemat-

ical proof and experimental evidence that certain classes of network

architectures render the functional output of the network, as

represented by a set of steady state protein concentrations, invariant

to a large class of perturbations. Our approach emphasizes

robustness as a structural property of a network as a whole, rather

than as a consequence of parameter-tuning or individual positive or

negative interaction loops [3,7], and offers a novel paradigm to

understand the topological organization of cellular signaling

networks. Differing from earlier approaches, our framework

accounts for perturbations of large magnitude and is not restricted

to a particular class of network kinetics, such as mass-action systems

[5]. Applications include the robustness of input-output relation-

ships with respect to variations in total component concentrations,

reaction parameters, abundances of common resources like ATP,

RNA polymerases, and ribosomes, as well as detrimental effects of

pathway crosstalk, and variations in temperature. Our focus is on

perturbations whose time scales are slow compared to the intrinsic

dynamics of the pathway.

Results/Discussion

Local Concentration Robustness
To establish the mechanisms of robust signaling, we consider a

multi input-multi output signaling network, whose temporal

behavior is described by a set of ordinary differential equations

for the state variables, x(t), e.g., _xxi~vj{vk, where the indices

indicate different variables xi or reaction fluxes vk. The equations

can be organized into the more compact form,

_xx(t)~N :v, ð1Þ

where N denotes the stoichiometric matrix. The reaction fluxes

are specified by functions v~v(x,p) that depend on the variables x

and a set of parameters p. We require the existence of a – not
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necessarily unique – stationary state xs that obeys the steady state

condition N :vs~0 with vs :~v(xs,p). In the following, we assume

that the functionality of the network is encoded in the steady state

of a subset of output variables, defined as xA, whose concentration

values depend on a set of intra- or extracellular signals. The

remaining intermediate variables are defined by xM . The system is

said to exhibit local concentration robustness with respect to a particular

parameter p if a sufficiently small perturbation Dp in this

parameter does not affect the stationary concentrations of the

output variables, DxA~0. Mathematically, the perturbation is

characterized by the vector of logarithmic partial derivatives P

with elements Pi :~Llnvi=Llnp, evaluated at the stationary state.

As the main result of the work, we now seek to identify stringent

conditions on the network architecture – rather than on kinetic

parameters – such that the robustness property holds for

perturbations of large magnitude. To this end, we first recall the

conditions for local concentration robustness. Utilizing results

from linear control theory, local robustness can be ascribed to two

scenarios: Either the perturbation has no effect on any stationary

concentration within the network. In this case, the vector P is an

element of a vector space spanned by the columns of a matrix K –

with K being a basis of the right nullspace of the scaled

stoichiometric matrix, defined such that N :diag(vs):K~0. Or,

more generally, the perturbation propagates through the network

and affects the stationary concentration of some or all of the non-

robust intermediate variables xM , albeit without affecting the set of

output variables xA. In this case, it can be shown that the

perturbation vector P is an element of the joint vector space

spanned by the columns of K and the columns of a matrixM . The

latter matrix is given by the logarithmic partial derivatives of

reaction rates with respect to the intermediate variables xM , with

elements Mij :~Llnvi=Llnx
M
j . We note that the elements of M

correspond to the kinetic orders or scaled elasticities of the reaction

fluxes and attain integer values for the case of reaction networks

that follow mass-action kinetics [8]. Taken together, a necessary

and sufficient condition for local concentration robustness is

therefore that the vector P is an element of the vector space

spanned by the columns of M and K , or equivalently, that the

rank condition,

rank (PjMjK)~rank (MjK), ð2Þ

is fulfilled. Here, the notation (MjK) denotes a concatenation of

the columns of both matrices. To ascertain local concentration

robustness the rank condition is evaluated at the particular

stationary state. See Materials and Methods and Text S1 for

details and proof.

From Local to Global Concentration Robustness
In general, local concentration robustness is not a sufficient

condition to allow for robust signal processing in living cells. The

fluctuations encountered by biological systems, such as variations

in component concentrations arising from stochasticity in gene

expression, are typically of large magnitude and cannot be

described by local perturbations at a particular stationary state.

Our aim is therefore to establish precise conditions for global

concentration robustness. Specifically, a system is said to exhibit global

concentration robustness with respect to a particular parameter p

if the stationary concentrations of the set of output variables xA is

invariant with respect to perturbations in p. Thereby, p may take

any value within a biophysically feasible perturbation set P and is

not restricted to small variations.

To obtain a viable criterion to judge global concentration

robustness, we therefore extract from the local vector space,

spanned by the columns of (M jK), the largest subspace that does

not depend on the choice of kinetic parameters, and hence, the

specific stationary state. This subspace, denoted as the invariant

perturbation space I , defines the largest vector space that guarantees
local robustness at any stationary state of the system. Consequently,

a perturbation of increasing magnitude that is confined to the

invariant perturbation space may gradually affect the intermediate

variables, but does not affect the designated output variables. The

condition for global concentration robustness is then given by

P[I , or, equivalently, as rank (PjI)~rank (I), where I denotes a

matrix whose columns span the vector space I .
We emphasize that the matrix I and its associated vector space

are independent of kinetic parameters and therefore represent a

genuine structural property of any signaling network. Proof and an

algorithm is relegated to Materials and Methods and the SI, here

we only outline its construction using a simple example.

A Simple Example
To illustrate the construction of the invariant perturbation

space, we consider the simple pathway shown in Figure 1. Here,

the output variable a of the pathway is subject to strong

fluctuations p in its synthesis rate vza(p). Rather than aiming to

suppress the detrimental perturbations, the pathway employs an

intermediate variable m that compensates perturbations and

ensures global concentration robustness of a. The pathway is

described by two differential equations for the time-dependent

behavior of the concentrations of a and m, respectively,

d

dt

a

m

� �

~
1 {1 0 0

0 0 1 {1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N

:

vza pð Þ

v{a a,mð Þ

vzm að Þ

v{m

0

B
B
B
@

1

C
C
C
A
: ð3Þ

For brevity, and as the only assumption on the rate equations and

kinetic parameters, we require that the pathway gives rise to a

Author Summary

Cellular signaling networks have to function reliably and
with high fidelity in an uncertain environment. In this
paper, we investigate the topological principles to achieve
such robust signal processing in living cells. Specifically, we
identify the topological organizing principles that enable a
signaling network to keep the stationary intracellular
concentrations of certain molecules, such as active
signaling compounds, within tightly defined bounds –
despite conditions of uncertainty and in the face of
multiple perturbations. We demonstrate that an appropri-
ate topological organization renders the output of the
pathway invariant against a large class of possible
detrimental fluctuations, such as changes in energy states
or total protein concentrations. Furthermore, we show that
the topological requirements for robust signal processing
can be formalized in terms of a linear vector space,
denoted as invariant perturbation space, that predicts the
robustness properties of the network. Constructing this
invariant perturbation space for the Escherichia coli

chemotaxis pathway reveals that the pathway is indeed
invariant with respect to most dominant perturbations
that would otherwise significantly hamper information
transmission. Our framework provides a counterpoint to
the hypothesis that cellular function relies on an extensive
machinery to fine-tune or control intracellular parameters.
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unique stationary state for each value of p. To obtain insight about

the concentration robustness of the variable a with respect to p, we

construct the invariant perturbation space, derived from the

concatenated matrix (MjK). The matrix M is given by the

logarithmic partial derivatives of reaction rates with respect to the

intermediate non-robust variable m. We obtain

M~

0

b

0

0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

, ð4Þ

where b :~Llnv{a=Llnm denotes the unknown state-dependent

logarithmic partial derivative with respect to the variable m. In

general, the precise value of b depends on the functional form of

the rate equations, the value of the perturbation p, and the kinetic

parameters.

The matrix K can be constructed algorithmically from the

stoichiometric matrix. We obtain,

K~

da 0

da 0

0 dm

0 dm

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

, ð5Þ

where da~vs
za~vs

{a and dm~vs
zm~vs

{m denote the stationary

flux values.

To obtain a matrix representation I of the invariant perturbation

space, we now need to identify the largest parameter-independent

subspace spanned by the columns of (M jK). To this end, we note

that the vector space spanned by the columns of a matrix remains

invariant under elementary matrix operations (EMO), such as

multiplication of a column by the same non-zero factor or the

addition of an arbitrary multiple of one column to another.

Applying a set of suitable EMOs, we obtain

(MjK)[I~

1 1 1

1 1 0

1 0 0

1 0 0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð6Þ

We note that in this particular case, the invariant perturbation space

is of the same dimension as the local vector space. In general,

however, not all dimensions of the local space are retained, see

Section III of Text S1 for an example.

To test for global concentration robustness of the variable a with

respect to p, we now have to evaluate the rank condition

rank (PjI)~rank (I). The perturbation is characterized by the

vector

P~

g

0

0

0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

, ð7Þ

where g :~Llnvza=Llnp denotes the unknown state-dependent

value of the logarithmic partial derivative. It can be straightfor-

wardly ascertained that the rank condition for global concentra-

tion robustness is fulfilled, irrespective of the value of g. Hence, the

variable a exhibits global concentration robustness with respect to

perturbations in its synthesis rate.

We note that our simple example is a well-known instance of

robust perfect adaptation [9,10]. Biologically, the variable m acts

as an integrator, under the condition that the degradation rate of

m is independent of the concentration of m itself. Utilizing our

approach, the invariant perturbation space can be constructed

algorithmically for any given reaction network. The condition for

global concentration robustness can then be ascertained by a

simple numerical test and does not require extensive computations

or additional expert knowledge.

Figure 1. A simple example of global concentration robustness. (A) The output variable a of the pathway is subject to a strong perturbation
p in its synthesis rate. Closed arrows denote regulatory interactions. (B) The concatenated matrix (MjK) is constructed based on the network
architecture. The first two columns correspond to the logarithmic partial derivatives of the rate equations with respect to both variables a and m. The
latter two columns correspond to a representation of the scaled nullspace K . Greek letters denote unknown parameter-dependent values. (C) A
largest parameter-independent representation I , spanning the invariant perturbation space I , is obtained by elementary matrix operations. To test
for output invariance, we ascertain that rank (PjI)~rank (I), irrespective of kinetic parameters. The condition for global concentration robustness of
a with respect to the perturbation p is thus fulfilled.
doi:10.1371/journal.pcbi.1002218.g001
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The Robustness of Two-Component Systems
To further illustrate the construction of the invariant perturba-

tion space, we briefly consider the robustness of a canonical two-

component system – one of the simplest and best-studied examples

of robust signaling. Bacterial two-component systems typically

consist of a membrane-bound sensor kinase that senses a specific

stimulus and a cognate response regulator that modulates the

signal response. Reliable functioning of two-component systems

often requires that the output of the pathway, the concentration of

phosphorylated response regulator as a function of an external

stimulus, is not compromised by fluctuations in total protein

concentrations of both components. The robustness of bacterial

two-component systems with respect to such concentration

fluctuations was investigated previously [11,12]. In particular,

Batchelor and Goulian [11] identified that the principal

mechanism for concentration robustness is due to a bifunctional

histidine kinase that phosphorylates and dephosphorylates its

cognate response regulator.

Figure 2 depicts a simplified model of the respective system. The

histidine kinase (H ) is phosphorylated by an external ligand. The

phosphorylated kinase (HP) transfers the phospho-group to the

unphosphorylated response regulator (R). The pathway output is

the concentration of the phosphorylated diffusible response

regulator (RP). Importantly, dephosphorylation of the response

regulator (RP) requires the participation of the bifunctional

histidine kinase (H). Utilizing our approach, we seek to confirm

that, in this case, the stationary concentration of RP is invariant to

variations in the expression levels of both proteins. For brevity, we

again consider a highly simplified system and focus on the

construction of the invariant perturbation space. In particular, the

formation of protein complexes is neglected and all phosphory-

lation reactions are assumed to follow mass-action kinetics. A

solution of the full system, including an explicit account of

conserved moieties, is provided in Text S1 (Section VII).

To obtain the invariant perturbation space, we first derive the

matrix M of logarithmic partial derivatives of reaction rates with

respect to the non-robust variables H , R, and HP. We assume that

both proteins are synthesized and degraded with unknown rates

v+H and v+R – using the simplifying assumption that degradation

(or dilution) acts only on the unphosphorylated forms H and R.

The unknown partial derivatives of the degradation reactions are

denoted as aH~Llnv{H=LlnH and aR~Llnv{R=LlnR, respec-
tively. The remaining reactions are assumed to follow mass-action

kinetics, resulting in partial logarithmic derivatives of unit value.

Specifically, the phosphorylation rate v1 is dependent on the

concentration of the unphosphorylated form H , the phospho-

transfer rate v2 depends upon the concentration of R and HP, and

the dephosphorylation rate v3 finally depends on the concentration

of the phosphorylated response regulator RP, as well as the

unphosphorylated form H of the bifunctional kinase. The matrix

M is given in Figure 2B.

As the next step, we need to identify the nullspace K of the

scaled stoichiometric matrix N :diag(vs). The nullspace of the

unscaled stoichiometric matrix is readily available using standard

tools of linear algebra. The representation of the unscaled

nullspace is subsequently scaled with the unknown steady state

reaction rates, such that d{1
1 :~vs+H , d{1

2 :~vs+R, and

d{1
3 :~vs1~vs2~vs3. A representation of the scaled nullspace is

provided in Figure 2B. Taken together, we again obtain the

invariant perturbation space as the maximal subspace spanned by

the columns of M jKð Þ independent of kinetic parameters or

steady state reaction rates. A matrix representation of the invariant

perturbation space is given in Figure 2C.

We assume that the system is perturbed by unknown variations

in the synthesis rates of both proteins, vzH and vzR, respectively.

The corresponding partial derivatives with respect to unknown

perturbations are denoted as gH and gR and shown in Figure 2C.

To ascertain global concentration robustness of RP, we confirm

that the rank condition rank (PjI)~rank (I) is indeed fulfilled.

Hence, the output of the pathway, the steady state concentration

of RP, is invariant to perturbations in the synthesis rates of both

components.

We note that, in general, our approach does presuppose that

the system gives rise to a biologically feasible steady state

solution for RP. This requirement usually entails additional

constraints on the possible reaction rates and kinetic parame-

ters. For example, robustness of RP is only feasible under the

condition that the total expression of the response regulator

RT
~RzRP exceeds the steady state solution for RP. Below we

present a generalization of the rank condition to account for

additional constraints on molecule concentrations (see also Text

S1, Section VIII).

Figure 2. Robustness of two-component systems. (A) The model consists of 7 reaction rates and includes synthesis and degradation of the
histidine kinase (H) and the response regulator (R). Robustness against fluctuations in expression is conveyed by the bifunctionality of the histidine
kinase that catalyzes dephosphorylation of the response regulator (RP). (B) The matrices M and K are constructed as described in the main text.
Lowercase Greek letters denote real numbers, corresponding to unknown partial derivatives and unknown steady state reaction rates. (C) A matrix
representation I of the invariant perturbation space that is independent of kinetic parameters. The perturbations affect the synthesis rates of both
proteins and the corresponding perturbation vectors have nonzero elements for the respective reaction rates. However, in both cases, the
perturbation vector is an element of the invariant perturbation space, hence the condition for perfect concentration robustness of RP for these
perturbations is fulfilled.
doi:10.1371/journal.pcbi.1002218.g002

Robust Signal Processing in Living Cells

PLoS Computational Biology | www.ploscompbiol.org 4 November 2011 | Volume 7 | Issue 11 | e1002218



Conserved Moieties and Further Applications
Our approach is applicable to a variety of different scenarios,

including several special cases which are discussed in the following.

In particular, our approach relies on an interpretation of the

elements of the matrix M – the logarithmic partial derivatives of

reaction rates with respect to the intermediate variables. For

typical biochemical rate equations, these partial derivatives are

nonlinear functions of kinetic parameters and therefore usually

represent unknown and state-dependent quantities. However, as

demonstrated above, our approach is still applicable in such a

situation and does not require extensive knowledge of the

functional form of the rate equations. In the most general case,

each logarithmic partial derivative is represented by an unknown

non-zero value within the matrix M . The resulting invariant

perturbation space is required to be independent of these unknown

derivatives. Hence, the invariant perturbation space is predomi-

nantly a structural property of the network and is identical for

structurally equivalent networks. See Text S1 for details.

However, in some cases the elements of the matrix M can be

constraint further, owing either to particular functional forms of

the rate equations or to simplifying assumptions that allow to

approximate more complicated rate equations. An example of the

former are generalized mass-action (GMA) kinetics of a reaction

rate vi(x,p),

vi(x,p)~ki P
n

j~1
x
aij
j : ð8Þ

For GMA kinetics, the partial logarithmic derivatives correspond

to the exponents aij and are often considered to be constant

quantities. Consequently, the partial logarithmic derivatives may

be represented as constant entries within the matrix M . In this

case, the invariant perturbation space is particularly straightfor-

ward to obtain.

As an example of simplifying assumptions, we note that complex

rate equations are often approximated by more simple equations

corresponding to specific kinetic regimes. In particular, a

Michaelis-Menten equation can be approximated by a mass-

action term or a constant for substrate concentrations far below or

far above the Michaelis constant, respectively. In this case, the

logarithmic partial derivative is approximately constant or zero,

respectively. However, any result from applying the criterion for

global concentration robustness is only valid as long as the

assumptions underlying the approximation are fulfilled.

As yet, we have only considered reaction networks in the

absence of mass-conservation relationships or conserved moieties.

However, often the total concentration of some compounds can be

considered as approximately constant over the relevant time-

scales, giving rise to additional dependencies between variables. In

this case, the system of differential equations for the independent state

variables, x is augmented by a set of dependent state variables xD,

whose values are determined by a set of mass conservation

equations. The full system of equations governing the time

evolution of the system is

_xx~N :v x,xD,p
� �

ð9Þ

xT~L:xzxD, ð10Þ

with the vector xT denoting the total concentration of each

molecular component. The matrix L denotes a link matrix and

usually consists of integer elements. To incorporate these

dependencies within our approach, we must modify the definition

of the matrix M to account for the logarithmic partial derivatives

with respect to the dependent variables. See Text S1 for details.

Using the augmented matrix M , our approach proceeds as

described above. As a corollary, we then obtain a simple criterion

to judge global concentration robustness with respect to pertur-

bations in conserved total concentrations [5,6], see Text S1

(Section VII.B).

Our approach differs from a number of previous approaches to

investigate robustness of biochemical reaction networks [1,5,6,13].

The formalism is not restricted to systems described by mass-

action kinetics, but is applicable a wide range of ODE-based

descriptions of biochemical networks. Likewise, we do not focus on

specific types of perturbations, such as variations in conserved

moieties [5] or temperature [13]. Rather, our approach is

applicable to any perturbation that can be described by a vector

of partial derivatives of reaction rates – of which variations in

conserved moieties, as well as of temperature are particular

examples. We also mainly envision a scenario, where the

perturbations are slow compared to the intrinsic fluctuation-

compensation dynamics of the pathway. In particular, we consider

the steady state of a selected subset of variables to represent the

robust output of the system. Transient fluctuations in the vicinity

of this state are not considered. However, the scenario described in

this work indeed holds for many instances of cellular robustness.

For example, in the case of gene expression noise, the observed

fluctuations in expression levels are usually at least an order of

magnitude slower than the phosphorylation dynamics in subse-

quent signaling pathways. Hence such fluctuations can be

compensated by post-translational mechanisms – as described

within this work. Similar arguments apply for several dominant

fluctuations typically encountered by cellular signaling pathways,

such as variations in temperature or abundance of common

resources like ATP.

The Robustness of the Escherichia coli Chemotaxis
Pathway
To substantiate the explanatory power achieved by an

interpretation of a complex cellular signaling network in terms

of its associated invariant perturbation space, we now consider the

robustness of the E. coli chemotaxis pathway. The topology of the

pathway is depicted in Figure 3. The pathway responds to changes

in concentrations of chemoeffectors such as certain amino acids or

sugars by altering the phosphorylation state of the diffusible

response regulator CheY. The concentration of free phosphory-

lated CheY (Yp) – the central output quantity of the pathway –

then determines swimming behavior of the cell. Robust and

precise regulation of Yp is a prerequisite for high chemotaxis

efficiency and is maintained in the face of multifarious perturba-

tions, most notably ATP availability, stochasticity in component

abundance [14], and receptor cluster assembly [15,16]. However,

seemingly contradicting its functional objective, the pathway is

rather sensitive to variations in the expression of some of its

constituent proteins. For example, it was shown that a two-fold

overexpression of CheZ or CheY levels already result in an 50%

decrease of experimentally observed chemotactic performance, as

determined by the size of swarm rings on soft agar plates [17].

To reveal the mechanisms underlying the remarkable robust-

ness that nonetheless allows reliable functioning of the pathway,

we construct the invariant perturbation space I as described

above. The concatenated matrix (MjK) is obtained by consider-

ing the stoichiometric matrix and the kinetic dependencies

shown in Figure 3. See SI (Section V) for details of the derivation.

A parameter independent representation of the invariant

Robust Signal Processing in Living Cells
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perturbation space is shown in Figure 4A. To investigate the

robustness of the pathway, we first consider changes in

chemoeffector concentration (L), perturbations in the expression

of CheA (AT) and CheW (WT), as well as variations in receptors

(T) and ATP availability (ATP). The corresponding perturbation

vectors are shown in Figure 4B. In each case, the corresponding

perturbation vector is an element of the invariant perturbation

space and the rank condition for global concentration robustness

of Yp is fulfilled. Hence, the diffusible response regulator Yp

indeed exhibits global robustness of its stationary concentration

with respect to these five highly detrimental influences.

Next, we consider changes in the expression of the individual

proteins CheR (RT ), CheB (BT ), CheY (YT ), and CheZ (ZT ). The

corresponding perturbation vectors are given in Figure 4C. As can

be ascertained by inspection of the rank condition, the respective

perturbation vectors are not elements of the invariant space – in

good agreement with the rather high sensitivity exhibited by the

pathway in response to variations in the expression of these

proteins [17]. Nonetheless, the observed total concentrations of

CheR, CheB, CheY, and CheZ are not ‘‘fine-tuned’’ and are

known to exhibit considerable variability under various conditions.

To explain this alleged paradox, we have to take the sequential

arrangement of genes into operons, as shown in Figure 3B, into

account. A closer inspection of Figure 4 then reveals that

perturbations that arise from concerted fluctuations in protein

concentrations, induced by stochastic synthesis of meche operon

transcripts, are within the invariant perturbation space. And,

indeed, coupling of expression levels of chemotaxis proteins

adjacent on an operon has been experimentally shown to

positively correlate with chemotactic efficiency and to underlie

active selection during chemotactic spreading on soft agar plates

[18]. Generalizing from this example, we expect that gene

organization into operons and expression from polycistronic

mRNA is a generic, evolutionary driven, mechanism to alle-

viate detrimental effects of stochasticity in gene expression. In

the context of our framework, coupling of expression on the

transcriptional [14] and translational level [18], reduces the

effective dimensionality of a perturbation, thereby enabling an

invariant perturbation space of lower dimension to compensate

and counteract the detrimental effects of fluctuations. In this sense,

strong transcriptional and translational coupling is closely related

to the robustness conveyed by bifunctional enzymes [5]. For the E.

coli chemotaxis pathway strong coupling of genes expressed from

one operon is evident in cells expressing yellow and cyan

fluorescent protein fusions to CheY and CheZ, respectively, from

one bicistronic plasmid construct, as shown in Figure 5A [14,19].

The striking invariance of the pathway output upon a seven fold

concerted increase in the transcriptional activity of the chemotaxis

operons following the deletion of the anti sigma factor FlgM is

shown in Figure 5B [14,19].

As argued previously [20], the benefits of co-variation to reduce

the effective dimensionality of perturbations are likely to confer a

selective advantage strong enough to drive the assembly of genes

into operons. Our results also highlight the functional importance

of seemingly redundant or insignificant interaction characteristics,

whose functional relevance is difficult to ascertain without an

appropriate theoretical framework. A striking example is the

catalyzed dephosphorylation of CheY by CheZ, as opposed to the

uncatalysed dephosphorylation of CheB. While such a difference

often seems extraneous to reliable signal transduction, such

differences also shape the invariant perturbation space and are

therefore crucial to achieve robust signal processing. A further

example of a relevant interaction characteristic is the competitive

binding of CheY and CheB to CheA, which results in a

phosphotransfer rate to CheB that scales as 1=½CheY �. While

not fine-tuned on the parameter level, this qualitative dependence

is a prerequisite for robustness of the pathway output and in

excellent agreement with experimental findings [21]. In this sense,

our approach also offers a theoretical framework to investigate the

functional relevance of given reaction characteristics – beyond

their role in straightforward signal transmission.

Conclusions
The interpretation of a complex cellular signaling network in

terms of its associated invariant perturbation space has profound

implications for our ability to understand and eventually rationally

engineer robust biological circuits. There is increasing evidence

that the utilization of post-transcriptional noise compensatory

networks is a widespread mechanism in prokaryotic signaling.

Experimentally ascertained examples include instances of two-

component systems [1,11,12], the regulation of the glyoxylate

bypass [22], and the sporulation network of B. subtilis [20]. In each

case, an evolved network topology relegates potentially detrimen-

tal fluctuations in compound concentrations to its associated

invariant perturbation space – rather than utilizing an expensive

Figure 3. The E. coli chemotaxis pathway. (A) A pathway diagram
and (B) the organization of its constitutive genes into two operons,
denoted as mocha and meche. (C) To a good approximation, the
pathway can be described by three variables: the average methylation
state m, the concentration of phosphorylated methylesterases CheB
(Bp) and the concentration of phosphorylated response regulator
protein CheY (Yp). See Materials and Methods for definitions and
equations.
doi:10.1371/journal.pcbi.1002218.g003
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machinery to fine-tune native expression levels. We expect that

similar mechanisms will provide an indispensable backbone for

synthetic biology. Guided by the algorithmic construction of the

invariant perturbation space, a key strategy for synthetic biology is

to either maximize the invariant perturbation space by rationally

rewiring the specificity of protein interactions [23,24], or

correlating perturbations among components, by placing genes

on polycistronic mRNA or by building fusion constructs – in each

case circumventing the need to fine-tune parameters that are

experimentally hard to control. Our algorithm is applicable to

large systems and requires only qualitative information on kinetic

interactions. Our results allow us to clarify several long-standing

issues relating to the emergence of cellular robustness. In

particular, we hypothesize that the ubiquitous existence of

puzzling, seemingly redundant, interaction loops that characterize

our current understanding of cellular pathways is deeply rooted in

as yet unrecognized mechanisms to counteract functional fragilities

[10,25]. In this sense, an interpretation of signalling architecture in

terms of its invariant perturbation space offers a novel paradigm to

understand cellular robustness, with the prospect to rationally

engineer robust signaling circuits or target cellular defects.

Materials and Methods

Local Concentration Robustness
In the following, we outline the conditions for local concentra-

tion robustness, as stated in Eq. (2). We employ a logarithmic

expansion of the stationary form of Eq. (1), N :vs~0, with

vs :~v(xs,p), to linear order in a perturbation Dp and the resulting

changes in the state variables Dx,

Figure 4. Robustness of the E. coli chemotaxis pathway. (A) A representation of the invariant perturbation space I , obtained from the
concatenated matrix (M jK). The column headers indicate the provenance of each column, as either a partial derivative with respect to the three
variables Yp , m, and Bp , or the representation of the nullspace. (B) The perturbation vectors for variations in concentrations of chemoeffectors (L),
total CheA (AT ), total CheW (WT ), receptor assembly (T) and ATP availability (ATP). Lowercase Greek letters denote real numbers corresponding to
contributions from the derivatives of (unspecified) nonlinear functions, namely Ac

~Ac(AT ,WT ,T), Ps
~Ps(m,L), and kA~kA(ATP). The rank

condition, rank (PjI)~rank (I), is fulfilled for each perturbation vector. Hence, the pathway output Yp maintains global concentration robustness
with respect to these perturbations. (C) Pertubations in the total concentrations of individual proteins CheR (RT ), CheB (BT ), CheY (YT ), and CheZ
(ZT ) are not elements of the invariant space. However, the pathway exhibits robustness against concerted variations in the expression of the meche

operon. In this case, the perturbation vector P consists of additive contributions from each individual perturbation – corresponding to an effective
reduction of dimensionality of the perturbations.
doi:10.1371/journal.pcbi.1002218.g004

Figure 5. Concerted behavior of the expression level and robust response dynamics of the E. coli chemotaxis pathway as a
consequence of the operon and regulon structure. (A) Single-cell concentrations of CheY-YFP and CheZ-CFP, bicistronically expressed from
one plasmid pVS88 at 50 mM IPTG induction. (B) Response dynamics of the pathway activity measured by FRET after a step-like addition of attractant
(30 mM a-DL-methylaspartate) at time 50 s, followed by attractant removal at time 300s, for native (black line) and seven fold upregulated (red line)
transcriptional activity of the chemotaxis pathway genes (see SI, Section VI, for details).
doi:10.1371/journal.pcbi.1002218.g005
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0~N :diag(vs): P:Dp̂pzM :Dx̂xMzA:Dx̂xA
� �

ð11Þ

with diag(vs) denoting a square matrix with entries vs on the

diagonal. The expansion coefficients are

Pi :~
p

vsi

Lvsi
Lp

, M ij :~
xMj

vsi

Lvsi
LxMj

, Aij :~
xAj

vsi

Lvsi
LxAj

: ð12Þ

The relative perturbation and its response are defined as

(Dp̂p)~Dp=p, (Dx̂xM )i~DxMi =xMi , and (Dx̂xM )i~DxAi =x
A
i .

In the absence of the condition for robustness of the pathway

output, Dx̂xA~0, the expansion Eq. (11) has a unique solution for

Dx̂x that quantifies the local linear response to a sufficiently small

perturbation in parameters. The existence of the solution is

guaranteed by the requirement that the Jacobian of the system is

of full rank and hence invertible, implied by the dynamic stability

of the considered steady state. Similar consideration are

extensively utilized within, for example, Metabolic Control

Analysis [8,13,26,27].

However, the requirement of concentration robustness,

Dx̂xA~0, removes the degrees of freedom that correspond to

(changes in) the output variables x̂xA. In this case, Eq. (11)

translates into the condition

0~N :diag(vs): P:Dp̂pzM :Dx̂xM
� �

ð13Þ

In general, Eq. (13) is overdetermined, that is, no solution exists

and the condition DxA~0 cannot be fulfilled. Eq. (13) has a

unique solution Dx̂xM if and only if at least one of the following two

conditions holds: Either the columns of the matrix P are elements

of the right nullspace of the matrix N :diag(vs), spanned by the

columns of the matrix K . In this case, we obtain N :diag(vs):P~0

and, necessarily, Dx̂xM~0. Or, the columns of the matrix P are

linearly dependent on the columns of the matrix M . In

mathematical terms, these two conditions can be summarized in

the equation

rank(PjMjK)~rank(MjK): ð14Þ

Here, the columns of K span the right nullspace of N :diag(vs),
such that N :diag(vs):K~0. The notation (M jK) denotes a

concatenation of the columns of the matrices M and K , as

described in the main text. See also SI (Sections II and IV) for a

rigorous derivation.

Towards Global Concentration Robustness
In the following, we outline the formal definitions and proof for

global concentration robustness. For conciseness, we consider only

generalized mass action (GMA) networks without conserved

moieties. The general case, including a formal derivation of the

conditions for global concentration robustness, is described in SI,

Section IV. The biochemical network is defined as in Eq. (1). We

consider a perturbation p that takes values in a physically

reasonable, connected set P. For a GMA network, the reaction

rates are given by vi(x,p)~ki P
m
j~1 x

aij
j Wi(p) for reaction rates

affected by the perturbation and vi(x,p)~ki P
m
j~1 x

aij
j for reaction

rates not affected by the perturbation. The concentration vector is

split into x~(xA,xM ) as described in the main text. The network

is assumed to have a perturbation-dependent steady state xs(p)

which is asymptotically stable for all p in a physically reasonable,

connected perturbation set P.

The property of global concentration robustness is then formally

defined as follows: For any values of the reaction rate parameters

ki and any choice of the functions Wi, the steady state output

concentration vector xAs (p) is constant over P.
The global invariant perturbation space as discussed in the main

text for a GMA network is given by I~ im Mzim K , where im
denotes the image or range of the matrix. Thereby, M are the

columns of the matrix with elements aij , i.e. the logarithmic

derivatives of the reaction rate vector with respect to xM , and K is

a matrix whose columns span the space of the vectors which are in

the kernel of N diag(a) for all a in the kernel of N .

To obtain a condition for global concentration robustness, we

consider the vectors P whose elements Pi are zero whenever the

reaction rate vi is not affected by the perturbation p. If all such

vectors P are element of the space I , then the network has global

concentration robustness. Conversely, if there exists such a P

which is not in the space I , then there exists rate parameters ki
and functions Wi for which the steady state output concentration

xAs (p) is not constant over P, and thus the network does not have

global concentration robustness. Computationally, the condition

P[I can be tested by the rank condition rank (PjI)~ rank I ,

where I is any matrix whose columns span the space I .

The E. coli Chemotaxis Pathway
The signal transduction of the E. coli chemotaxis pathway can

be described to good accuracy by the interplay of the core

components, the methyl accepting chemoreceptors (Tar, Tap, Tsr,

Trg), the methyltransferase CheR, the methylesterase CheB, the

response regulator CheY and its designated phosphatase CheZ

(see Box 1). The total concentrations of these proteins are

approximately RT
:~½CheR�&0:2mM, BT

:~½CheB�&0:3mM,

YT
:~½CheY�&10mM, ZT

:~½CheZ�&3mM, AT
:~½CheA�

&5mM, T :~½Tar�z½Tsr�&3mM, and T tot
:~½Tar�z½Tsr�z

½Trg�zTap�&5mM. The concentration T includes all receptors

where CheR and phosphorylated CheB can bind to with high

affinity, via a pentapeptide sequence at the carboxyl termini of the

Tar and Tsr receptors. The set of mass action equations that

determine the phosphorylation level of free diffusible response

regulator proteins, Yp, are listed below.

Methylation. The time evolution equation of the average

receptor methylation level in the cell, m :~
P

k k
T

(a)
k

T tot
, with T

(i)
k

the concentration of receptors of type i and k residues methylated,

is given by

Ltm~kR
RT

KTzT
{kB

Bp

KTzT
, ð15Þ

with Bp the concentration of phophorylated methylesterases,

CheB, whose catalytic activity is 10{100-fold higher than in the

unphosphorylated case. The dissociation constants of CheR and

phosphorylated CheB to the pentapeptide sequence of Tar and

Tsr are similar and are given a fixed value KT for both proteins.

The functional form of the net methylation rate reflects

experimental findings in the physiological relevant low-activity

regime of receptor clusters [28]. We note that most mathematical

models ignore CheB phosphorylation and assume that CheB acts

predominantly on active receptors, a contribution which is ignored

in our approach. As to leading order Bp*BTP(t), with P(t) the

probability to find receptors in the active state, both approaches

show essentially the same adaptation dynamics. The reason why

the net methylation rate does not follow the biochemically

expected rate _mm*const{BpP(t) is still unknown [28].

Receptor activation. The signal amplification within a

receptor cluster can be explained by assuming N receptors to form

Robust Signal Processing in Living Cells
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independent allosteric units that change activity in unison [29]. Here,

the probability to find an active receptor complex takes the form

P(t)~½1zexp½N(FzS)��{1
, ð16Þ

with receptor energy F~E{E’m, as a function of the average

methylation level per receptor, m, and the free energy contribu-

tion of attractant binding to receptors of type i, S~
X

i
Ni=N

½ln(1zL=Koff
i ){ln(1zL=Kon

i )�, with L the ligand concen-

tration. Any transient dynamics in receptor activation is absent for

fixed m and L as the required conformational changes of these

molecules equilibrate on the milliseconds time scale.
Binding of CheY to CheA. CheY binds with high affinity to

the P2 domain of CheA with dissociation constants KY&1mM,

KYp&1mM and high on and off rates. This determines the free

concentrations of CheA which is given by

A~AT 1

1z(KY )
{1Yz(KYp)

{1Yp
&AT KY

YzYp
ð17Þ

Here, binding of CheB to CheA has been neglected as

YzYp&BzBp.
Binding of CheB to CheA. CheB binds with high affinity to

the P2 domain of CheA with dissociation constant KB&2mM and

is assumed to have similar high on and off rates as CheY. This

determines the free concentration of CheB given by

B~(BT
{Bp)

KB

KBzA
&(BT

{Bp), ð18Þ

where the approximation follows the same reasoning as above.
CheY phosphorylation. CheY receives phospho-groups at

the P2 domain of CheA by phosphotransfer from the P1 domain

of CheA. As P1 domain phosphorylation is the rate limiting step,

only a small fraction of CheA is phosphorylated in the adapted

state. We can therefore describe CheY phosphorylation dynamics

to good approximation by

LtYp
T
~kAP(t)(A

c
{Ac

p){kZ½ZYp� ð19Þ

&kAP(t)A
c
{kZZ

T Yp

KZzYp
, ð20Þ

where in the last line the ½ZYp� complexes have been resolved by

introducing the Michaelis-Menten constant KZ . The concentration

of total and free diffusible phosphorylated CheY is denoted by YpT

and Yp, respectively. We emphasize that the autophosphorylation

rate of CheA depends on the intracellular ATP concentration,

kA~kA(ATP), and only those P1 domains can be phosphorylated

where CheA is part of functional allosteric receptor complexes. The

concentration of these functional receptor-kinase complexes is

denoted byAc
~Ac(T ,WT ,AT ) and depends on the concentrations

of its constituents, CheA, CheW, Tar, Tap, Tsr and Trg, with

variable receptor stoichiometry.
CheB phosphorylation. CheB gets phosphorylated at the P2

domain of CheA, receiving a phospho-group from the P1 domain

of CheA. As for CheY, the P1 domain phosphorylation is believed

to be the rate limiting step. Thus we have to good approximation

LtBp~kAP(t)A
c KY

KB

B

Y
{cBBp: ð21Þ

Here, the term
KY

KB

B

Y
reflects the reduced phosphotransfer rate to

CheB as a consequence of the *30-fold higher abundance of

CheY, which occupies most of the P2 binding domains as

KY&1mM.

Stationary Solutions and the Dependency Matrices
In the following, we consider the stationary case of the

chemotaxis equations. We thereby employ the approximations
KY

YzYp
&

KY

Y
as Yp%Y , KT%T , B&BT as Bp%BT , and

Y&YT . The simplified set of stationary equations read

Ps(m,L)~
1

1zexp½N(F s(m)zSs(L))�
ð22Þ

0~ kR
RT

T
|fflffl{zfflffl}

v1

{ kB
Bp

T
|fflffl{zfflffl}

v2

ð23Þ

0~ kAP
sAc KY

KB

BT

YT

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

v3

{ cBBp
|ffl{zffl}

v4

ð24Þ

0~ kAP
sAc

|fflfflfflffl{zfflfflfflffl}

v5

{ kZZ
T Yp

KZzYp
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

v6

, ð25Þ

where we have resolved the complexes ½AY �~(KY )
{1AY and

½AB�~(KB)
{1AB and introduced the stationary functions F s and

Ss as defined above for time independent mean methylation level

m and fixed ligand concentration L. A derivation of the entries in

Figure 4 is provided in Text S1.

Supporting Information

Text S1 Supplementary information. A formal derivation

of the conditions for global concentration robustness and

additional examples.

(PDF)
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I. INTRODUCTION

We aim at a mathematical formalism that allows to judge whether a multiple-input-

multiple-output reaction network is robust against large perturbations of network param-

eters. In addition to identify design principles for robust signal processing, the formalism

should indicate the necessary network modifications and extensions to arrive at a robust

network output for specific perturbations, when starting from a non-robust network. In par-

ticular, our formalism builds upon the structural properties of a (bio)chemical network, as it

is the network architecture and not ’fine-tuning’ of parameters that allows for the compensa-

tion of large perturbations. Our results show that the robustness of a signaling network can

be judged by inspection of a linear vector space: We demonstrate that for each biochemical

network, there exists a linear vector space, such that any perturbation (expressed as a vector

of partial logarithmic derivatives) that is confined to this vector space leaves the output of

the network, as defined by a set of stationary concentrations of designated output variables,

invariant. One of our main achievement is to identify which part of this vector space is

independent of kinetic parameters (corresponding to global concentration robustness) and

which part of this vector space is dependent on kinetic parameters (corresponding to local

concentration robustness and requiring fine-tuning of parameters). The former is denoted

as the invariant perturbation space of the network and can be algorithmically constructed

for any signaling network.

Our framework provides a counterpoint to the hypothesis that cellular function relies on an

extensive machinery to fine-tune or control intracellular parameters. Rather, our framework

suggests that there exists an appropriate topology that renders the network output insus-

ceptible to a given class of perturbations. Our framework draws upon and extends concepts

of (metabolic) control theory. The reader familiar with nonlinear control theory will dis-

cover some parallels to the concept of disturbance decoupling. Within this Supplementary

Information, we first outline our framework in more detail, point out pitfalls, and provide

additional examples. A mathematical rigorous treatment is given in Section IV.
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II. DETERMINATION OF THE INVARIANT PERTURBATION SPACE

A. Biochemical networks without conserved moieties

We first illustrate our concept using the special case of a biochemical network without con-

served moieties. The biochemical network is assumed to consist of m independent dynamic

state variables, x = (x1, ..., xm), whose temporal evolution is determined by a differential

equation of the form,

ẋ = N · v (1)

with v = (v1, ..., vk) a k-dimensional vector of reaction fluxes and N the stoichiometric

matrix. We require that the rank of the stoichiometric matrix equals the number of state

variables, rank(N ) = m, that is, N does not contain any linearly dependent rows. The

functional forms of the reaction fluxes v(x,p) describe the dependencies of reaction rates

on compound concentrations and parameters. The latter may include a set of signals that

represent the functional input of the system. At the most basic level, the rate equations are

given by generalized mass-action (GMA) kinetics of the form

vi(x) = ki

n∏

j=1

x
αij

j , (2)

with αij denoting the kinetic exponents that do not necessarily have to take integer values.

With respect to the state variables, we further distinguish between a set of output state

variables, defined as xA, and a set of intermediate state variables, xM. As the prerequisite

for robustness, we require that the output states are invariant under perturbations, that

is, ∆xA = 0, where ∆xA denotes the difference in the output variables after and before a

perturbation ∆pj on network parameters.

In the following, we assume the existence of a (not necessarily unique) asymptotically stable

stationary state xs with N · v(xs) = 0. We further assume that the functionality of the

network is encoded in the stationary dependence of the designated output variables, xA, on

a set of input parameters.

We expand the stationary form of the Eq. (1), N · vs = 0, with vs := v(xs), to linear order

in both the perturbations, ∆pj, that change network fluxes vs
i (pj) → vs

i (pj + ∆pj) and the

resulting changes in the state variables ∆x,

0 = N · diag(vs) ·
(
P · ∆p̂ + M · ∆x̂M + A · ∆x̂A

)
(3)
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with diag(vs) denoting a square matrix with entries vs on the diagonal and the expansion

coefficients

Pij :=
pj

vs
i

∂vs
i

∂pj

, Mij :=
xM

j

vs
i

∂vs
i

∂xM
j

, Aij :=
xA

j

vs
i

∂vs
i

∂xA
j

. (4)

The relative perturbations and its responses are defined as (∆p̂)i = ∆pi/pi, (∆x̂M)i =

∆xM
i /xM

i , and (∆x̂M)i = ∆xA
i /xA

i . We note that if the reaction fluxes follow the functional

form given in Eq. (2), the expansion coefficients are given by the constant kinetic coefficients

αij.

In the absence of the condition ∆x̂A = 0, the expansion Eq. (3) always has a unique

solution ∆x̂ that quantifies the local linear response to an infinitesimal perturbation in

parameters. The existence of the solution is guaranteed by the fact that the Jacobian of the

system is of full rank and hence invertible – a condition that is extensively utilized within,

for example, Metabolic Control Analysis [3, 7].

However, our requirement of robustness ∆x̂A = 0 removes those degrees of freedom that

correspond to (changes in) the output variables x̂A. As a consequence, only the set of

intermediate variables x̂M is able to compensate the perturbations. In this case, Eq. (3)

translates into the condition

N · diag(vs) · P · ∆p̂ = −N · diag(vs) · M · ∆x̂M . (5)

In general, Eq. (5) is overdetermined, that is, no solution exists, hence the condition ∆xA =

0 cannot be fulfilled. Eq. (5) has a unique solution ∆x̂M if and only if at least one of the

following two conditions holds: Either the columns of the matrix P are elements of the right

nullspace of the matrix N ·diag(vs), with N ·diag(vs) ·P = 0. Then, necessarily, ∆x̂M = 0.

Or, the columns of the matrix P are linearly dependent on the columns of the matrix M .

In mathematical terms, these two conditions can be summarized in the equation

rank(P |M |K) = rank(M |K) . (6)

Here, the columns of K span the right nullspace of N · diag(vs), such that

N · diag(vs) · K = 0. The notation (M |K) denotes a concatenation of the columns of the

matrices M and K. Equation (6) expresses the condition that each column vector of the

matrix P must be linearly dependent on the column vectors of (M |K).

We note that, considering again the full system in Eq. (3), the concatenated matrix

(A|M |K) is square and of full rank. This property again reflects the fact that there
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exists a local linear response in the systems variables for any local perturbation in the rate

equations – a consequence of the Jacobian being invertible. Conversely, the concatenation

(M |K) is not of full rank, hence Eq. (6) cannot be fulfilled for arbitrary perturbations.

However, if Eq. (6) is fulfilled, then the system indeed exhibits local concentration

robustness, as defined by ∆x̂A = 0. Here, we emphasize that the linear system Eq. (3) has

(locally) a unique solution. Hence, if a solution with ∆x̂M 6= 0 and ∆x̂A = 0 is identified

as a possible solution of the system, it necessarily corresponds to the only solution of the

linear perturbation problem.

In addition to the rank condition Equation (6) given above, an equivalent condition for

local concentration robustness can be stated in terms of linear vector spaces. To this end,

we denote by colsp P the column space of the matrix P , that is, the vector space that is

spanned by the columns of P . Further, we define by colsp(M |K) := colsp M + colsp K

the joint linear vector space spanned by the columns of M and K. An equivalent condition

to Eq. (6) is then given by demanding all column vectors of P to be elements of this

subspace colsp P ⊆ colsp(M |K). A special case is given by colsp P ⊂ colspK, that is a

perturbation vector that is a subset of the nullspace necessarily implies perfect robustness

of all state variables ∆x = 0 with respect to this perturbation. This fact is also known

from Metabolic Control Analysis.

As yet, the conditions for local concentration robustness were derived with respect to

infinitesimal perturbations at a particular state xs. In general, the matrices M and K

will depend on the particular state at which the expansion was performed – hence Eq. (6)

does not represent a sufficient condition for global robustness. In the following, as one of

the major achievement of our work, we will derive the architectural requirements on the

network that ensure that Eq. (6) is fulfilled independent of the particular stationary state,

hence the system allows for global concentration robustness in the face of perturbations

of large magnitude. Prior to this step, we briefly extend our analysis to networks that

incorporate mass-conservation relationships.
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B. Biochemical networks with conserved moieties

Most models of biochemical networks exhibit conserved moieties that usually arise from

an approximation of slowly changing components by constant quantities. In this case, the

system of differential equations for the independent state variables, x = (x1, ..., xm) is aug-

mented by a set of dependent state variables xD, whose values are determined by n mass

conservation equations. The full system of equations governing the time evolution of the

system is

ẋ = N · v
(
x,xD

)
(7)

xT = L · x + xD , (8)

with the vector xT = (xT
1 , xT

2 , ..., xT
n ) denoting the total concentration of each molecular

component. The matrix L has dimension n × m and the vector xD =
(
xD

1 , ..., xD
n

)
denotes

the state variables that are determined by the conservation equations. The differential form

of the mass conservation equations, Eq. (8), is given by ∆xD = −L · ∆x. With respect

to the independent state variables x we again distinguish between a set of intermediate

state variables xM and the output state variables xA each typically representing different

protein modification states or protein complexes. As above, we assume the output states

to be invariant under perturbations, hence ∆xA = 0, and expand the stationary form of

the Eq. (7) to linear order in both the perturbations ∆pj and the resulting changes on the

intermediate states ∆xM

0 = N · diag(vs) ·
(
P · ∆p̂ + D · ∆x̂D + MD · ∆x̂M

)
, (9)

with expansion coefficients

Pij =
pj

vs
i

∂vs
i

∂pj

, Dij =
xD

j

vs
i

∂vs
i

∂xD
j

∣
∣
∣
∣
∣
xM=const

, MD
ij =

xM
j

vs
i

∂vs
i

∂xM
j

∣
∣
∣
∣
∣
xD=const

. (10)

The relative perturbations and its responses are again defined as (∆p̂)i = ∆pi/pi, (∆x̂D)i =

∆xD
i /xD

i , and (∆x̂M)i = ∆xM
i /xM

i . We emphasize that the changes in states ∆x̂D are

entirely determined by changes in the intermediate states, ∆x̂M , via the differential mass

conservation equation. Consequently, the dependent state variables do not represent addi-

tional degrees of freedom within the system and are not able to compensate perturbations.
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Rather, the associated matrix D must be considered as indirect perturbations on the net-

work that are induced by changes ∆xM .

In mathematical terms, we can use the differential mass conservation relationship to substi-

tute changes in the dependent variables by changes in independent intermediate variables,

∆x̂D = −L′′∆x̂M , where L′′ denotes a scaled link matrix such that

L′′ = diag(xD)−1 · L′ · diag(xM) (11)

and L′ is obtained from L by removing those columns that correspond to output variables.

The condition for invariance of the output Eq. (6) can then be written as

rank(P |MD − D · L′′

︸ ︷︷ ︸

M

|K) = rank(MD − D · L′′

︸ ︷︷ ︸

M

|K). (12)

Eq. (12) is the generalized rank condition for local invariance of the output variables with

respect to infinitesimal perturbations. A general definition of the matrix M is thus given

by

M := MD − D · L′′ . (13)

In absence of conservation equations, L = 0, we obtain the identity M = MD and thus

recover our previous result Eq. (6).

As observed in Eq. (13), mass conservation relationships induce additional elements (de-

pendencies) in the matrix of partial derivatives – a consequence of the substitution of the

dependent variables within the kinetic rate equations.

We illustrate this point with a simple example. Consider a canonical two-component signal

transduction network in bacteria, e.g. the EnvZ/OmpR system, where the histidine kinase

with total concentration ZT gets autophosphorylated and transfers the phospho-group to

the response regulator. The response regulator, with total concentration RT , is in turn

dephosphorylated proportional to the phosphatase activity of the histidine kinase, which is

proportional to Z.

Z
v1→ Zp

R + Zp
v2→ Z + Rp

Rp + Z
v3→ R + Z

(14)
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The system of differential equations for the independent variables is given as

d

dt




ZP

Rp



 =




+1 −1 0

0 +1 −1





︸ ︷︷ ︸

N

·








k1 Z

k2 Zp R

k3 Z Rp








︸ ︷︷ ︸

v

. (15)

The reaction network further satisfies the conservation equations

ZT = Z + Zp

RT = R + Rp

−→ L =




1 0

0 1



 , (16)

using the assignments xT = (ZT , RT ), x = (Zp, Rp) and xD = (Z,R), and assuming Rp as

the output variable of the pathway.

Utilizing the definitions given above, we then obtain

MD =











Zp

v1 0

v2 1

v3 0











and L′′ =




Zp/Z

0



 , (17)

hence the matrix M is given as,

M =











Zp

v1 0

v2 1

v3 0











−











Z R

v1 1 0

v2 0 1

v3 1 0











·




−α

0





︸ ︷︷ ︸

L′′

=











Zp

v1 α

v2 1

v3 α











, (18)

using the definition α := −Zp/Z = −Zp/(Z
T − Zp). As compared to the situation without

mass conservation relationships the matrix M contains additional elements, corresponding

to the implicit dependencies of the dependent variables. For example consider the element

(M )1, with

(M )1 =
∂ ln ν1

∂ ln Zp

=
Zp

ν1

∂
(
k1(Z

T − Zp)
)

∂Zp

= −
Zp

Z
. (19)

In Section VIIA of this Supplementary Information we will consider two-component systems

and robustness against variation in total compound concentrations in more detail.
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C. From local to global robustness: The invariant perturbation space

The basis of our approach is the transition from local concentration robustness to a crite-

rion of global concentration robustness. In this respect, we require that the rank condition

for local concentration robustness is fulfilled at any stationary state and irrespective of the

kinetic parameters. Consequently, a perturbation that is large in magnitude may gradually

alter the stationary state of the system by affecting the set of intermediate variables xM

– however, the stationary concentrations of the set of designated output variables xA are

not affected. We note that in the following, unless otherwise stated, we always assume that

the system gives rise to a globally stable steady state for all parameters. As a consequence,

we assume the Jacobian to be invertible at each point in state-space. For a more formal

treatment see also Section IV.

The condition for local concentration robustness is given by Eq. (6),

rank(P |M |K) = rank(M |K) . (20)

The task is to ascertain whether the equation is fulfilled independent of kinetic parameters.

To this end, we recall that the rank of a matrix is unchanged under elementary matrix

operations (EMO), which are: (i) the exchange of any two columns (rows), (ii) the multi-

plication of a column (row) by the same non-zero factor, (iii) the addition of an arbitrary

multiple of one column (row) to another. Utilizing a series of EMOs, we aim to remove

explicit parameter dependencies from Eq. (6), thus obtaining a global structural condition

for concentration robustness.

To exemplify the application of EMO we continue with the example, a canonical two-

component system, discussed in Eq. (14). In addition to the matrix M , defined above,

we construct the right nullspace K of the scaled stoichiometry, consisting of one column

vector K = (β β β)T , with β := (v1)
−1. We are interested in concentration robustness of

the output variable Rp with respect to a perturbation p that affects both conserved total

concentrations, ZT = ZT (p) and RT = RT (p). In this case, the perturbation vector reads

P =











P

v1 γ

v2 δ

v3 γ











(21)
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with γ := ∂ ln v1/∂ ln p = ∂ ln v3/∂ ln p, and δ := ∂ ln v2/∂ ln p (but see also subsequent

sections for introductory examples). The rank condition is therefore given as

rank











P Zp K

v1 γ α β

v2 δ 1 β

v3 γ α β











= rank











Zp K

v1 α β

v2 1 β

v3 α β











, (22)

with M and α defined above. A parameter-independent representation is obtained by EMO











P Zp K

v1 γ α β

v2 δ 1 β

v3 γ α β











EMO
−→








0 0 1

1 1 0

0 0 1


















Zp K

v1 α β

v2 1 β

v3 α β











EMO
−→








0 1

1 0

0 1








. (23)

Obviously, the columns of (M |K) span a two dimensional plane that does not change its

orientation in the three dimensional space under changes in vs, xM , and kinetic parameters

that enter the equations via the expressions for α, β, γ, and δ. Thus any vector P that

lies within this plane fulfills the rank condition. In the example considered here the vector

P = (γ δ γ)T lies in the plane spanned by column vectors (0 1 0)T and (1 0 1)T .

Since the rank condition is fulfilled irrespective of the stationary state and kinetic pa-

rameters, the stationary network output, the variable Rp is globally robust with respect to P .

However, in general not all dependencies on the stationary state of the matrix (M |K)

can be removed by elementary matrix operations (EMO). We therefore define by I the space

spanned by the largest possible set of parameter independent column vectors of (M |K),

I = colsp(M ′|K ′) (24)

with (M ′|K ′) a reduced, maximally parameter free representation. We call I the invariant

perturbation space. The invariant perturbation space contains exclusively structural infor-

mation of a reaction network. Our approach therefore allows to separate the structural from

fine tuned network properties. In terms of robustness – as defined in this work – this means

that any perturbations P of the reaction fluxes that lie entirely in the invariant subspace

result in an invariant system output. If we define by (P ′|M ′|K ′) the matrix resulting from
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(P |M |K) after appropriate elementary matrix operations, then

colsp P ′ ⊆ I (25)

is a sufficient condition for structural robustness. For a rigorous definition see Section IV.

D. Modelling biochemical reaction networks

Our approach relies on an interpretation of the network structure in terms of the logarith-

mic partial derivatives of the kinetic rate equations. In particular, we utilize the fact that

the logarithmic partial derivatives are – for certain kinetic functions – a genuine structural

property of a reaction network.

At the most basic level kinetic rate equations are given by generalized mass-action functions

of the form

vi(x) = ki

n∏

j=1

x
αij

j , (26)

with the partial logarithmic derivatives given by

∂ ln vi

∂ ln xj

=
xj

vi

∂vi

∂xj

= αij and
∂ ln vi

∂ ln ki

=
ki

vi

∂vi

∂ki

= 1 . (27)

The partial logarithmic derivatives, corresponding the scaled elasticities of Metabolic Con-

trol Analysis (MCA), are restricted to constant (usually integer) values – corresponding to

the kinetic order of each reaction with respect to its substrates.

We emphasize that many deterministic biochemical reaction networks can be described at

the level of mass-action kinetics, such that all reaction equations comply with the functional

form given above. In this case, and in the absence of mass conservation relationships, the

columns of M are invariant under changes in rate constants and therefore already represent

global structural properties of the reaction network.

However, sometimes the computational description of biochemical networks requires nonlin-

ear equations – usually arising from approximations by rapid equilibrium or quasi steady

state assumptions. In this case, the respective logarithmic partial derivatives are dependent

on kinetic parameters and may take different values for different stationary states of the

system. For example, for a generic Michaelis-Menten equation,

v(x) =
Vmx

KM + x
, (28)
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we obtain
∂ ln v

∂ ln x
=

x

v

∂v

∂x
=

KM

KM + x
≤ 1 . (29)

In this case the partial logarithmic partial derivative is a non-constant quantity that

explicitly depends on kinetic parameters, as well as on the stationary state of the system.

Nonetheless, our framework is also applicable in this case – as shown in the previous sections.

We note that the requirements for a given network to exhibit global concentration robust-

ness depends to some extend on the interpretation of the logarithmic partial derivative. In

particular, we can distinguish between two scenarios with respect to the interpretation of the

logarithmic partial derivatives. Within the most strict assessment of global concentration

robustness, we can assume that all partial derivatives are unknown and possibly variable

quantities. This assumptions then also extend to generalized mass-action kinetics, such that

respective logarithmic partial derivatives are not necessarily assumed to be constant quanti-

ties. In this case, the system exhibits concentration robustness also in the face of deviations

from mass-action kinetics.

However, within a less stringent scenario – usually adopted within this work – we assume

that the partial derivatives of mass-action rates are constant quantities that are part of the

topology of the respective network. In this case, global concentration robustness may not

be guaranteed for possible deviations from the assumed exponents.

We emphasize that the distinction described here does not affect or restrict the application

of our framework to any actual topology – but rather it highlights that different assump-

tions on the nature of the rate equations may lead to different results with respect to global

concentration robustness. See also Section IV for further analysis.
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III. APPLICATION OF THE FORMALISM TO A SIMPLE REACTION NET-

WORK

To exemplify our formalism, we consider a simple example for output invariance, as shown

in Fig. 1 of the main text. Here, an output variable a is subject to slow perturbations P in

its synthesis rate. Rather than fine-tuning the value of p, we look for conditions, such that

an intermediate variable m compensates perturbations and ensures perfect robustness with

respect to the perturbation. The pathway is described by differential equations of the form

d

dt




a

m



 =




+1 −1 0 0

0 0 +1 −1





︸ ︷︷ ︸

N

·










v+a(p)

v−a(a,m)

v+m(a)

v−m










︸ ︷︷ ︸

v

. (30)

In the following, we require the system of differential equations to be well-defined, that is,

all rate equations comply with basic assumptions about biochemical rate equations and the

system gives rise to a positive steady state for any value of the perturbation P . Apart

from these basic requirements, our method does not require to further specify the precise

functional dependencies of the rate equations.

As depicted in Fig. 1 of the main text, the perturbation p acts on the rate v+a with an

(unspecified) nonlinear dependency v+a = v+a(p). The elements of the perturbation vector

P are defined as the logarithmic partial derivatives of the rate equations with respect to the

perturbation. We use the abbreviation η := ∂ ln v+a/∂ ln p and obtain

P =










η

0

0

0










. (31)

We emphasize that our analysis does not require knowledge of the precise value of η, which

usually depends on the specific functional form of the rate equations, the kinetic parameters,

and the strength of the perturbation.

To obtain a condition for perfect robustness of the variable a with respect to variations in

p, we follow the steps described in the main text. First, we determine the basis vectors of
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the nullspace of N · diag(vs). In practice any linear algebra software can be employed, such

as the built-in function null(N) in matlab (The MathWorks). These basis vectors form

the columns of the matrix K. For the simple example, Eq. (30), the space spanned by the

columns of K is given by

K = diag(vs) KN =










δ1 0

δ1 0

0 δ2

0 δ2










. (32)

with δ1 = (vs
1)

−1 = (vs
2)

−1 and δ2 = (vs
3)

−1 = (vs
4)

−1.

Next, we consider the matrix M , with elements corresponding to the logarithmic partial

derivatives of the rate equations with respect to the variable m. With the abbreviation

β := ∂ ln v−a/∂ ln m, evaluated at the stationary state, we obtain

M =










0

β

0

0










. (33)

We note that here the reactions v±m do only depend on the output variable a and not on

the variable m – a well-known prerequisite for perfect adaptation. Finally, we can assemble

the invariant subspace, I = col(M ′|K ′), using elementary matrix operations (EMO)

(M |K) =










0 δ1 0

β δ1 0

0 0 δ2

0 0 δ2










EMO
−→ (M ′|K′) =










0 1 0

1 1 0

0 0 1

0 0 1










. (34)

A parameter-independent representation I of the invariant perturbation space I is given by

I =










1 1 1

1 1 0

1 0 0

1 0 0










. (35)

In general the matrix representation I of the invariant perturbation space is not unique.

Any perturbation vector, P , that is element of the invariant perturbation space does not
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affect the stationary output of the system. Output invariance is tested by the rank condition,

rank(P |I) = rank(I), that reads – after performing elementary matrix operations to remove

the unknown functional dependencies – as

rank










1 1 1 1

0 1 1 0

0 1 0 0

0 1 0 0










= rank










1 1 1

1 1 0

1 0 0

1 0 0










, (36)

The rank condition shows that the condition for global robustness of the output variable, a,

is fulfilled. The example implements an integral feedback mechanism to realize a perfectly

adapting reaction system. Here, the intermediate variable m acts as the ’integrator’, with

the crucial requirement that the rate of change of m is independent of the variable m

itself. In our example, this implies that the rates v±m do not depend on the variable m (or,

equivalently, that the dependence is with the same order) – otherwise perfect robustness

cannot be achieved.

Indeed, we can give a counterexample to robust behavior if we assume that the degradation

rate v−m = v−m(m) is a function of m. In this case, Eq. (33) is modified and now reads

M =










0

β

0

γ










, (37)

with γ := ∂ ln v−m/∂ ln m denoting the unknown nonzero derivative. We obtain

(M |K) =










0 δ1 0

β δ1 0

0 0 δ2

γ 0 δ2










. (38)

Since β and γ are both unknown and variable quantities, a parameter-independent repre-

sentation I of the invariant perturbation space is restricted to two dimensions,

I =










1 1

1 1

1 0

1 0










. (39)
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In this case, the rank condition does not hold,

rank










1 1 1

0 1 1

0 1 0

0 1 0










6= rank










1 1

1 1

1 0

1 0










, (40)

therefore the variable a does not exhibit global robustness.
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IV. FORMAL DERIVATION OF THE CONCENTRATION ROBUSTNESS CON-

DITION

A. Notation

In this section, we provide a rigorous mathematical derivation of the conditions for local

and global concentration robustness as obtained in Section II of the SI. Thereby, we consider

biochemical network models with conserved moieties, and with reaction rates that may be

a mixture of generalized mass action (GMA) with fixed exponents and arbitrary elements.

First, in Section IV B, we derive the previously described rank condition as sufficient and

necessary condition for local concentration robustness. Then, in Section IV C, to deal with

the problem of global concentration robustness, we define the invariant perturbation space

such that it is independent of the network’s parameters and the non-GMA part of the

reaction kinetics. Based on this definition, we derive a sufficient and (in a structural sense)

necessary condition for global concentration robustness.

For ease of notation, we will restrict this section to a scalar perturbation. However, this

is not a restriction of generality: if multiple perturbations are present, the condition can be

evaluated for each perturbation individually, and the network is robust against combined

perturbations if and only if it is robust against each perturbation individually.

The image of a matrix A is denoted by im A, its kernel by ker A. A diagonal matrix with

diagonal entries taken from the components of a vector a is denoted by dg a. The sum of

two subspaces W1 and W2 of R
n is defined by

W1 + W2 = {w1 + w2 | w1 ∈ W1, w2 ∈ W2}. (41)

A biochemical network model with conserved moieties is given by the differential algebraic

equations

ẋ = Nv(x, xD, p)

xT (p) = Lx + xD.
(42)

Thereby, x ∈ R
m is the vector of independent concentrations, N ∈ R

m×k the stoichiometric

matrix, and v the reaction rate vector. For the conserved moieties, we have xT ∈ R
n as the

vector of total concentrations, while xD is the vector of dependent state variables, related to

the independent state variables x via the link matrix L ∈ R
n×m [3]. We consider the effect

of a perturbation to the network via the variable p ∈ R, which is element of a connected and
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open set P ⊂ R. Note that we have explicitly accounted for the possibility that the vector of

total concentrations xT may depend on the perturbation variable p. The model (42) can be

transformed to an equivalent differential equation by substituting the dependent variables,

yielding

ẋ = Nv(x, xT (p) − Lx, p). (43)

The species vector x is split into output variables and intermediate variables by writing

x =




xA

xM



 , (44)

where xA ∈ R
mA

are the output variables and xM ∈ R
mM

are the intermediate variables.

According to this splitting, we introduce the matrices JA, JM ∈ R
m×m given by

JA =




ImA 0

0 0



 JM =




0 0

0 ImM



 , (45)

where Im is the identity matrix of dimension m, yielding



0

xM



 = JMx and




xA

0



 = JAx. (46)

We assume throughout that there exists a perturbation-dependent positive steady state

in the independent variables x, given by a function xs : R → R
m
+ , such that

Nv(xs(p), xT (p) − Lxs(p), p) = 0. (47)

The steady state map for the dependent state variables is defined as

xD
s (p) := xT (p) − Lxs(p). (48)

For ease of notation, we define

v̄(p) := v(xs(p), xD
s (p), p) (49)

as a shortcut for the steady state reaction rates.

Throughout this section, we assume that the steady state xs(p) is asymptotically stable

for all p ∈ P. Note that this implies that the Jacobian of the right hand side of (43) in

steady state,

N
∂v

∂x
(xs(p), xD

s (p), p) − N
∂v

∂xD
(xs(p), xD

s (p), p)L (50)

is invertible for each p ∈ P.
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B. Local concentration robustness

Local concentration robustness at a perturbation value p is defined as the property that

the derivative of the steady state output variables xA
s with respect to the perturbation is

equal to zero at p. The formal definition is given as follows.

Definition 1. The network (42) is said to have local concentration robustness at p ∈ P, if

JAx′

s(p) = 0. (51)

In order to derive a necessary and sufficient condition for local concentration robustness,

we introduce the following matrices:

P (p) = (dg v̄(p))−1
(∂v

∂p
(xs(p), xD

s (p), p) +
∂v

∂xD
(xs(p), xD

s (p), p)
∂xT

∂p
(p)

)

p

Q(p) = (dg v̄(p))−1 ∂v

∂x
(xs(p), p) dg xs(p)

D(p) = (dg v̄(p))−1 ∂v

∂xD
(xs(p), p) dg xD

s (p)(dg xD
s (p))−1L dg xs(p)

M(p) = (Q(p) − D(p))JM .

(52)

With these definitions, we next introduce the invariant perturbation space, a central

network characteristic for concentration robustness. In words, the invariant perturbation

space is the vector space of all infinitesimal directions in which perturbations can act on the

steady state reaction rates without affecting the concentration values in steady state. The

formal definition makes use of the matrices defined in (52) and is given as follows.

Definition 2. The space

I(p) = im M(p) + ker(N dg v̄(p)). (53)

is called the local invariant perturbation space of the network (42) at p.

We then have the following result as a condition for local concentration robustness of

network (42).

Theorem 1. The network (42) has local concentration robustness at p ∈ P, if and only if

P (p) ∈ I(p). (54)
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Proof. First, from differentiating the steady state equation (47) with respect to p we obtain

N
∂v

∂x
(xs(p), xD

s (p), p)x′

s(p)+N
∂v

∂xD
(xs(p), xD

s (p), p)
(∂xT

∂p
(p)−Lx′

s(p)
)
+N

∂v

∂p
(xs(p), xD

s (p), p) = 0.

(55)

We denote

H(p) = (dg xs(p))−1x′

s(p)p

and observe that JAx′

s(p) = 0 if and only if JAH(p) = 0. With the definitions from (52),

(55) is equivalent to

N dg v̄(p)
(
(Q(p) − D(p))H(p) + P (p)

)
= 0. (56)

Making use of the fact that JA + JM = I, we rewrite (56) as

N dg v̄(p)
(
(Q(p) − D(p))JAH(p) + M(p)H(p) + P (p)

)
= 0. (57)

Necessity. Under the condition that JAH(p) = 0, we find that

N dg v̄(p)M(p)H(p) = −N dg v̄(p)P (p). (58)

All P (p) which solve this equation are given by

P (p) = −M(p)H(p) + a1, (59)

with a1 ∈ ker(N dg v̄(p)), which implies (54).

Sufficiency. The condition (54) implies that we can write P (p) as

P (p) = a1 +
(
Q(p) − D(p)

)
a2, (60)

with a1 ∈ ker(N dg v̄(p)) and a2 ∈ im JM . Thus, one particular H(p) which solves (56) is

such that

JAH(p) = 0

JMH(p) = −a2.
(61)

Since the Jacobian (50) is invertible, (56) has a unique solution H(p) for each P (p), which

is given by (61). This proves local concentration robustness.
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C. Global concentration robustness

In the next step, we turn to the property of global concentration robustness. Essentially,

a network is said to have global concentration robustness if the output variables xA in

steady state are constant over the perturbation set P . In addition, we are interested in a

characterization of global concentration robustness which is given by the network structure

alone, and does not depend on exact parameter values and specific functions, for example

Michaelis-Menten or Hill kinetics, for generic reaction rates.

To this end, we separate reaction rates into a mass action and a generic part. Thereby, the

characterization of global concentration robustness should not depend on the rate constants

of the mass action part nor the exact choice of mathematical function of the generic part.

However, the characterization may depend on the interaction structure of the network,

i.e. which concentrations affect which reaction rate, and the stoichiometric coefficients of

the mass action part entering the reaction rate expression as exponents, which are both

attributed to the structure of the reaction network. Thus, in the following, the reaction rate

vector v is assumed to be composed by elements of the form

vi(x, xD, p) = Φi(x, xD, p)
m∏

j=1

x
aij

j

n∏

j=1

(xD
j )aD

ij , (62)

with i = 1, . . . , k, where Φi represents the generic part of the reaction rate and also includes

the rate constant for the mass action part, and the rest represent the concentration dependent

terms in the mass action part, with stoichiometric coefficients aij and aD
ij .

Before considering global concentration robustness, we first introduce the weaker notion

of concentration invariance, i.e. the property that the output concentrations are constant

over P , but not necessarily independent of network parameter values and choice of generic

reaction rate expressions.

Definition 3. The network (42) is said to have global concentration invariance, if xA
s (p) =

x̄A
s , a constant value, for all p ∈ P.

Corollary 1. The network (42) has global concentration invariance, if and only if

P (p) ∈ I(p) (63)

for all p ∈ P.
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Proof. Since P is connected and xs is assumed to be a continuously differentiable function

over P , the condition that xA
s (p) is constant over P is equivalent to

JAx′

s(p) = 0 (64)

for all p ∈ P. Then, the result is a direct consequence of Theorem 1: if (63) is satisfied, The-

orem 1 assures that (64) holds for any p ∈ P, thus we have global concentration invariance.

Conversely, if P (p̃) /∈ I(p̃) for some p̃ ∈ P, then by Theorem 1 it follows that JAx′

s(p̃) 6= 0,

and thus xA
s (p) is not constant over P .

We call (63) the rank condition for global invariance, since it can be tested numerically

by checking that rank(P (p)|I(p)) = rank I(p), where I(p) is a matrix whose columns span

the space I(p).

Next, we turn to the property of global concentration robustness. Note that concentration

invariance usually depends on the exact values of parameters, e.g. reaction rate constants ki,

in the network model, i.e. a network may have global concentration invariance for one set of

parameter values, but not for another set of parameter values. By the term global concentra-

tion robustness, we denote the property that a network has global concentration invariance

independently of parameter values. As a consequence, if a network has global concentration

robustness, all networks of the same structure, but potentially different parameter values,

have global concentration invariance (and robustness).

Concerning the mass action part of the reaction rates, the interaction structure of the

network is characterized by which stoichiometric coefficients are equal to zero. For the

further steps, a similar notion is also needed for the generic part of the reaction rates, and

is given by the following definition.

Definition 4. Two vector valued functions Φ, Φ̃ : R
q → R

k : y 7→ Φ(y), Φ̃(y) are said to be

structurally equivalent, if

∂Φi

∂yj

= 0 ⇔
∂Φ̃i

∂yj

= 0 (65)

for all i = 1, . . . , k and j = 1, . . . , q.

In the following, we will frequently consider a biochemical network with the same species

vectors x and xD as well as the same stoichiometric matrix N and link matrix L as the

original network (42), but with potentially different reaction rates and a different vector of
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total concentrations. This network is described by the equation

ẋ = Nṽ(x, xD, p)

x̃T (p) = Lx + xD,
(66)

where ṽ has elements given by

ṽi(x, xD, p) = Φ̃i(x, xD, p)
m∏

j=1

x
aij

j

n∏

j=1

(xD
j )aD

ij . (67)

The formal definition for global concentration robustness is as follows.

Definition 5. The network (42) is said to have global concentration robustness, if all net-

works of the form (66), where Φ̃ and x̃T are structurally equivalent to Φ and xT , respectively,

have global concentration invariance.

In what follows, we will derive a necessary and sufficient condition for global concentration

robustness based on the rank condition established above for global concentration invariance.

First, the following technical definition for structural properties of a function Φ is intro-

duced.

Definition 6. Given a matrix ϕ ∈ R
k×m and a function Φ : R

m → R
k, write ϕ ∈ S(∂Φ

∂x
) if

ϕij = 0 ⇔
∂Φi

∂xj

= 0 (68)

for all i, j.

The result on global concentration robustness uses the two matrices M and P defined as

follows, which depend on matrices ϕx ∈ R
k×m, ϕxD ∈ R

k×n, ϕxT ∈ R
n, ϕp ∈ R

k, and vectors

x ∈ R
m
+ , xD ∈ R

n
+.

M(ϕx, ϕxD , xD, x) = (ϕx + A − (ϕxD + AD)(dg xD)−1L dg x)JM

P (ϕxD , ϕxT , ϕp) = (ϕxD + AD)ϕxT + ϕp

(69)

Theorem 2. The network (42) has global concentration robustness, if and only if for all

α ∈ ker N , ϕx ∈ S(∂Φ
∂x

), ϕxD ∈ S( ∂Φ
∂xD ), ϕxT ∈ S(∂xT

∂p
), ϕp ∈ S(∂Φ

∂p
), x ∈ R

m
+ , and xD ∈ R

n
+

such that Lx + xD > 0

P (ϕxD , ϕxT , ϕp) ∈ im M(ϕx, ϕxD , xD, x) + ker(N dg α). (70)
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Proof. Sufficiency: Consider a network given by the equations (66) with reaction rates as

in (67), where Φ̃ and x̃T are structurally equivalent to Φ and xT , respectively. Let xs(p)

and xD
s (p) be steady state concentrations of this network and v̄(p) the corresponding steady

state reaction rates. Define Φ̄(p) = Φ̃(xs(p), xD
s (p), p). Also define the following matrices:

ϕp = (dg Φ̄(p))−1∂Φ̃

∂p
(xs(p), xD

s (p), p)p

ϕx = (dg Φ̄(p))−1∂Φ̃

∂x
(xs(p), xD

s (p), p) dg xs(p)

ϕxD = (dg Φ̄(p))−1 ∂Φ̃

∂xD
(xs(p), xD

s (p), p) dg xD
s (p)

ϕxT = (dg xD
s (p))−1∂x̃T

∂p
(p)p,

(71)

and note that ϕp ∈ S(∂Φ
∂p

), ϕx ∈ S(∂Φ
∂x

), ϕxD ∈ S( ∂Φ
∂xD ), and ϕxT ∈ S(∂xT

∂p
). The matrices P ,

Q, D, and M from (52) for the network (66) are computed as follows:

P (p) = ϕp + (AD + ϕxD)ϕxT

Q(p) = A + ϕx

D(p) = AD + ϕxD

M(p) =
(
A + ϕx − (AD + ϕxD)(dg xD

s (p))−1L dg xs(p)
)
JM .

(72)

The condition P (ϕxD , ϕxT , ϕp) ∈ im M(ϕx, ϕxD , xD, x) + ker(N dg α) implies that

P (p) ∈ im M(p) + ker(N dg v̄(p)), (73)

for all p ∈ P, implying that the network (66) has global concentration invariance. Thus, by

Definition 5, the network (42) has global concentration robustness.

Necessity: Assume that the condition P (ϕxD , ϕxT , ϕp) ∈ im M(ϕx, ϕxD , xD, x) +

ker(N dg α) is not satisfied for some α ∈ ker N , x̃ ∈ R
m
+ , x̃D ∈ R

n
+ with Lx̃ + x̃D > 0,

and matrices ϕx ∈ S(∂Φ
∂x

), ϕxD ∈ S( ∂Φ
∂xD ), ϕxT ∈ S(∂xT

∂p
), and ϕp ∈ S(∂Φ

∂p
):

P (ϕxD , ϕxT , ϕp) /∈ im M(ϕx, ϕxD , x̃D, x̃) + ker(N dg α), (74)

Next, consider the network (66) with reaction rates as in (67), where Φ̃ is chosen as

Φ̃i(x, xD, p) = k̃i

m∏

j=1

x
(ϕx)ij

j

n∏

j=1

(xD)(ϕ
xD )ijp(ϕp)ij . (75)
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Choose any p̃ ∈ P and let

k̃i = αi

m∏

j=1

x̃
−aij−(ϕx)ij

j

n∏

j=1

(x̃D)−aD
ij−(ϕ

xD )ij p̃−(ϕp)ij , (76)

for i = 1, . . . , k. Furthermore, define

ϕ̄xT = dg x̃D(dg(Lx̃ + x̃D))−1ϕxT , (77)

and let

x̃T
i (p) = (Lx̃ + x̃D)ip̃

−(ϕ̄
xT )ip(ϕ̄

xT )i , (78)

for i = 1, . . . , n. Note that Φ̃ and Φ as well as x̃T and xT are structurally equivalent due to

the structural constraints on the matrices ϕx, ϕxT , ϕp, and ϕxT . With the definition of k̃i in

(76), ṽ(x̃, x̃D, p̃) = α. Then, since α ∈ ker N , and also x̃T (p̃) = Lx̃ + x̃D, the network (66)

with Φ̃, x̃T as just defined has a steady state given by

xs(p̃) = x̃

xD
s (p̃) = x̃D.

(79)

and steady state reaction rates

v̄(p̃) = α. (80)

It remains to show that (66) does not have local concentration robustness at the per-

turbation p̃. The matrices P and M defined in (52) are computed for the network (66) as

follows:

P (p̃) = ϕp + (AD + ϕxD)ϕxT

M(p̃) = (A + ϕx − (AD + ϕxD)(dg x̃D)−1L dg x̃)JM

(81)

Thus, from condition (74), we find that

P (p̃) /∈ im M(p̃) + ker(N dg v̄(p̃)), (82)

implying that the network (66) does not have local concentration robustness at p̃. Thus, by

Definition 5, the network (42) does not have global concentration robustness.

Note that the condition (70) can again be rephrased as the rank condition rank(P |I) =

rank I, where I is a matrix whose columns span the space imM + ker(N dg α).
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V. ROBUSTNESS OF THE ESCHERICHIA COLI CHEMOTAXIS PATHWAY

From the stationary equations of the reaction rates, given in Materials and Methods of

the main text, we determine the logarithmic expansion coefficients for the state variables

M and the perturbations P . In the following only nonzero coefficients are considered and

the results are summarized in Table I.

We make use of Kronecker’s delta, defined by δij = 1 for i = j and zero otherwise. If

perturbations act on individual components we arrive at

∂ ln vi

∂ ln RT
= δi1 (83)

∂ ln vi

∂ ln BT
= δi3 (84)

∂ ln vi

∂ ln Y T
= −δi3 (85)

∂ ln vi

∂ ln ZT
= δi6 (86)

∂ ln vi

∂ ln AT
= (δi3 + δi5)

∂ ln Ac

∂ ln AT
︸ ︷︷ ︸

β1

(87)

∂ ln vi

∂ ln W T
= (δi3 + δi5)

∂ ln Ac

∂ ln W T
︸ ︷︷ ︸

β2

(88)

∂ ln vi

∂ ln T
= (δi3 + δi5)

∂ ln Ac

∂ ln T
︸ ︷︷ ︸

β3

−δi1 − δi2 (89)

∂ ln vi

∂ ln[ATP ]
= (δi3 + δi5)

∂ ln kA(ATP)

∂ ln[ATP ]
︸ ︷︷ ︸

δ

(90)

∂ ln vi

∂ ln L
= (δi3 + δi5)

∂ ln P s

∂ ln L
︸ ︷︷ ︸

α2

(91)

∂ ln vi

∂ ln mRNAmocha

=
∂ ln vi

∂ ln RT
+

∂ ln vi

∂ ln BT
+

∂ ln vi

∂ ln Y T
+

∂ ln vi

∂ ln ZT
(92)

which results in the matrix shown in Fig. 2 of the main text.

The non-zero entries of M are given by

∂ ln vi

∂ ln Bp
= δi2 + δi4 (93)

∂ ln vi

∂ ln m
= (δi3 + δi5)

∂ ln P s

∂ ln m
︸ ︷︷ ︸

α1

. (94)
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TABLE I: The logarithmic expansion coefficients reflecting the matrix (A|M |P (1)|P (2)). Note

that the rate equations contain nonlinear functions kA = kA(ATP), P s = P s(m, L) and Ac =

Ac(AT , W T , T ). Lowercase Greek letters denote the logarithmic expansion coefficients that arise

from (unspecified) nonlinear dependencies. We emphasize that, though in this case the precise

functional dependencies are known, our framework does not require to specify the exact functional

form of the dependencies.

Yp m Bp L AT W T T ATP RT BT Y T ZT

v1 = kR RT /T 0 0 0 0 0 0 -1 0 1 0 0 0

v2 = kB Bp/T 0 0 1 0 0 0 -1 0 0 0 0 0

v3 = kA Ac P s KY

KB

BT

Y T
0 α1 0 α2 β1 β2 β3 δ 0 1 −1 0

v4 = γB Bp 0 0 1 0 0 0 0 0 0 0 0 0

v5 = kA Ac P s 0 α1 0 α2 β1 β2 β3 δ 0 0 0 0

v6 = kZ ZT Yp

KZ + Yp
η 0 0 0 0 0 0 0 0 0 0 1

As demonstrated in the main text, the specific topological organization, with kinetic depen-

dencies summarized in Table I, allows the output of the chemotactic pathway to be robust

against diverse perturbations that would otherwise impede the functionality of the network.

As can easily be ascertained in Table I each perturbation corresponding to the columns of

P (1) is an element of the invariant perturbation space. In contrast to this, perturbations

corresponding to the columns of P (2) are not within the invariant perturbation space, hence

the pathway is not robust against fluctuations in these components. However, the organiza-

tion of the pathway ensures that the pathway is indeed robust against concerted fluctuations

in these components. See main text for details.

We emphasize that the uncovered design principle of the chemotaxis pathway is in contrast

to the more straightforward possibility to utilize an extensive cellular machinery to ’fine-

tune’ quantities that appear as parameters in the equations, such as protein concentrations

or ATP availability. We further note that the robustness requires some logarithmic deriva-

tives to attain specific values, as encoded for example by mass-action kinetics, while other

functional dependencies may remain unspecified.
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VI. MATERIALS AND METHODS

A. Bacterial strains and plasmids

VS104 [∆(cheYcheZ)] and LL4 [∆(cheYcheZ)∆flgM] strains used in this study were de-

rived from a wild-type chemotaxis strain RP437 using pAMPts homologous recombination

system of allele exchange as described before [11]. Plasmid pVS88 encodes CheY-YFP and

CheZ-CFP fusion proteins transcribed as one bicistronic mRNA from the pTrc promoter

inducible by isopropyl β-D-thiogalactoside (IPTG) [13].

B. Growth conditions

All strains were grown under standard chemotaxis conditions [11, 13] at 34C in a rotary

shaker to mid-exponential phase (OD600 ≈ 0.48) in tryptone broth (TB) supplemented with

100µg/ml ampicillin and indicated amounts of IPTG.

C. FRET measurements

Cell preparation, FRET measurements and evaluation of FRET data were performed as

described previously [12, 14] on a custom-modified Zeiss Axiovert 200 microscope.

D. Quantification of gene expression

Expression of fluorescent reporter proteins in individual cells was quantified as described

before [5] using fluorescence imaging on an AxioImager fluorescence microscope equipped

with an ORCA AG CCD camera (Hamamatsu).

E. Note on Figure 4B

Measurements of kinase activity upon stimulation by CheZ-CFP/CheY-YFP FRET in a

CheY/CheZ deleted strain (VS104; black line) and a strain with additional deletion of the

anti-sigma factor flgM (LL4; red line), where the latter results in an approximately seven

fold upregulated transcriptional activity of the pathway proteins, including mocha, meche
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operons and chemoreceptors. As the FRET pair is expressed from plasmid, a shift in the

adapted kinase activity occurs upon upregulation of pathway proteins. This shift is correct

by employing measurements of the flagellar rotation bias in a wild type strain and a flgM

deleted strain (CheY and CheZ native), where it has been shown that in both strains the

adapted kinase activities are equal [5]. The resulting rescaled kinase activity is shown in

Fig. 4B.
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VII. FURTHER APPLICATIONS

A. Two-component systems and implications for synthetic biology

One of the merits of our approach is to guide the design of perfectly robust signaling

circuits – with important implications for synthetic biology. To exemplify the construction

of robust signalling networks, we briefly consider instances of two-component signal trans-

duction systems. Bacterial two-component systems typically consist of a membrane-bound

sensor kinase that senses a specific stimulus and a cognate response regulator that modu-

lates the signal response. The robustness of individual bacterial two-component system with

respect to concentration fluctuations was investigated previously [2, 9].

Recently, Skerker et al. [10] described a method that allows for the rational rewiring of

the specificity of two-component systems. Such rational design of the output responses of

two-component systems is a major step forward in the design of protein-based synthetic

pathways, with exciting potential applications in synthetic biology and biotechnology [4].

However, the rational design of two-component systems will also necessitate to engineer ro-

bustness of the rewired pathways with respect to possible detrimental fluctuations – taking

into account that synthetic circuits are not a product of evolution. In this respect, of par-

ticular importance are fluctuations in compound concentrations that arise from stochastic

variations in transcription and translation, as well as from other sources, such as variations

in division. In fact, it seems highly desirable to implement any altered topology such that

the expression of the individual proteins has no effect on the (rationally designed) input-

output relationship of the network. In this case, the only requirement for the method of

Skerker et al. [10] to generate perfectly robustness networks is a sufficiently high expression

of any of the involved proteins – without the need to fine-tune any of the precise expression

levels.

Our framework is able to straightforwardly account for the mechanisms of robustness of

such (networks of) two-component systems. In Fig. 1 two variants of a prototypical two-

component system are shown, each consisting only of three reactions: the autophosphory-

lation of a sensor histidine kinase (H), the transfer of the phosphoryl group to a response

regulator (R), and the subsequent dephosphorylation of R. Neglecting complex formation

(but see below for the full solution), the system is described by the two differential equations
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FIG. 1: Robustness of two-component systems. We consider three simplified reactions, autophos-

phorylation of a sensor histidine kinase (H), transfer of the phosphoryl group to a response regulator

(R), and dephosphorylation of R. (A) The prototypical two-component system. (B) A modified

topology with a bifunctional histidine kinase, such that the unphosphorylated kinase acts as a

phosphatase for the response regulator.

for the independent state variables, HP and RP ,

d

dt




HP

RP



 =




1 −1 0

0 1 −1





︸ ︷︷ ︸

N

·








ν1

ν2

ν3








(95)

and the mass conservation relationship




HT

RT



 =




1 0

0 1





︸ ︷︷ ︸

L




HP

RP



 +




H

R



 . (96)

Both topologies only differ in kinetic dependencies of the rate equations, specifically

νA =








k1 · S · H

k2 · HP · R

k3 · RP








and νB =








k1 · S · H

k2 · HP · R

k3 · RP · H








(97)

for the systems shown in Figs. 1A and 1B, respectively. The right nullspace of the scaled

stoichiometry is identical for both systems and can be represented by a matrix K that solely

consist of the 1-vector (here the column has already been normalized to remove dependencies
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on the stationary flux distribution).

We aim to test for invariance of the pathway output – the phosphorylated response regulator

(RP ) – with respect to variations in total component concentrations HT and RT . We proceed

as described in Sections II.B and II.C.

We start with the topology shown in Fig. 1A. In this case, the matrices of logarithmic partial

derivatives are given as

MD =











Hp

v1 0

v2 1

v3 0











and D =











H R

v1 1 0

v2 0 1

v3 0 0











, (98)

resulting in a matrix M defined as (see Section II.B)

M =











Hp

v1 0

v2 1

v3 0











−











H R

v1 1 0

v2 0 1

v3 0 0











·




−α

0





︸ ︷︷ ︸

L′′

=











Hp

v1 α

v2 1

v3 0











, (99)

where α = −Hp/H. The perturbation vectors with respect to the total concentrations HT

and RT are given as

PH =











HT

v1 γH

v2 0

v3 0











and PR =











RT

v1 0

v2 γR

v3 0











, (100)

with γH := ∂ ln ν1/∂ ln HT and γR := ∂ ln ν2/∂ ln RT .

The rank condition for global concentration robustness with respect to the total concentra-

tion of the histidine kinase (HT ) therefore reads

rank








γH α 1

0 1 1

0 0 1








?
= rank








α 1

1 1

0 1








. (101)

Obviously, the equation cannot be fulfilled for arbitrary values of γH and α, hence the sys-

tem shown in Fig. 1A does not exhibit global concentration robustness with respect to the
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total concentration of the histidine kinase (HT ).

The same conclusion can be reached for the total concentration of the response regula-

tor (RT ). The rank condition for global concentration robustness reads

rank








0 α 1

γR 1 1

0 0 1








?
= rank








α 1

1 1

0 1








. (102)

Again, the equation cannot be fulfilled for arbitrary values of γR and α, hence global

concentration robustness is not achieved.

A different scenario is shown in Fig. 1B. Here, a bifunctional histidine kinase implies that

the unphosphorylated kinase acts as a phosphorylase for the response regulator. Repeating

the calculations shown above, we obtain

MD =











Hp

v1 0

v2 1

v3 0











and D =











H R

v1 1 0

v2 0 1

v3 1 0











, (103)

resulting in,

M =











Hp

v1 α

v2 1

v3 α











(104)

and

PH =











HT

v1 γH

v2 0

v3 γH











and PR =











RT

v1 0

v2 γR

v3 0











, (105)

with definitions given above. We emphasize that indeed γH := ∂ ln ν1/∂ ln HT =

∂ ln ν3/∂ ln HT , with

∂ ln ν1

∂ ln HT
=

HT

ν1

∂ (k1SH)

∂HT
=

∂ ln H

∂ ln HT
and

∂ ln ν3

∂ ln HT
=

HT

ν3

∂ (k3RpH)

∂HT
=

∂ ln H

∂ ln HT
. (106)
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Testing the rank condition for both perturbations, reveals that

rank








γH α 1

0 1 1

γH α 1








= rank








α 1

1 1

α 1








(107)

and

rank








0 α 1

γR 1 1

0 α 1








= rank








α 1

1 1

α 1








, (108)

thus both conditions are fulfilled for any non-zero values of γH , γR, and α. The system

shown in Fig. 1B indeed exhibits perfect concentration robustness of the output variable Rp

with respect to variations in both total concentrations HT and RT . We note that within

this example the bifunctionality of the histidine kinase is crucial to achieve robustness of

the pathway output – a mechanism that is functionally similar to the concerted expression

of proteins adjacent on an operon observed for the E. coli chemotaxis pathway.

Elaborating on the simple system discussed above, our framework is also straightforwardly

applicable to the full system, including explicit complex formation. We consider the three

processes

H → HP (109)

HP + R ↔ [HP R] → RP + H (110)

RP + H ↔ [RP H] → R + H . (111)

corresponding to system of 6 variables and 7 reaction rates. The system of differential

equations is given as

d

dt










HP

RP

[HP R]

[RP H]










=










1 −1 1 0 0 0 0

0 0 0 1 −1 1 0

0 1 −1 −1 0 0 0

0 0 0 0 1 −1 −1










︸ ︷︷ ︸

N

·



















k1 · H

k2 · HP · R

k3 · [HP R]

k4 · [HP R]

k5 · RP · H

k6 · [RP H]

k7 · [RP H]



















︸ ︷︷ ︸

v

, (112)
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and supplemented by the mass conservation relationship




HT

RT



 =




1 0 1 1

0 1 1 1





︸ ︷︷ ︸

L










HP

RP

[HP R]

[RP H]










+




H

R



 . (113)

Here the concentrations of unphosphorylated components, R and H, are chosen as depen-

dent variables. We note that the choice of dependent variables is not unique. Alternative

choices lead to identical results, provided that the dependent variables are chosen such that

the matrix MD is of maximal possible rank.

To test for robustness of the pathway output, we first evaluate the nullspace of the stoi-

chiometry,

KN =



















1 0 0

1 1 0

0 1 0

1 0 0

1 0 1

0 0 1

1 0 0



















→ K′ =



















1

1

1

1

1

1

1



















, (114)

where the representation has already been normalized and dependencies on the stationary

flux distribution were already removed. The logarithmic expansion coefficients for the state

variables MD are summarized in Table II. Instead of computing the expression for M =

MD−D ·L′′, we utilize a direct approach to judge output robustness of the network. Since

we are only interested in the vector space spanned by the matrices M and K′, and not in

a particular representation, we note that the expression for M is not required under the

condition rank(D|MD|K′) = rank(MD|K′). As can be verified in Table II this condition

indeed holds for the two-component system. Furthermore, the pertubations PT with respect

to total concentrations can be expressed in terms of the partial logarithmic derivatives with

respect to the dependent variables. Since rank(D|MD|K′) = rank(MD|K′), obviously

also rank(PT |M
D|K′) = rank(MD|K′). Hence the pathway exhibits perfect robustness

against variations in the total concentrations RT and HT .

This result can be generalized to a generic strategy towards perfect output robustness for

engineered protein networks. Utilizing rewiring of substrate specificity [10], in addition
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TABLE II: The logarithmic expansion coefficients with respect to the dependent and independent

state variables, D and MD, respectively, along with the nullspace K′.

D MD K′

Rp R H [HP R] [RP H] HP

v1 = k1 · H 0 0 1 0 0 0 1

v2 = k2 · HP · R 0 1 0 0 0 1 1

v3 = k3 · [HP R] 0 0 0 1 0 0 1

v4 = k4 · [HP R] 0 0 0 1 0 0 1

v5 = k5 · RP · H 1 0 1 0 0 0 1

v6 = k6 · [RP H] 0 0 0 0 1 0 1

v7 = k7 · [RP H] 0 0 0 0 1 0 1

to implement the desired functionality, the interactions should be rewired such that the

logarithmic expansion coefficients for the dependent state variables D are linearly dependent

on the logarithmic expansion coefficients for the independent state variables MD and the

largest parameter independent representation of the nullspace K′. Specifically, we require

rank(D|MD|K′) = rank(MD|K′) , (115)

to ensure global concentration robustness against all total concentrations within a signaling

network. This simple condition allows to establish whether a rewired network will exhibit

the desired functionality without the need to fine-tune expression levels. Our framework is

able to guide the necessary network extensions to guarantee robust network functionality.

B. Conservation relationships and robustness of mass-action systems

A particular application of our framework relates to global concentration robustness of

mass-action systems with respect to total conserved concentrations, as recently also dis-

cussed elsewhere [8]. Our framework allows to derive a simple principle that allows to judge

for global concentration robustness and is able to guide the necessary network extensions

to design perfectly robust networks. We consider a system as described in Eq. (7) in Sec-
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tion II B,

ẋ = N · v
(
x,xD

)
(116)

xT = L · x + xD , (117)

and aim to test for robustness of the output variables xA with respect to perturbation in

the total concentration of each molecular component xT = (xT
1 , xT

2 , ..., xT
n ). For simplicity,

we assume that all rate equations are given by generalized mass-action (GMA) kinetics,

vi(x) = ki

n∏

j=1

x
αij

j . (118)

Consequently, the partial logarithmic derivatives with respect to dependent and independent

variables, the elements of the matrices D and MD, are constant values. Under the special

condition

rank(D|MD|K′) = rank(MD|K′) , (119)

where K′ denotes a largest parameter-independent representation of the nullspace, the sys-

tem exhibits global concentration robustness with respect to perturbations in xT . The

reason is that any perturbation in total concentrations can be represented by a perturbation

in the dependent variables xD. Since D is already an element of the invariant perturbation

space, due to the condition Eq. (119), any such perturbation is necessarily also an element

of the invariant space, hence global concentration robustness with respect to total conserved

concentrations is guaranteed.

As compared to alternative methods [8], our approach has the advantages that it is (i) con-

ceptually considerably simpler, (ii) numerically straightforward to test by standard methods

of linear algebra (rank conditions), and (iii) straightforwardly guiding modification of the

matrix D to ensure perfect concentration robustness.

C. Complex perturbations and temperature compensation

One of the merits of our approach is that it is not restricted to a particular type of

perturbation, but is applicable to a wide variety of detrimental influence that potentially

impede network functionality. While our focus is mainly on variations in native expression

levels – as one of the dominant sources of variability in living cells – our framework also
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accounts for any other perturbation that can be expressed in terms of the logarithmic ex-

pansion coefficient of the rate equations.

Relevant applications include the retroactivity of signaling circuits [15] as well as detrimen-

tal pathway crosstalk [1, 6]. Both issues also relate to scenarios where signaling pathways

utilize common resources, such as ATP to provide energy. Within our framework, any such

possibly detrimental influence can be considered as a perturbation – allowing the identifi-

cation or construction of an appropriate topology that compensates for the corresponding

perturbation.

A particular intriguing example of a complex perturbation is given by variations in temper-

ature. A change in temperature usually affects all rate constants simultaneously – making

the prediction of perfectly robust topologies a difficult task [7]. In the simplest case, we

may assume that each reaction rate follows the Arrhenius equation, that is, the temperature

dependence of a reaction rate vi can be described by a multiplicative factor

ki = Ai exp

(

−
Ei

RT

)

, (120)

where Ei denotes the activation energy for the ith reaction, Ai a proportionality constant,

R the gas constant, and T the absolute temperature in Kelvin). Here, the activation energy

is a constant for each reaction that does not further dependent on the temperature or the

stationary state. In this case, we can straightforwardly construct the perturbation vector

PT with respect to changes in temperature, with elements

∂ ln vi

∂ ln T
=

∂ ln ki

∂ ln T
=

Ei

RT
. (121)

Specifically, each element of PT explicitly depends on the temperature. However, the direc-

tion of the vector PT , with

PT =
1

RT











E1

E2

...

Er











(122)

for a system consisting of r reaction rates, does only depend on the (constant) activation

energies of the reaction. Hence, using our condition for output robustness it is straightfor-

ward to judge global temperature compensation of a biochemical network.

We note that in practise a straightforward application of the Arrhenius equation is often not
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appropriate. In this case, for arbitrary dependencies ki(T ) our framework is still applicable –

just as for any other complex perturbation that acts on many reaction rates simultaneously.

D. Robustness of bi- and multistable systems

As yet, the focus of our approach has been networks that exhibit a globally stable sta-

tionary state, characterized by xs and νs, for all parameters. However, many signaling

networks exhibit bi -or multistable dynamics, giving rise to two or more stationary states.

As a particular merit, our approach is still applicable in these situations – without requiring

substantial modifications. In particular, global uniqueness of the stationary state was not a

necessary precondition to derive the requirement for global robustness, hence the condition

for global concentration robustness applies to any locally stable state that fulfills the steady

state condition.

However, our framework does rely on invertibility of the Jacobian matrix to ensure that

a gradual change of intermediate variables may not affect the set of designated output

variables. This does not hold in a situation in which the system, under the action of a

perturbation, undergoes a bifurcation that results in a non-invertible Jacobian (as, for ex-

ample, a saddle-node bifurcation). With respect to the application on multistable systems,

we therefore have to introduce the additional constraint that all perturbations must be such

that the transient response in systems variables after the perturbation remains within the

basin of attraction of the respective state. Once the perturbation is sufficiently strong to

allow the system to cross the attractor boundary, the robustness of the state is lost. How-

ever, in this case the system usually adopts another stationary state – which again exhibits

perfect concentration robustness with respect to perturbations of large magnitude. In this

sense, we are in the favorable situation that our framework allows to construct robust bi-or

multistable systems that are still capable to switch between states. Also, since we are mainly

concerned with slow perturbations with respect to the intrinsic timescales of the system, the

robustness of each stationary state is maintained even for perturbations of comparatively

large magnitude – provided the variables remain within the basin of attraction of the re-

spective state.

As a guideline for the construction of robust bi- or multistable systems, we further note

that such systems usually involve strong nonlinearities. Here, it is of considerable advantage
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FIG. 2: A bistable system based on a generic two-component architecture that exhibits perfect

concentration robustness. Shown is the stationary state of the active response regulator Rp as a

function of the signal strength S. For sufficiently large S a non-zero solution exists, in addition to

the solution Rp = 0. All stationary states, including the separatrix (grey dashed line), are invariant

with respect to changes in total conserved proteins HT and RT . Parameters are k1 = k3 = 1,

Ka = 1, n = 4, and HT = RT = 5, each given in arbitrary units (au).

to utilize a robust (“output”) variable within the feedback mechanism. In this way, the

requirement to fine-tune a highly nonlinear feedback is circumvented.

We illustrate the design of a multistable robust system using a simple example based on

a generic two-component system. We again consider the system of differential equations

discussed above

d

dt




HP

RP



 =




1 −1 0

0 1 −1





︸ ︷︷ ︸

N

·








ν1

ν2

ν3








. (123)

The vector of kinetic rate equations ν is analogous to the robust topology shown in Fig. 1B.

ν =








k1 · S · H · f(Rp)

k2 · HP · R

k3 · RP · H








. (124)

As the only modification, we assume that the active response regulator Rp is capable to

sensitize the receptor, thereby enhancing the phosphorylation of H. This modification does

not impede the robustness of the system with respect to changes in the total conserved
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protein concentrations. In particular, the derivative towards the variable Rp does not enter

the invariant perturbation space or its construction, hence the invariant perturbation space

is identical to the scenario discussed above.

Solving for the steady state of the system using the relationship ν1 = ν3 at steady state, we

obtain

Rp −
k1

k3

· S · f(Rp) = 0 . (125)

With a particular choice of f(Rp), for example,

f(Rp) =
Rp

n

Ka
n + Rp

n , (126)

and n = 4 we obtain

R5
p −

k1

k3

· S · Rp
4 + Ka

nRp = 0 , (127)

and the system indeed exhibits bistable dynamics that is independent of the total concen-

trations HT and RT . A bifurcation diagram is shown in Fig. 2.

The system allows for several conclusions: (i) Concentration robustness holds for any sta-

tionary state of the system, including unstable states. (ii) Strong nonlinearities should be

confined to robust variables. As these variables do not enter the construction of the invariant

perturbation space, the need for fine-tuning the respective parameters is circumvented. (iii)

Robustness of the system is lost at the bifurcation. In this case, the state looses stability

and adopts another state, which again exhibits non-local robustness. Hence, robustness

is restricted to perturbations within the respective basin of attraction. (iv) While these

conclusions may be obvious for the simple example discussed above, our reasoning likewise

applies to systems of large size and is amendable to an algorithmic solution.
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VIII. MISCELLANEA

A. Limitations of our approach

As the reader may have noticed, a physical network that is robust in the sense

rank(P |M |K) = rank(M |K), with rank(P |K) 6= rank(K), cannot be robust to

arbitrary large perturbation strength. The reason is the perturbation induces changes in

∆xM . As the intermediate state variables, ∆xM , are physical quantities they cannot grow

unbound or get negative. For these systems there is thus always a certain perturbation

strength that leads to an abrupt break down of robustness.

For many cases this breakdown can be made more explicit, when accounting for conservation

equations. For example the active form of a protein y1 is related to the total concentration

by yT = y + y1, with y the inactive form. Thus, we have y1 ≤ yT . As the rank condition

only uses differential forms, the latter inequality has to be additionally fulfilled.

It is further important to note that robustness as defined by the rank condition

rank(P |M |K) = rank(M |K) does not imply stability of the reaction network. In ad-

dition to the formal conditions derived in this report, global stability of a stationary state

should also be checked in order to obtain a meaningful notion of robustness. For example, it

has to be ensured that the Jacobian matrix has negative eigenvalues for all physical values

of reaction fluxes and state variables. Numerically this is most simply tested by showing

that the scaled Jacobian matrix N [diag vs](M |A) has negative eigenvalues for all positive

vs and all physical values of the unknown entries of (M |A).

B. Fine-tuned global robustness

For some reaction networks it might not be clear beforehand if the parameter dependent

logarithmic derivatives – denoted by Greek symbols – are indeed independent. In this case

there could exist a functional dependence between some of the non-constant elements in the

matrix (P |M |K) that increases the invariant subspace. An example is given by the following
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(rather artificial) system that includes a specific perturbation parameter, 0 < p < 1,

ẋ = −k∗ ln(p)
︸ ︷︷ ︸

v1

− k∗x
︸︷︷︸

v2

(128)

ẏ = k1 exp(−x)
︸ ︷︷ ︸

v3

− k2y p
︸ ︷︷ ︸

v4

(129)

In the stationary state we can substitute xs = − ln(p) into the second equation get ys =

k1/k2. Thus the systems output is obviously independent of p. Although this systems shows

global robustness against p, the reaction network involves fine tuning, in the sense that two

independent reactions share the same rate constant, k∗. Using our formalism in a straight

forward manner, we arrive, after introducing the independent functions α and β, at

rank













P X K1 K2

v1 β 0 1 0

v2 0 1 1 0

v3 0 α 0 1

v4 1 0 0 1













6=rank













X K1 K2

v1 0 1 0

v2 1 1 0

v3 α 0 1

v4 0 0 1













(130)

However, as α := xs, β := [ln p]−1 and xs = − ln p, we see that α = β−1. After multiplication

of the P -column with β−1 we see that the rank condition is indeed fulfilled. This fine tuned

global robustness can be numerically detected by inserting the actual values for the Greek

symbols for one stationary state of the system. If robustness with respect to P differs in this

case to randomly chosen Greek symbols, then there exists a hidden dependency among the

parameter dependent logarithmic derivatives. This example shows that global robustness of

reaction network can also emerge from a combination of fine-tuning and network structure.

Here the hyperplane spanned by the column vectors of (M |K) is rotating in space and the

perturbation, P , is such that it constantly follows the rotation of this hyperplane for all p.

In general, our assumption of independence between the partial derivatives represents a

worst-case scenario and is sufficient for global robustness.

C. Numerical test of the rank condition

In practice, a simple numerical test for the rank condition Eq. (6) can be performed

by treating the independently varying logarithmic derivatives as random variables. In the

case of the example in Section II B this can be realized by redefining the Greek symbols as
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random variables that take values according to a uniform distribution U(−1, 1). In doing

so, it has to be guaranteed that each randomly chosen value must be sufficiently different

from zero and sufficiently different from all other random values. The minimum differences

between the random values are set by the numerical precision and avoid that by chance

almost equal values are assigned to linear independent logarithmic derivatives.

D. Determination of the parameter-independent nullspace K′

So far, the nullspace K – determined by N ·diag(vs) ·K = 0 – depends on the particular

flux distribution vs. To identify the parameter-free conditions for structural robustness, it

is desirable to identify the subspace of K that is independent of the particular state vs.

To this end, we first construct the nullspace K from the nullspace of the original stoichio-

metric matrix, N · KN = 0, using the transformation

K = [diag vs]−1 · KN · q (131)

where q denotes an invertible (k − m) × (k − m) matrix, corresponding to a basis transfor-

mation of the non-unique representation of the nullspace.

At this point it may be argued that the flux dependency of K can be partially removed by

using elementary matrix operations. However, it is far to restrictive to treat the stationary

fluxes vs = (vs
1, ..., v

s
k) as unknowns as the fluxes are not linear independent

vs = KN · α , (132)

with α the elementary flux coefficients and dimα = dim vs − rank(N ) = k − m. We

therefore utilize the freedom of constructing the matrix q in order to generate the largest

possible subspace K(1) that is independent of reaction fluxes. We first rewrite Eq. (131) as

Knm =

∑

j KN
nj qjm

∑

j KN
nj αj

. (133)

The parameter independent subspace of K defines K(1) and requires that the elements of

K(1) are independent of α. This implies the condition

∂αs
K(1)

nm = 0 = ∂αs

∑

j KN
nj qjm

∑

j KN
nj αj

=

∑

j KN
nj (∂αs

qjm)
∑

j KN
nj αj

−

∑

j KN
nj qjm

(
∑

j KN
nj αj)2

KN
is (134)
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for all indices s, which can be rewritten to give

∑

j

KN
nj ∂αs

qjm =

∑

j KN
nj qjm

∑

j KN
nj αj

︸ ︷︷ ︸

const

KN
ns (135)

that in turn takes – by defining KN
j as the j-th column of KN – the alternative form

∑

j

KN
j ∂αs

qjm ∝ KN
s (136)

The latter statement requires qjm ∝ αj for all m and thus at least one column vector of q

exists, given by q∗ = α, that results in a parameter free representation of K. By Eq. (133)

we obtain the first parameter free nullspace vector, K
(1)
n1 =

∑

j KN
nj αj/

∑

j KN
nj αj = 1 for all

rows, n. A k-dimensional vector consisting only of ones is thus always part of the invariant

subspace and reflects an obvious invariance property of all stationary networks: multiplica-

tion of all fluxes in the network by the same factor does not change any stationary state

variable of the network.

As this invariance property can hold also locally, we can separate q∗ in the

maximum number of orthogonal column vectors q∗

1 = (α1, ..., αl1 , 0, ..., 0)T , q∗

2 =

(0, ..., 0, α(l1+1), ..., αl2 , 0, ..., 0)T , ..., q∗

z = (0, ..., 0, αlz−1+1, ..., αk−m)T such that Eq.(136)

holds. The independent columns {q∗

1, ..., q
∗

z} can be determined by a block matrix rep-

resentation of KN which is obtained by resorting columns and rows such that the resulting

matrix has only zero entries to all sides of each block. Note that the blocks are in general

not square. This resorting leads to

K(1) =








1
(KN ·α)1

0
. . .

0 1
(KN ·α)k







·








KN
1 0

. . .

0 KN
z








︸ ︷︷ ︸

KN

·








q∗

1 0
. . .

0 q∗

z








︸ ︷︷ ︸

q∗

(137)

=








1
(KN ·α)1

0
. . .

0 1
(KN ·α)k







·








KN
1 · q∗

1 0
. . .

0 KN
z · q∗

z








. (138)
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Thus the column vectors of the matrix K(1) that indicate robustness to a fold change in

several fluxes can be constructed by the surprisingly simple transformation

KN =








KN
1 0

. . .

0 KN
z








→








1 0
. . .

0 1








= K(1) (139)

where the 1’s denote a vector of ones with dimension set to number of rows of the corre-

sponding block. K(1). Next we complete K(1) and identify the complementary nullspace,

K(2), to K(1) such that both spaces together span the complete nullspace of N · diag(vs),

K = (K(1)|K(2)).

We illustrate the construction of K(1) and K(2) by an example of a reaction network which

gives rise to two alternative stationary flux distributions. The example consists of two

pathways
v1
→ A

v2
→ B

v3
→ C

v4
→

and
v1
→ A

v5
→ D

v6
→ C

v4
→

The stoichiometric matrix and its corresponding nullspace are given by

N =










1 −1 0 0 −1 0

0 1 −1 0 0 0

0 0 1 −1 0 1

0 0 0 0 1 −1










, KN =
















1 1

1 0

1 0

1 1

0 1

0 1
















. (140)

showing explicitly the two above mentioned flux distributions. The nullspace K(1) consists of

one column vector K(1) = (1 1 1 1 1 1)T as obviously KN can be grouped only in one single

block. As K = [diag(vs)]−1 · KN the i-th row of KN is weighted by (vs
i )

−1 = (KN · α)−1
i .

As the αi can vary independently under perturbations, the identity vs
i = vs

j holds if the i-th

and j-th row of KN are identical. Identical rows of KN thus weight the the rows of K the

same inverse flux, whereas all other rows of K carry different weights. As the dimension

of the joint vector space spanned by K(1) and K(2) must have the same dimension as K –

which by construction has the the dimension of KN – we can choose only one column of KN
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to construct K(2) in this example. Taking the second column and indicating the unknown

inverse fluxes by Greek symbols we obtain

K =
















1 β1

1 0

1 0

1 β1

1 β2

1 β2
















. (141)

with β1 = (vs
1)

−1 = (vs
4)

−1, and β2 = (vs
5)

−1 = (vs
6)

−1. If we multiply the first column of

K by β2 and subtract the second column we obtain β2K1 − K2 = (β′

1 β2 β2 β′

1 0 0)T with

β′

1 = β2 − β1. This result would have been obtained by taking the first column of KN to

construct K(2). We note that K(2) is in general not part of the invariant subspace, due to

its dependence on the (local) flux distribution. This dependence is obvious in the example

above, where the two column vectors of K span a two dimensional hyperplane and one

vector cause the hyperplane to rotate in six dimensional space under a change in stationary

flux distributions. The method introduced so far allows to construct in a systematic way

the nullspace K such that the dependence on stationary fluxes – that is the number of

unknowns βi – is reduced to a minimum. The subspace spanned by the columns K can be

further reduced by elementary matrix operations (EMO)

K =
















1 β1

1 0

1 0

1 β1

1 β2

1 β2
















EMO
−→
















1 1

1 0

1 0

1 1

1 δ

1 δ
















(142)

with δ = β2/β1.
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