
Chanwoo Kim, Richard M. Stern 

Department of Electrical and Computer Engineering and Language Technologies Institute 
Carnegie Mellon University, Pittsburgh, PA 15213 

{chanwook, rms}@cs.cmu.edu 
 

Abstract 
In this paper, we introduce a new algorithm for estimating the 
signal-to-noise ratio (SNR) of speech signals, called WADA-
SNR (Waveform Amplitude Distribution Analysis). In this 
algorithm we assume that the amplitude distribution of clean 
speech can be approximated by the Gamma distribution with 
a shaping parameter of 0.4, and that an additive noise signal is 
Gaussian. Based on this assumption, we can estimate the SNR 
by examining the amplitude distribution of the noise-
corrupted speech. We evaluate the performance of the 
WADA-SNR algorithm on databases corrupted by white 
noise, background music, and interfering speech. The 
WADA-SNR algorithm shows significantly less bias and less 
variability with respect to the type of noise compared to the 
standard NIST STNR algorithm. In addition, the algorithm is 
quite computationally efficient. 
Index Terms: SNR estimation, Gamma distribution, 
Gaussian distribution 
         

1. Introduction 
 
The estimation of signal-to-noise ratios (SNRs) has been 
extensively investigated for decades and it is still an active 
field of research (e.g. [1-7]). Reliable SNR estimation can 
improve algorithms for speech enhancement [1][2], speech 
detection, and speech recognition [3], since knowledge of 
SNR makes it easier to compensate for the effects of noise.  

Techniques for estimating SNR can be classified into 
several categories. One of the approaches is based on 
distinguishing the spectra of noise and speech. Noise 
spectrum estimation (e.g. [3]) or spectral subtraction 
techniques usually belong to this category. Another approach 
is based on measurement of the energy. The widely used 
NIST STNR (Signal-To-Noise-Ratio) algorithm is based on 
this technique. In this approach, a histogram of short-time 
energy is constructed, from which the signal and noise energy 
distributions are estimated.  In another approach, Martin [4] 
used the low-energy envelope in frequency bands to estimate 
the SNR level. Still other approaches are based on statistics 
that are obtained from waveform samples rather than from 
energy or spectral coefficients. For example, Nemer [5] used 
kurtosis values to estimate the SNR in each frequency band. 
In this approach, short-time voiced signals in a given 
frequency band are assumed to be sinusoidal with a fixed 
phase, and short-time unvoiced signals in this band is 
assumed to be a sinusoidal signal with random phase.  

Our approach is based on the fact that the amplitude 
distribution of a waveform usually can be characterized by a 
gamma distribution with a shaping parameter value between 
0.4 and 0.5. This fact has been observed by several research 
groups and has been described in numerous books and papers 
(e.g. [8][9]). The only assumptions we make are that (1) the 

speech and background noise are independent, (2) clean 
speech follows a gamma distribution with a fixed shaping 
parameter, and (3) the background noise has a Gaussian 
distribution. Based on these assumptions, it can be seen that if 
we model noise-corrupted speech at an unknown SNR using 
the Gamma distribution, the value of the shaping parameter 
obtained using maximum likelihood (ML) estimation depends 
uniquely on the SNR. 

While we assume that the background noise can be 
assumed to be Gaussian, we will demonstrate that this 
algorithm still provides better results than the NIST STNR 
algorithm, even in the presence of other types of maskers such 
as background music or interfering speech, where the 
corrupting signal is clearly not Gaussian. 

The organization of this paper is as follows: in Sec. 2 we 
discuss the assumptions about clean speech and additive noise. 
In Sec. 3 we describe how the SNR measurement can be 
obtained from the amplitude distribution of the input signal. 
Section 4 contains experimental results that compare the 
accuracy of WADA-SNR to the standard NIST STNR 
algorithm. 

 

2.  Characterization of clean speech and 
additive noise 

 
It is widely known that the symmetric gamma distribution 

is a good approximation to the amplitude distribution of a 
large speech corpus (e.g. [8][9]). Specifically, the probability 
density function, fx(x) of clean speech can be represented by 
the following equation [8-11]: 
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where x is the amplitude of the speech, and �x and �x are the 
shaping and rate parameters of the gamma distribution, 
respectively [10][11]. Fig. 1 (a) illustrates this property. Many 
research results show that values of 0.4 or 0.5 for �x provide 
the best fit for clean speech (e.g. [8][9]). We will assume for 
now that a clean speech signal x[n] exhibits a gamma 
distribution with a fixed shaping parameter �x of 0.4 and an 
arbitrary value of �x. (The parameter �x serves to normalize 
the density function and has no impact on the SNR 
estimation.)  As will be shown later (cf. Fig. 2), the SNR 
value estimated by our algorithm is relatively independent of 
�x if the true value of the SNR is less than 20 dB. Throughout 
this paper, x[n], �[n], and z[n] will denote sample functions 
for clean speech, noise, and corrupt speech respectively. The 
variables x, �, and z will denote sample values without regard 
to time, and x, �, and z will represent the random variables 
that describe them. 
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If a clean speech signal is corrupted by additive Gaussian 
noise �[n], its probability density function can be expressed as: 
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where �� is the standard deviation of the noise.  
 We will further assume that both x[n] and �[n] have zero 

means and that they are statistically independent. The 

corrupt speech signal z[n] is represented by the following 
equation:
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  From (1) and (2), the power of the speech and noise 

parts can be obtained from the above distributions using some 
arithmetic: 

Px �
�x (�x �1)

�x
2

                            (4) 

2
�� 	�P                                   (5) 

where Px and Pv are the signal and noise power, respectively. 
Hence, the SNR of this signal z[n] is given by 
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3. SNR measurement based on the gamma 
distribution 

In Figs. 1(a) to 1(c), we observe the amplitude distribution of 
clean and corrupt utterances. It can be seen that even for noisy 
speech utterances, the gamma distribution model is still quite 
close to the actual amplitude distribution. More importantly, 
we can easily see that the shapes of Figs. 1(b) and 1(c) are 
very different from that of Fig. 1(a). Hence we observe that 
the value of the parameter �z characterizes the amplitude 
distribution of noisy speech using the Gamma-function model 
depends on the SNR.  From the probability density function of 
the gamma distribution, we can obtain the following relation 
for corrupt speech [11]: 
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where 0 ( )z� � is the digamma function. 
From the above equation, we can see that the shaping 
parameter depends on the right hand side of (7). Based on this 
observation, we define the parameter Gz:
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We now show that Gz in (8) can be employed to uniquely 
determine SNRs. Let us assume that |z[n]| and ln(|z[n]|) are 
both ergodic in the mean. For N sufficiently large, we can 
replace the time averages by their corresponding ensemble 
averages:  
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Figure 2: Calculated dependence of the parameter Gz on
the SNR in dB.
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Figure 1: Comparison between the actual amplitude

distribution of speech and the gamma distribution model. 
A subset of 1,600 utterances of the DARPA RM test set 
was used.  
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Figure 3: The structure of the WADA-SNR estimation
system
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Let’s consider the following normalized random variables x~
and  : �~

,~ xx x��                                  (12) 
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  From (1), (2), (12), and (13), we see that the probability 
densities of x~  and �~ are represented by the following 
distributions:
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Note that Eqs. (14) and (15) have no free parameters at all. 
Substituting (12) and (13) into (11), we obtain: 
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Combining (6), (14), (15), we represent (16) in integral form: 
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Since �x is assumed to be the fixed constant 0.4, we see that 
Gz is uniquely determined for a given SNR �z. Hence it can be 
represented as a function of �z in the following form: 

)( zz hG � .                                 (18) 
Integration of (17) can be accomplished by numerical Monte-
Carlo techniques. Fig. 2 shows the result obtained. In Fig. 2 
we     observe that the value of Gz is relatively independent of 
ax if the true SNR is less than 20 dB. The numerical 
integration of (17) is computationally intensive, but the 
calculation can be obtained offline and pre-stored in tabular 
form.   Using the system of Fig. 3 we estimate the SNR based 
on the relationship between SNR level and Gz implied by (18). 
Computation of Gz is not very difficult. In some cases, there 
may be zero values in the utterance, which will cause 
problems due to the log operation in (8). In practice we either  
disregard samples with zero values in the computation or we 
replace them by a small predefined value.  

 

(a) Results with the WADA-SNR algorithm

50

(b) Results with the NIST STNR algorithm 

(c) Result with the modified NIST STNR algorithm 

 Figure 4: Comparison of the average estimated SNR 
of the NIST STNR algorithm and the WADA-SNR 
algorithm for the artificially corrupted DARPA 
Resource Management (RM) database In (c), the mean 
value of the speech histogram is used instead of the 
95 % percentile.
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(a) Standard deviation of the estimated SNR obtained with  

the WADA-SNR algorithm 

(b) Standard deviation of the estimated peak SNR obtained with 
the NIST STNR algorithm 

Figure 5: Comparison of the standard deviation of 
the NIST STNR algorithm and the WADA-SNR 
algorithm for artificially corrupted DARPA Resource 
Management (RM) database
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5. Conclusions 
We introduce a novel approach to the estimation of signal-to-
noise ratios (SNRs) called the WADA-SNR algorithm, which 
is based on statistical information obtained from the 
amplitude distribution of a speech waveform. Our algorithm 
is based on the two assumptions that clean speech is 
characterized by a Gamma distribution with a fixed shaping 
parameter, and that background noise can assumed to be 
Gaussian. Even though this algorithm is developed under the 
assumption of Gaussian noise, it was observed empirically to 
provide good estimates for background music and background 
speech as well.   The algorithm provides estimates of SNR 
that are more consistent with respect to background noise type 
than the NIST STNR algorithm.  The only major 
computational cost incurred is in the estimation of the internal 
parameter Gz, so processing is quite computationally efficient.  
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