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Robust signaling networks of the
adipose secretome
Rainer Breitling

Groningen Bioinformatics Centre, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands

Opinion
Glossary

Adipokines: also known as adipocytokines. Cell-to-cell signaling proteins and

peptides secreted by various cells in the adipose tissue, including adipocytes

and tissue macrophages. Adipokines act locally or systemically by modulating

the function of the immune system. More than a dozen major adipokines are

currently known.

Adipose secretome: the entirety of signaling molecules secreted by adipose

tissue including hormones, adipokines and lipids.

Insulin resistance: the absence of an adequate response to normal levels of

insulin, which often precedes the development of diabetes.

Parameter information: quantitative information about molecular concentra-

tions and reaction kinetics, which is required for detailed predictive modeling

of signaling pathways.

PPARg: peroxisome proliferator-activated receptor g. Nuclear receptor with

major effects on adipocyte differentiation. PPARg is the main target of

antidiabetic drugs of the thiazolidinedione type.

Robustness: the ability of a biological system to function in a variety of

environmental conditions. In advanced diabetes, the diseased system exhibits

robust properties that make it unresponsive to medical intervention.

Semi-quantitative hybrid models: computational models of biological systems

that combine qualitative (topological) descriptions of molecule–molecule

interactions and quantitative descriptions of individual reactions. Such models

can be particularly useful in the absence of comprehensive parameter

information.

TNFa: tumor necrosis factor a. Cytokine involved in chronic inflammation.
Type 2 diabetes is a prototypical complex systems
disease that has a strong hereditary component and
etiologic links with a sedentary lifestyle, overeating
and obesity. Adipose tissue has been shown to be a
central driver of type 2 diabetes progression, establish-
ing and maintaining a chronic state of low-level inflam-
mation. The number and diversity of identified
endocrine factors from adipose tissue (adipokines) is
growing rapidly. Here, I argue that a systems biology
approach to understanding the robust multi-level sig-
naling networks established by the adipose secretome
will be crucial for developing efficient type 2 diabetes
treatment. Recent advances in whole-genome associ-
ation studies, global molecular profiling and quantitative
modeling are currently fueling the emergence of this
novel research strategy.

The diabetes pandemic
Populations worldwide are currently experiencing an epi-
demic of obesity with many associated health problems,
including type 2 (non-insulin-dependent) diabetes, athero-
sclerosis and certain cancers [1]. Type 2 diabetes is a
complex, heterogeneous, polygenic disease that affects
more than 150 million people worldwide, and large
increases in these numbers, particularly in developing
countries and among adolescents, are predicted for the
coming years [1,2]. The consequences of the disease can
be devastating, ranging from cardiovascular morbidity to
microvascular complications that result in, for example,
blindness and lower limb amputation.

Type 2 diabetes is the result of a long-term systemic
disturbance involving many organ systems, rendering this
disease particularly attractive for using a quantitative
systems biology approach [3]. This is particularly the
case for the complex regulatory networks established by
secreted molecules from adipose tissue during the devel-
opment of diabetes.

Diabetes as a multi-level, system-wide disease
Diabetes ultimately is a disease of the pancreas. Pancreatic
b-cells, the insulin-producing cells, have a central role in
adaptive responses to compensate for insulin resistance
(see Glossary). During development of diabetes, b-cells are
overloaded by the increased demand for insulin secretion
and begin to undergo apoptosis [1]. However, many other
tissues contribute to the gradual development of global
insulin resistance that precedes overt diabetes. Together
Corresponding author: Breitling, R. (r.breitling@rug.nl).
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with the liver [4], brain [5] and skeletal muscle [6], the
adipose tissue is a central player in regulating diabetes
progression. This role is mainly determined by the adipose
secretome, the huge diversity of soluble signaling factors
that are secreted from adipose tissue that render it a major
endocrine organ [7–9]. In addition, ectopic fat in muscle
(intramyocellular lipids) and liver has been suggested to
contribute to both insulin resistance and chronic inflam-
mation [10], which, as will be discussed later, is a major
pathogenic factor in diabetes progression.

The complexity of the adipose tissue secretome
The realization that adipose tissue acts as an endocrine
gland affecting whole-body energy homeostasis was a
major breakthrough towards a better molecular under-
standing of type 2 diabetes [7,8]. Secreted factors from
adipose tissue (adipokines) form a complex network of cell-
to-cell and organ-to-organ signals. Positive feedback loops
in that network can turn intomolecular ‘vicious circles’ and
lock the diabetic system in an almost irreversible diabetic
disease state [11].

The first adipose-tissue-derived hormone discovered
was leptin, a peptide hormone that can be considered a
direct indicator of the size of body fat pools [12]. It acts via
cognate receptors in the brain to orchestrate the suppres-
sion of appetite and stimulation of energy expenditure in
Secretion of large amounts of TNFa as an adipokine is supposed to have a

major role in the maintenance of a chronic inflamed state in diabetes.
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times of excess food supply. The absence of leptin results in
uncontrolled hyperphagia-induced obesity and associated
diabetes. However, most obese diabetic individuals do not
have decreased leptin levels. Tumor necrosis factor a

(TNFa), a second notable component of the adipose secre-
tome, was identified as such because obese-insulin-resist-
ant adipose tissue produced elevated amounts of this
protein [13]. This surprising finding indicated that an
inflammatory process contributes to type 2 diabetes pro-
gression, a concept that has become central to understand-
ing the disease process. Since the initial groundbreaking
discoveries of leptin and TNFa, the known adipose secre-
tome has grown rapidly in diversity and now includes more
than a dozen major molecules [14,15], with new players
continuously being discovered, including novel adipokines,
peptide hormones and endocrine-active fatty acid deriva-
tives [16].

For a successful systems biology approach, it is necess-
ary to take into account the regional differentiation of
adipose tissue. Most importantly, visceral adipose tissue,
which constitutes only a small fraction of all body fat (on
average, 18%; subcutaneous fat stores comprise approxi-
mately 82% [17]), has a special part to play and is most
closely related to diabetes development. By releasing free
fatty acids directly into the portal circulation, visceral
adipose tissue exerts a particularly strong effect on the
liver, interfering with insulin signaling, but it also has a
Figure 1. Sketch of major system-wide feedback loops mediated by the adipose secre
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specific secretome composition, with some adipokines pre-
ferentially produced here [18,19].

I argue that the adipokine network, which comprises
the peptide and lipid secretome of adipose tissue (in-
cluding infiltrated macrophages) and their major target
tissues, is the major contributor to the system behavior of
energy control and should be the target of a concerted
quantitative systems biology approach [3,11]. The proper-
ties of this network are likely to underlie many of the
robust characteristics leading to treatment-resistant
metabolic syndrome (Figure 1), mainly for two reasons:
first, the multitude of adipokines constitutes a highly
redundant system, in which different adipokine signals
can act as back-up for each other, so the entire system will
be robust against the loss of any individual component
(including the inhibition of single molecules by anti-dia-
betic drugs). Second, as Figure 1 shows, the pleiotropic
action of virtually all adipokines creates a tightly inter-
connected web of feedback loops that cannot be pulled
apart into linear subsystems. Each positive feedback loop
by itself constitutes a potential fragility of the system
because it can turn into a self-reinforcing ‘vicious circle’
once the containing power of the major negative feedback
loops is overwhelmed – for example, by persistent over-
supply of energy (Box 1). Mono-causal explanation, just
like single-target interventions, will not do justice to such
a complex system.
tome. Three negative feedback regulatory mechanisms work together to maintain

f insulin from b cells in the pancreas, which results in glucose uptake in peripheral

w glucose levels stimulate glucagon release, which increases glucose levels via
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ck loops take over the system, which contribute to establishing a vicious circle that

ed by the release of pro-inflammatory cytokines (IL-6 and TNFa), both peripherally

hese adipokines in turn repress insulin action and, thus, perpetuate the state of
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Box 1. Robustness and fragility of energy homeostasis and their evolution

Low blood glucose can incur high costs in a very short time with fatal

damage occurring within minutes, whereas the adverse consequences

of high glucose accumulate slowly over a prolonged period of many

years (acute, catastrophic versus chronic, gradual effects) [11]. The

robustness R(s) of the energy control system (s) is the integral of the

product of the probability p(E) of experiencing a particular environ-

mental challenge (E) and the associated performance gain g(E) [20],

RðsÞ ¼
Z

E

pðEÞgðEÞdE: (Equation I)

In most situations, p(E) can be considered constant, so evolution has to

optimize the system in such a way that the loss of performance incurred

by frequent perturbations is minimized. This process is illustrated in

Figure I. Historically, energy supply was close to starvation levels for

prolonged periods and low glucose supply was a frequent threat, so the

system contains redundant mechanisms to protect the body against

hypoglycemia. Close to the ‘glucose floor’, the minimum viable glucose

level [11], strict purifying selection will maintain a fine-tuned redundant

control system. At theotherextreme, the ‘glucose ceiling’ (the maximum

tolerable glucose level), selection is much more relaxed and polymorph-

isms can accumulate without much negative consequence. This histori-

cal probability distribution is shown in Figure Ia.

However, as Kitano [11] argues, this causes the danger that the

robust system will undergo catastrophic failure if the environment

changes in an unexpected fashion. This seems to be happening on a

large scale during the recent pandemic of obesity-associated diabetes

(Figure Ib). Recent changes in lifestyle and diet have lead to a

dramatic shift in the function p(E). Starvation is no longer a threat in

many societies, but oversupply of calories is almost ubiquitous.

Consequently, what was once a robust system is revealed suddenly

as being dangerously fragile.

The general validity of this systems biology version of the ‘thrifty

genotype’ hypothesis is illustrated by the fact that there are several

single-gene mutations in anorexigenic, appetite-controlling signals

that lead to system failure (obesity). By contrast, there are hardly any

cases of single-gene mutations that break the orexigenic, appetite-

stimulating system. The mechanisms assuring sufficient accumula-

tion of energy are apparently designed in a much more robust fashion

than those that limit energy intake. The mechanisms underlying such

a robust behavior can be the same as in engineered systems:

redundancy, feedback control, modularity and structural stability

[20]. The latter two are widely found in biological systems, whereas

the first two are strikingly exemplified by the adipose secretome

signaling network.

Figure I. The selection landscape shaping the energy-control system. The blue curves show the performance of the system as a function of energy supply, with rapid loss of

function close to the glucose floor and gradual deterioration close to the glucose ceiling. The red line in (a) shows the historical probability of different energy supply levels,

with highest probability close to starvation level. The green line in (b) shows the present situation, in which there is a high probability of energy oversupply.
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Understanding diabetes progression by systems
biology
The most important systems biological property of energy
metabolism is the ‘robust’ phenotype of the diabetic patient
[11,20] (Box 1): once a certain physiological threshold has
been passed, the disease process becomes virtually irre-
versible, inducing severe side-effects for the patient
(Figure 1). By contrast, at early stages of the disease,
simple caloric restriction and exercise can stop progression
of and even reverse insulin resistance. It is during these
early stages that drug interventions might turn out to be
most effective.

Quantitative modeling will be essential for the devel-
opment of more effective therapies to target the later
phases of the disease, during which the insulin-resistant
state is locked in by several vicious positive feedback loops
(Figure 1). Currently, many drugs are aimed at single
targets, but some of the most effective drugs for diabetes
are those that have a multitude of pleiotropic effects – for
example, the thiazolidinediones, which not only stimulate
amaster regulator of adipocyte differentiation (peroxisome
proliferator-activated receptor g, or PPARg) but alsomodu-
late insulin sensitivity, lipolysis and the composition of the
adipose secretome [9]. Unfortunately, thiazolidinediones
are now under scrutiny for potentially increasing the
cardiovascular death rate [21]. Targeting multiple break-
points of the diseased system at the same time, while still
finding the right balance between intended and adverse
effects, will require a large-scale quantitative modeling
approach.

Chronic inflammation underlying type 2 diabetes
progression
The importance of a system biology approach to type 2
diabetes is perhaps most strikingly illustrated by the
molecular signaling networks that link obesity, adipokine
3



Opinion Trends in Endocrinology and Metabolism Vol.20 No.1
secretion, chronic inflammation and the development of
insulin resistance [22–27]. One of the most important
effects of adipokine secretion might be the recruitment
of immune cells to adipose tissue in obesity, where they
are activated to become the major source of further adipo-
kine production, perpetuating a state of chronic inflam-
mation. This is not the classic version of inflammation,
characterized by calor (heat), rubor (redness), dolor (pain)
and tumor (swelling), but shares many of the same cellular
processes. The adipose secretome has a central role in the
establishment and robust maintenance of this chronic
inflamed state. The molecular mechanism involves
multiple points of cross-talk between insulin and inflam-
matory signaling (Figure 1). Several inflammatory
mediators released frommacrophages in the obese adipose
tissue, in particular TNFa and interleukin-6, suppress
insulin signaling in adipocytes.

Technology drives discoveries
Molecular biology and clinical chemistry have led to a
detailed picture of diabetes progression. It is clear that
the adipose secretome contributes to a complex circuit of
interwoven feedback loops that are still only partly
resolved. The detailed quantitative effects of the adipose
secretome on its target tissues, in addition to its synergistic
and antagonistic actions, still remain to be determined.
New technologies and concepts will be instrumental in
deciphering the pertinent molecular networks and their
quantitative relationships.

Three complementary novel approaches have been
added recently to the toolbox of technologies for exploring
the systems biology of diabetes on a large scale: first,
whole-genome association studies identify additional com-
ponents of the system; second, new molecular profiling
techniques determine their functional interaction in cel-
lular networks; and finally, predictive computational
models combine this information to explore the non-linear
disease dynamics that emerge in these molecular net-
works. These three approaches are discussed below.

Genetic approaches towards system reconstruction
Type 2 diabetes is a disease with a multifactorial etiology.
It is strongly influenced by environmental factors, most
importantly food intake and lifestyle, but it also has a
strong genetic component. In fact, offspring of an affected
individual show a lifetime risk of 38% of developing the
disease, approximately two to three times higher than
average; furthermore, siblings of a diabetic patient are
two to three times more likely to develop the disease than
others [1]. Moreover, the concordance rate in monozygotic
twins is approximately twice as high as in dizygotic twins
(76% versus 40% [28]). The mechanism underlying the
inherited differences in susceptibility is complex, making
diabetes a ‘geneticist’s nightmare’ and a prototypical com-
plex disease [29].

Targeted attempts at finding causative polymorphisms
among candidate genes such as TNFa or insulin receptor
substrate-1 (IRS1) were very difficult to replicate in sub-
sequent studies [1,29]. In fact, polymorphisms in many
genes were shown to contribute relatively small effects.
The most robust candidate gene polymorphism associated
4

with diabetes affected PPARg, a crucial regulator of adi-
pocyte differentiation and physiology and, also, the major
target of anti-diabetic drugs of the thiazolidinedione family
[9]. Carrying the low-risk allele for this gene leads to a risk
reduction of �20%.

Recently, whole-genome association studies have led to
an explosion in our knowledge of genetic modifiers of
diabetes susceptibility [28,29]. Within a single year
(2007), the number of strong, well-replicated candidates
has more than doubled. This has revealed some general
patterns: on the one hand, a large number of the newly
confirmed diabetes-associated genome loci contain known
diabetes-associated genes that act in the pancreas to
modulate b-cell insulin secretion and/or adaptive growth.
Frayling [29] provides a detailed list and further discus-
sion. On the other hand, many other genes that have been
identified with reproducible effects would not have been
considered obvious candidate genes. For example, the
high-risk allele of TCF7L2, a widely expressed transcrip-
tion factor, confers a higher diabetes risk than any candi-
date gene examined before – but before its detection in the
large-scale association studies, the gene had only been
studied as a transcriptional regulator involved in Wnt
signaling during development and cancer [30,31].

It is important to realize that the genetic polymorph-
isms identified in these genome-wide studies are not pre-
dicted to lead to a functional null allele. Rather, it is
expected that relatively subtle differences in activity cas-
cade through the system and lead to ultimate failure of the
insulin signaling system. In addition, common ‘disease’
alleles will be present in diverse combinations in individ-
ual persons; each patient will have his or her unique
molecular mechanism leading to the disease. Compu-
tational models that describe the non-linear, dynamic
interactions between all molecular players involved will
be crucial for understanding how various polymorphic loci
contribute to the disease in genetically diverse individuals
[32].

Comprehensive molecular profiling
The full realization of the complexity of the adipose secre-
tome was, to a large extent, the result of the post-genomic
technology revolution. For instance, adiponectin, themajor
‘beneficial’ adipokine (which at high concentrations
improves insulin sensitivity), was initially discovered as
apM1 (adipose most abundant gene transcript 1), an abun-
dantly expressed adipocyte gene, in untargeted studies of
the transcriptome using gene-expression microarrays [33].
Several other adipokines, like chemerin [14] and visfatin
[34], were discovered in a similar way. Recently, compre-
hensive transcriptome studies havemeasured gene expres-
sion in large cohorts of genetically characterized
individuals, including healthy and diabetic persons. By
determining which genomic loci influence gene-expression
levels, these studies have created global overviews of the
gene-regulatory networks that are active in obesity and
diabetes [35–37].

To get a more intimate insight into the relevant mol-
ecular mechanisms of diabetes development, it will be
necessary to extend these studies beyond gene expression.
One particularly promising approach towards understand-



Figure 2. Multiple scales of regulatory circuits in energy homeostasis. The adipose secretome contributes to feedback loops that operate at multiple levels in the diabetic

system. Computational models need to cover all these scales in an integrated description. The figure illustrates the overall structure of the networks; for additional details,

see the literature cited. (a) Inter-organ networks. In development of diabetes, chronic inflammation of adipose tissue leads to production of free fatty acids and

inflammatory adipokines, ultimately leading to generalized insulin resistance. This results in persistently increased levels of glucose and disrupts insulin production and

release in the pancreas, leading to further disease progression [1,56]. (b) Within-tissue networks. Obese adipocytes trigger infiltration of macrophages into adipose tissue.

The resulting chronic inflammation is mainly mediated by adipokines such as TNFa and interleukin. Resulting changes in the adipose tissue secretome spread the effect to

peripheral organs and also cause autocrine effects on adipocyte differentiation [14]. (c) Intracellular networks. Complex intracellular signaling networks regulate adipokine

secretion in response to the current status of the adipose secretome [2,57]. (Blue arrowheads indicate positive, activating influences; red bullets indicate negative, inhibiting

signals.)
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Box 2. Questions for future research

� How many molecular players contributing to the regulatory

complexity of the adipose secretome remain to be discovered?

� Will genome-wide association studies identify the major points of

system fragility contributing to diabetes?

� How important is the secretome diversity of various subtypes of

adipose tissue for the diabetic disease process?

� How can we integrate genetic, proteomic and metabolomic

information into a single predictive model of adipocyte biology?

� Which computational approaches will be most efficient for a

large-scale, systematic approach at modeling the adipokine

regulatory network in the absence of detailed kinetic information?

Opinion Trends in Endocrinology and Metabolism Vol.20 No.1
ing adipose secretome dynamics is proteomics, the
comprehensive profiling of proteins in a sample [38,39].
This can be applied to quantitatively determine post-trans-
lational modifications and aggregation states of secretome
components such as adiponectin (which occurs in several
multimeric forms with distinct action profiles) in both cell
culture and tissue explants. It is also now possible to
measure the kinetics of intracellular signaling cascades
in a comprehensive fashion, using quantitative proteomics
to selectively measure the phosphorylated proteins that
turn adipokine signals into cellular responses [40].

Metabolomics, the molecular profiling of small mol-
ecules [41,42] and, in particular, lipidomics, which focuses
on lipids and their derivatives [43,44], will also have a
major role in such a comprehensive strategy. Their most
important contribution will be the unbiased identification
and quantification of new signaling molecules. For
instance, fatty acids released from adipose tissue can be
regarded as endocrine signals, and they have been shown
to have diverse effects on insulin sensitivity, acting as both
positive and negative modulators, depending on their site
of action and molecular identity [45]. Furthermore, the
differential composition of lipids stored ectopically (i.e. not
in adipose tissue) could also be a key influence. Oxidized
phospholipids have just recently been identified as potent
modulators of the inflammatory response [46].

Quantitative modeling strategies
The complexity of the regulatory circuits underlying dia-
betes progression is realized on multiple scales, from
whole-body models to molecular signaling cascades
(Figure 2). Building system models that bridge these
scales is a central challenge for diabetes research. Initial
models, which describe the most important signaling
processes in various relevant cell types, recently have
been published and analyzed [11,32,47,48]. Such models
rely on the availability of parameter values for the var-
ious molecular processes that constitute the non-linear
behavior of energy metabolism and its regulation. This
includes enzymatic reactions, diffusion and transport
processes, signaling cascades, and even quantitative
descriptions of cell proliferation and death. This type of
quantitative information has been used recently to model
adipose tissue metabolism and to predict physiological
responses and the influence of various lipases [49]. Pre-
ferably, such models would also incorporate specific
parameters for common genetic variants, which can influ-
ence the kinetics of particular enzymes or the amount of
secreted signaling molecules. These values are not yet
available, and the further expansion of systems biology
needs quantitative input from dedicated experiments to
fill this gap.

Quantitation is already widely used at the macrolevel:
for instance, methods for the accurate quantification of
insulin levels and insulin resistance are a common target of
research, and mathematical models of diabetes physiology
have a long tradition [50]. At the microlevel (from cells to
molecules), quantitation is muchmore challenging and has
been restricted to more specific aspects, such as determin-
ing individual binding affinities for receptor–ligand com-
plexes or the activation kinetics of particular signaling
6

pathways. Comprehensive quantification, as well as
successful large-scale systems modeling, will require
collaboration between many systems biology groups.
Several initiatives are trying to establish the necessary
standards, protocols and computational tools to make this
process possible [51]. Of particular importance are common
languages for describing biological models, such as the
Systems Biology Markup Language (SBML) and Cell
Markup Language (CellML), which greatly facilitate infor-
mation exchange [52,53].

Parameter information will remain incomplete for some
time. At the moment, while our understanding of energy
metabolism is expanding rapidly and new players are
discovered at an astonishing rate, I predict that semi-
quantitative hybrid models will be particularly powerful.
They can combine qualitative reasoning (’if A increases
above some threshold, B is inhibited’), parameter con-
straints (’the affinity of receptor R is somewhere between
10 and 500 nM’), and exact kinetic and thermodynamic
information (usually expressed in differential equations
describing enzymatic and transport reactions). These
together can lead to concrete predictions of system beha-
vior, even when working with incomplete knowledge
[54,55].

Conclusion
The communication network established by the adipose
tissue secretome is of amazing complexity. A large number
of adipokine-based feedback loops interact to maintain a
robust disease state that is gradually aggravating and
becomes resistant to therapeutic intervention. I maintain
that this multi-level network of signaling pathways is
eminently suitable for a quantitative systems biology
approach, which will be necessary to answer many of
the remaining questions in the field (Box 2). Recent
advances in the three described technological domainswill,
in my view, contribute to progress in this direction. Whole-
genome association studies identify missing molecular
players; newmolecular profiling approaches quantify these
players and identify their causal connections; and, finally,
computational modeling approaches are used to analyze
system behavior and identify critical break-points. This
integrated approach will help our understanding of disease
progression, its evolutionary history, and individual differ-
ences in susceptibility and pathogenesis to form the basis
for a more effective, personalized treatment and preven-
tion plan for type 2 diabetes.



Opinion Trends in Endocrinology and Metabolism Vol.20 No.1
Acknowledgements
Thanks to Jaswinder Sethi, Martijn Dijkstra, Lutz Breitling, Bruce
Wolffenbuttel, Ritsert Jansen and Timon van Haeften for their very
constructive comments on the manuscript. I apologize to those authors
whose original papers could not be cited because of space constraints.

References
1 Stumvoll, M. et al. (2005) Type 2 diabetes: principles of pathogenesis

and therapy. Lancet 365, 1333–1346
2 Mlinar, B. et al. (2007) Molecular mechanisms of insulin resistance and

associated diseases. Clin. Chim. Acta 375, 20–35
3 Kitano, H. (2002) Computational systems biology. Nature 420, 206–

210
4 Michael, M.D. et al. (2000) Loss of insulin signaling in hepatocytes

leads to severe insulin resistance and progressive hepatic dysfunction.
Mol. Cell 6, 87–97

5 Ahima, R.S. and Lazar, M.A. (2008) Adipokines and the peripheral and
neural control of energy balance. Mol. Endocrinol. 22, 1023–1031

6 Sell, H. et al. (2006) The adipocyte–myocyte axis in insulin resistance.
Trends Endocrinol. Metab. 17, 416–422

7 Kershaw, E.E. and Flier, J.S. (2004) Adipose tissue as an endocrine
organ. J. Clin. Endocrinol. Metab. 89, 2548–2556

8 Trujillo, M.E. and Scherer, P.E. (2006) Adipose tissue-derived factors:
impact on health and disease. Endocr. Rev. 27, 762–778

9 Arner, P. (2003) The adipocyte in insulin resistance: key molecules and
the impact of the thiazolidinediones. Trends Endocrinol. Metab. 14,
137–145

10 DeFronzo, R.A. (2004) Dysfunctional fat cells, lipotoxicity and type 2
diabetes. Int. J. Clin. Pract. Suppl. 143, 9–21

11 Kitano, H. et al. (2004) Metabolic syndrome and robustness tradeoffs.
Diabetes 53 (Suppl 3), S6–S15

12 Zhang, F. et al. (2005) Leptin: structure, function and biology. Vitam.
Horm. 71, 345–372

13 Hotamisligil, G.S. et al. (1993) Adipose expression of tumor necrosis
factor-a: direct role in obesity-linked insulin resistance. Science 259,
87–91

14 MacDougald, O.A. and Burant, C.F. (2007) The rapidly expanding
family of adipokines. Cell Metab. 6, 159–161

15 Zou, C. and Shao, J. (2007) Role of adipocytokines in obesity-associated
insulin resistance. J. Nutr. Biochem. 19, 277–286

16 Fruhwirth, G.O. et al. (2007) Oxidized phospholipids: from molecular
properties to disease. Biochim. Biophys. Acta 1772, 718–736

17 Ross, R. et al. (1992) Quantification of adipose tissue by MRI:
relationship with anthropometric variables. J. Appl. Physiol. 72,
787–795

18 Youn, B.S. et al. (2008) Serum vaspin concentrations in human obesity
and type 2 diabetes. Diabetes 57, 372–377

19 Sethi, J.K. and Vidal-Puig, A. (2005) Visfatin: the missing link between
intra-abdominal obesity and diabetes? Trends Mol. Med. 11, 344–347

20 Kitano, H. (2007) Towards a theory of biological robustness. Mol. Syst.
Biol. 3, 137

21 Ajjan, R.A. and Grant, P.J. (2008) The cardiovascular safety of
rosiglitazone. Expert Opin. Drug Saf. 7, 367–376

22 Rajala, M.W. and Scherer, P.E. (2003) Minireview: The adipocyte – at
the crossroads of energy homeostasis, inflammation, and
atherosclerosis. Endocrinology 144, 3765–3773

23 Fontana, L. et al. (2007) Visceral fat adipokine secretion is associated
with systemic inflammation in obese humans. Diabetes 56, 1010–1013

24 Hotamisligil, G.S. (2006) Inflammation and metabolic disorders.
Nature 444, 860–867

25 Ferrante, A.W., Jr (2007) Obesity-induced inflammation: a metabolic
dialogue in the language of inflammation. J. Intern. Med. 262, 408–414

26 de Luca, C. and Olefsky, J.M. (2008) Inflammation and insulin
resistance. FEBS Lett. 582, 97–105

27 Arner, P. (2007) Introduction: the inflammation orchestra in adipose
tissue. J. Intern. Med. 262, 404–407

28 Elbers, C.C. et al. (2007) A strategy to search for common obesity and
type 2 diabetes genes. Trends Endocrinol. Metab. 18, 19–26

29 Frayling, T.M. (2007) Genome-wide association studies provide new
insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8, 657–662
30 Grant, S.F. et al. (2006) Variant of transcription factor 7-like 2
(TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323

31 Helgason, A. et al. (2007) Refining the impact of TCF7L2 gene variants
on type 2 diabetes and adaptive evolution. Nat. Genet. 39, 218–225

32 Klinke, D.J., 2nd (2008) Integrating epidemiological data into a
mechanistic model of type 2 diabetes: validating the prevalence of
virtual patients. Ann. Biomed. Eng. 36, 321–334

33 Maeda, K. et al. (1996) cDNA cloning and expression of a novel adipose
specific collagen-like factor, apM1 (adipose most abundant gene
transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289

34 Fukuhara, A. et al. (2005) Visfatin: a protein secreted by visceral fat
that mimics the effects of insulin. Science 307, 426–430

35 Schadt, E.E. and Lum, P.Y. (2006) Thematic review series: systems
biology approaches to metabolic and cardiovascular disorders. Reverse
engineering gene networks to identify key drivers of complex disease
phenotypes. J. Lipid Res. 47, 2601–2613

36 Chen, Y. et al. (2008) Variations in DNA elucidate molecular networks
that cause disease. Nature 452, 429–435

37 Emilsson, V. et al. (2008) Genetics of gene expression and its effect on
disease. Nature 452, 423–428

38 Alvarez-Llamas, G. et al. (2007) Characterization of the human visceral
adipose tissue secretome. Mol. Cell. Proteomics 6, 589–600

39 Adachi, J. et al. (2007) In-depth analysis of the adipocyte proteome by
mass spectrometry and bioinformatics. Mol. Cell. Proteomics 6, 1257–

1273
40 Cox, J. and Mann, M. (2007) Is proteomics the new genomics? Cell 130,

395–398
41 Goodacre, R. (2005) Metabolomics shows the way to new discoveries.

Genome Biol. 6, 354
42 Dumas, M.E. et al. (2007) Direct quantitative trait locus mapping of

mammalian metabolic phenotypes in diabetic and normoglycemic rat
models. Nat. Genet. 39, 666–672

43 Watson, A.D. (2006) Thematic review series: systems biology approaches
tometabolic and cardiovascular disorders. Lipidomics: a global approach
to lipid analysis in biological systems. J. Lipid Res. 47, 2101–2111

44 Wenk, M.R. (2005) The emerging field of lipidomics. Nat. Rev. Drug
Discov. 4, 594–610

45 Bays, H. et al. (2004) Role of the adipocyte, free fatty acids, and ectopic
fat in pathogenesis of type 2 diabetes mellitus: peroxisomal
proliferator-activated receptor agonists provide a rational
therapeutic approach. J. Clin. Endocrinol. Metab. 89, 463–478

46 Bochkov, V.N. (2007) Inflammatory profile of oxidized phospholipids.
Thromb. Haemost. 97, 348–354

47 Kansal, A.R. (2004) Modeling approaches to type 2 diabetes. Diabetes
Technol. Ther. 6, 39–47

48 Pollard, J., Jr et al. (2005) A computational model to define the
molecular causes of type 2 diabetes mellitus. Diabetes Technol. Ther.
7, 323–336

49 Kim, J. et al. (2008) A computational model of adipose tissue
metabolism: evidence for intracellular compartmentation and
differential activation of lipases. J. Theor. Biol. 251, 523–540

50 Bergman, R.N. et al. (1981) Physiologic evaluation of factors controlling
glucose tolerance inman: measurement of insulin sensitivity and b-cell
glucose sensitivity from the response to intravenous glucose. J. Clin.
Invest. 68, 1456–1467

51 Wierling, C. et al. (2007) Resources, standards and tools for systems
biology. Brief. Funct. Genomic. Proteomic. 6, 240–251

52 Hucka, M. et al. (2004) Evolving a lingua franca and associated
software infrastructure for computational systems biology: the
Systems Biology Markup Language (SBML) project. Syst. Biol.
(Stevenage) 1, 41–53

53 Lloyd, C.M. et al. (2004) CellML: its future, present and past. Prog.
Biophys. Mol. Biol. 85, 433–450

54 Bosl, W.J. (2007) Systems biology by the rules: hybrid intelligent
systems for pathway modeling and discovery. BMC Syst. Biol. 1, 13

55 Fisher, J. and Henzinger, T.A. (2007) Executable cell biology. Nat.
Biotechnol. 25, 1239–1249

56 Taylor, S.I. (1999) Deconstructing type 2 diabetes. Cell 97, 9–12
57 Cawthorn, W.P. and Sethi, J.K. (2008) TNF-a and adipocyte biology.

FEBS Lett. 582, 117–131
7


	Robust signaling networks of the adipose secretome
	The diabetes pandemic
	Diabetes as a multi-level, system-wide disease
	The complexity of the adipose tissue secretome
	Understanding diabetes progression by systems biology
	Chronic inflammation underlying type 2 diabetes progression
	Technology drives discoveries
	Genetic approaches towards system reconstruction
	Comprehensive molecular profiling
	Quantitative modeling strategies
	Conclusion
	Acknowledgements
	References


